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Abstract
We consider the problem of supervised classification.
We focus on the problem of calibrating the classifier’s
outputs. We show that the p-values provided by Induc-
tive Conformal Prediction (ICP) can be interpreted as
a possibility distribution over the set of classes. This
allows us to use ICP to compute a predictive belief
function which is calibrated by construction. We also
propose a learning method which provides p-values in a
simpler and faster way, by making use of a multi-output
regression model. Results obtained on the Cifar10 and
Digits data sets show that our approach is comparable
to standard ICP in terms of accuracy and calibration,
while offering a reduced complexity and avoiding the
use of a calibration set.
Keywords: Conformal Prediction, Dempster-
Shafer,Belief Functions,Calibration

1. Introduction
Nowadays, although many learning models perform well
(i.e. they are able to well classify test instances into classes),
their outputs are often ill-calibrated: the posterior probabil-
ity distributions over the classes that they produce can be
crude estimates of the actual ones. This is true irrespectively
of whether those probabilities are directly produced by the
classifier (as in the naive Bayes classifier) or are transforma-
tions of real-valued scores (as when using a softmax after
having learned a deep learning model).

Inductive Conformal Prediction (ICP) [20, 18, 21], which
received an increased interest in the past years, solves this
problem by calibrating the model outputs, which results in
sets of plausible classes rather than a single class. Usually,
ICP is used within a probabilistic framework; however,
conformal prediction and connected frameworks such as
Venn predictors [15] are strongly linked to imprecise proba-
bilistic models. This paper further explores and exploits the
link between possibility theory and conformal prediction,
something that was already pointed out in other setting such
as self-supervised learning [16] or inferential models [3].

In particular, we want to tackle some of the drawbacks
of conformal prediction by leveraging those links with pos-
sibility theory and belief functions. First, as other post-hoc

calibrators [22], the approach requires a specific data set
known as the “calibration set” in order to calibrate the clas-
sifier’s outputs towards the desired posterior probabilities.
Getting rid of this calibration set when making predictions
may allow for not keeping it in store (thus saving memory
space) or avoiding communicating it in further applications
(thus increasing data privacy). Second, to classify a new
instance, a set of conformity (or non-conformity) scores
need to be computed via a specific model, which can be
computationally expensive, and which makes ICP slower
than a standard prediction method. While computing these
scores is not computationally prohibitive (since it basically
requires one sorting of p-values per possible class), it may
still impede real-time applications such as in autonomous
vehicles, high-speed processing lines, and all sorts of online
detection or recommendation systems.

While our work can be totally put under the hood of
possibility theory, we will consider the more general model
of belief functions in this paper. One of the main reasons is
that calibration issues have been much more investigated
within the belief functions setting (see for example [5, 17,
29]) than in other uncertainty frameworks.

Our contributions are as follows: we provide a simple
proof that so-called p-values produced by ICP can be directly
interpreted as possibility degrees, allowing one to interpret
ICP outputs within possibility and evidence theories1. We
also investigate whether those p-values can be learned and
reproduced in a reliable way, therefore solving the two
issues mentioned above: the need for a calibration set, and
preserving prediction efficiency. This means that we will
only need the calibration set once, and in an off-line setting,
in order to learn our p-value predictor. Provided that this
latter is sufficiently accurate, combining those two elements
then gives an easy practical means to obtain calibrated
belief functions in the form of possibility distributions.

The rest of the paper is organized as follows. Conformal
prediction is briefly presented in Section 2.2, and Section 2.3
provides a reminder on evidence theory and its relation to
possibility theory. Section 3 formalizes our contributions.

1Since p-values are not necessarily normalised, they are harder to
interpret directly as credal sets.
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Section 4 presents some experiments, and a conclusion is
drawn in Section 5.

2. Preliminaries

This section provides the necessary preliminaries to follow
the rest of the paper, and establishes notations.

2.1. Problem setting

In this paper, we consider the classical problem of su-
pervised classification: for each instance, a label must be
specified among all possible classes. More formally, let
𝛺 = {𝑤1, . . . , 𝑤𝐾 } be the set of all possible classes (output
space), andX the data (input) space. Let 𝑍 = {𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖)},
𝑖 = 1, . . . , _ be a labeled data set, with 𝑥𝑖 ∈ X a data exam-
ple and 𝑦𝑖 ∈ 𝛺 its associated label.

We assume that the data in 𝑍 are exchangeable (an
assumption slightly weaker than iid), i.e, changing the
order of the data set does not change the output of the
model or our inferences. Among other things, this implies
that the data 𝑍 are issued from the same distribution over
X × 𝛺, meaning that to each instance 𝑥 can be associated a
posterior probability distribution 𝜌(𝑤𝑘 |𝑥) ∈ P(𝛺) giving
the probability of any class 𝑤𝑘 ∈ 𝛺 given an input 𝑥.

The basic purpose in supervised classification is then to
build a function ℎ : X → 𝛺 that predicts well the class of
new instances. However, such a function will not contain
any uncertainty quantification of the output. A means to
equip such a function with uncertainty quantification is to
allow for set-valued predictions, that is to build a function
ℎ : X → 2𝛺 and to require that it satisfies some coverage
properties, for instance that the predictions ℎ(𝑋) satisfy

𝑃(𝑌 ∈ ℎ(𝑋)) > 𝛼 (1)

for some specified values 𝛼. Such a constraint corresponds
to a marginal coverage guarantee.

2.2. Inductive Conformal Prediction

Definition 1 A model is said to be calibrated when its
probability estimation is equal to the real one, i.e,

𝑃(𝑤𝑖 = 𝑦𝑖 |ℎ(𝑥𝑖) = 𝛼) = 𝛼 (2)

Inductive conformal prediction (ICP) has been proposed
to calibrate (probabilistic) classifier outputs. In order to ap-
ply ICP, the initial data set is split into a (proper) training set
D𝑡𝑟 , a calibration set D𝑐𝑎𝑙 and a test set D𝑡𝑒, of respective
sizes 𝑛, 𝑞 and 𝑙 (𝑛 + 𝑞 + 𝑙 = _). ICP then outputs conformal
sets, defined as follows.

Definition 2 A conformal classifier evaluating a sample
𝑥𝑖 predicts a conformal set 𝛤 𝛿 ⊆ 𝛺, i.e. a set of possible
labels such that:

𝑃(𝑦𝑖 ∈ 𝛤 𝛿) ≥ 1 − 𝛿, (3)

where 𝑦𝑖 is the true label and 𝛿 is a specified confidence
(or significance) level.

It is easy to see that conformal sets satisfy Equation (1),
and are therefore calibrated. This comes at a cost, since to
determine these sets, ICP requires a separate calibration
set D𝑐𝑎𝑙 . Calibration instances are used to calculate non-
conformity scores 𝛽𝑤𝑘

𝑖
for all 𝑤𝑘 ∈ 𝛺. Such scores can be

computed in various ways (see [20] for different proposals);
in this paper, we use

𝛽
𝑤𝑘
𝑖

=
max 𝑗≠𝑘 𝑜

𝑤 𝑗

𝑖

𝑜
𝑤𝑘
𝑖
+ 𝜖

, (4)

where 𝑜𝑖 = [𝑜𝑤1
𝑖
, . . . , 𝑜

𝑤𝐾
𝑖
] is the raw (uncalibrated) vector

predicted by the classifier for input 𝑥𝑖 , and the positive 𝜖 ≈ 0
is meant to avoid division by zero.

The score of any calibration instance is computed for
its actual class only. For any test instance, the scores are
computed for all classes, so that they can be compared to
those of the calibration data: thus, we can estimate to which
extent the instance is typical of (or conformal to) the various
classes. This can formally be done by computing p-values
𝑝
𝑤𝑘
𝑖

for any sample 𝑥𝑖 outside of the calibration set:

𝑝
𝑤𝑘
𝑖

=
card

{
𝑥𝑡 ∈ D𝑐𝑎𝑙 : 𝛽𝑦𝑡𝑡 ≥ 𝛽

𝑤𝑘
𝑖

}
𝑞 + 1

. (5)

P-values have the following property [20]:

𝑃(𝑝𝑤𝑘 ≤ 𝛿) ≤ 𝛿, (6)

with 𝛿 ∈ (0, 1) being a significance level. Note that Equa-
tion (6) is exactly equivalent to the notion of valid belief
function mentioned in [8] if we interpret 𝑝𝑤𝑘 as plausibility
degrees over the singletons. Therefore, p-values can be used
as a statistic to decide whether a class label should be added
to the conformal set: we define our set-valued prediction as

𝛤 𝛿 (𝑥𝑖) =
{
𝑤 𝑗 : 𝑝𝑤 𝑗

𝑖
> 𝛿

}
, (7)

which satisfies the coverage constraint. The whole ICP
process is summarised by Algorithm 1.

Conformal prediction sets can be made larger or smaller
by varying 𝛿: when applied to the whole set of test instances
D𝑡𝑒, we can estimate the resulting accuracy as

a𝛿 =
1
𝑛𝑡𝑒

∑︁
𝑥𝑖∈D𝑡𝑒

𝟙𝑦𝑖∈𝛤 𝛿 (𝑥𝑖 ) , (8)
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Algorithm 1 ICP algorithm
Input: Classifier ℎ, calibration set D𝑐𝑎𝑙 , test set D𝑡𝑒
Output: Vector 𝑝 of p-values

1 for 𝑥𝑖 ∈ D𝑐𝑎𝑙 do ⊲ scores of calibration data

2 𝑜𝑖 ← ℎ(𝑥𝑖); 𝛽𝑦𝑡𝑡 ←
max 𝑗; 𝑗≠𝑡 𝑜

𝑤𝑗
𝑡

𝑜
𝑦𝑡
𝑡 +𝜖

;
3 end
4 for 𝑥𝑖 ∈ D𝑡𝑒 do ⊲ scores of test data
5 𝑜𝑖 ← ℎ(𝑥𝑖);
6 for 𝑘 ← 1 to 𝐾 do

7 𝛽
𝑤𝑘
𝑖
← max 𝑗; 𝑗≠𝑘 𝑜

𝑤𝑗

𝑖

𝑜
𝑤𝑘
𝑖
+𝜖 ;

8 𝑝
𝑤𝑘
𝑖
← |𝑡=𝑛+1,...,𝑛+𝑞;𝛽𝑦𝑡𝑡 ≥𝛽

𝑤𝑘
𝑖
|

𝑞+1 ;
9 end

10 end

with 𝟙𝐴 the indicator function of event 𝐴, i.e., the function
that equals 1 if 𝐴 is true, zero else. If a model is well
calibrated, its accuracy a𝛿 is expected to be 𝛿, for all
𝛿 ∈ [0; 1]. The graph representing a𝛿 as a function of 𝛿 is
called a validation curve.

Example 1 Consider that, for a given classifier ℎ pre-
dicting four classes 𝛺 = {𝑤1, 𝑤2, 𝑤3, 𝑤4}, the following
non-conformity scores were computed over the calibration
set containing 7 data points:

[0.8, 2, 3.15, 1.5, 1, 6.4, 5.8]

For a given instance 𝑥𝑖 , the same classifier provides
𝑜𝑖 = [0.6, 0.3, 0.2, 0.1] as the class probabilities, which is
then turned into the following non-conformity scores using
Equation (4):

𝛽𝑖 = [0.5, 2, 3, 6] .

Applying Equation (5) gives the following p-values:

𝑝𝑖 = [7/7+1, 4/7+1, 3/7+1, 1/7+1]
= [0.875, 0.5, 0.375, 0.125] .

Assuming we specify 𝛿 = 0.2, that is we require a coverage
of 80%, we would then obtain as prediction

𝛤 𝛿 (𝑥𝑖) = {𝑤1, 𝑤2, 𝑤3}.

By increasing 𝛿, 𝛤 𝛿 tends to have more elements, until
it eventually becomes 𝛺, i.e, all possible classes. This is
illustrated by Figure 1.

While ICP is a versatile and efficient tool to provide
cautious predictions, its reliance on a calibration data set
can be seen as a limitation: one must keep the calibration data
at disposal, and producing the conformal prediction scores

still requires a number of computations that may prevent its
application to real-time problems. In the following, we see
ICP as an intermediate way to obtain a predictive model
outputting calibrated belief functions. Before doing so, we
will recall the basics about possibility distributions and
belief functions.

2.3. Belief Functions and Possibility Theory

2.3.1. Belief functions

The theory of belief functions, a.k.a. Dempster-Shafer (DS)
theory or evidence theory, is a useful tool to represent and
manage the partial knowledge of an unknown variable (e.g.,
a class variable 𝑌 ∈ 𝛺 as above) [7].

The basic representation is that of mass function.

Definition 3 A mass function (MF) is a mapping𝑚 : 2𝛺 →
[0, 1] such that ∑︁

𝐴⊆𝛺
𝑚(𝐴) = 1. (9)

Each mass 𝑚(𝐴) can be interpreted as a piece of evidence
that 𝑌 ∈ 𝐴. If 𝑚(𝐴) > 0, then 𝐴 is said to be a focal set of
𝑚. A MF is normal if ∅ is not a focal set. It is consonant if
all the focal sets are nested, i.e. either 𝐴𝑖 ⊂ 𝐴 𝑗 or 𝐴 𝑗 ⊂ 𝐴𝑖
for 𝐴𝑖 ≠ 𝐴 𝑗 .

We also introduce the belief and plausibility functions.

Definition 4 A MF is in one-to-one correspondence with
its associated belief and plausibility functions:

𝐵𝑒𝑙 (𝐵) =
∑︁
𝐵⊆𝐴

𝑚(𝐴), (10a)

𝑃𝑙 (𝐵) =
∑︁
𝐴∩𝐵≠∅

𝑚(𝐴) = 𝐵𝑒𝑙 (𝛺) − 𝐵𝑒𝑙 (¬𝐵). (10b)

When a MF is normal, 𝐵𝑒𝑙 (𝛺) = 1 and the belief and
plausibility degrees can be interpreted as lower and upper
bounds on the probability of any 𝐴 ⊆ 𝛺:

𝐵𝑒𝑙 (𝐴) ≤ 𝑃(𝐴) ≤ 𝑃𝑙 (𝐴).

Because of their duality (10b), we need only use one of
them to define the associated credal set of probability
distributions:

P(𝑃𝑙) = {𝑃 |∀𝑝(𝐴) ≤ 𝑃𝑙 (𝐴)} . (11)

Last, the contour function 𝑝𝑙 : 𝛺 → [0; 1] can be defined
from 𝑃𝑙 by 𝑝𝑙 (𝑤) = 𝑃𝑙 ({𝑤}), for all 𝑤 ∈ 𝛺.

2.3.2. Possibility theory

Another framework for representing and managing uncer-
tainty, possibility theory [11, 8] has strong connections
with belief functions. Its basic representation tool is that of
possibility distribution.
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0 1 𝛿

𝑝𝑤4 = 0.125 𝑝𝑤3 = 0.375 𝑝𝑤2 = 0.5 𝑝𝑤1 = 0.875

𝛤 𝛿 = 𝛺 𝛤 𝛿 = {𝑤1, 𝑤2, 𝑤3} 𝛤 𝛿 = {𝑤1, 𝑤2} 𝛤 𝛿 = {𝑤1} 𝛤 𝛿 = ∅

Figure 1: Illustration of predicted conformal sets

Definition 5 A possibility distribution 𝜋 is a mapping
𝜋 : 𝛺 → [0, 1].

From a possibility distribution can again be defined two
dual measures, the possibility and necessity measures.

Definition 6 The possibility and necessity measures as-
sociated with a possibility distribution 𝜋 are mappings
𝛱 : 2𝛺 → [0, 1] and 𝑁 : 2𝛺 → [0, 1], such that, for any
𝐵 ⊆ 𝛺,

𝛱 (𝐵) = max
𝑥∈𝐵

𝜋(𝑥), 𝑁 (𝐵) = 𝛱 (𝛺) − 𝛱 (¬𝐵).

The possibility measure is maxitive, in the sense that 𝛱 (𝐴∪
𝐵) = max {𝛱 (𝐴), 𝛱 (𝐵)}. When the possibility distribution
is normalised, that is when max𝑥∈𝛺 𝜋(𝑥) = 1, the possibility
measure furthermore satisfies

𝛱 (∅) = 0, 𝛱 (𝛺) = 1,

and in this case the necessity and possibility degrees can
also be seen as lower and upper bounds of a probability:
𝑁 (𝐴) ≤ 𝑃(𝐴) ≤ 𝛱 (𝐴). More generally, they correspond
to the belief and plausibility functions of a consonant mass
function. Another notion issued from possibility theory
that we will use is the one of 𝛼-cut: the alpha-cut of a
distribution 𝜋 is the subset

𝜋𝛼 = {𝑤 ∈ 𝛺 : 𝜋(𝑤) ≥ 𝛼}.

Let us also recall that if 𝜋 is normalised, we have that

𝑁 (𝜋𝛼) = 1 − 𝛼.

3. Calibrated belief functions through ICP

In this section, we will show that we can generally interpret
ICP results as consonant belief functions or possibility
distributions, and will investigate whether we can learn
these latter. Note that the relation we will show was already
known in the framework of inferential models [3]. Our
derivation is nevertheless simpler.

3.1. P-values as possibility degrees

Let 𝑥 be an instance and 𝑝𝑤 𝑗 , 𝑗 = 1, . . . , 𝐾 be the p-values
obtained from its nonconformity scores, and assume that
those p-values are normalised. We propose to derive a
possibility distribution from these latter.

Proposition 1 The p-values obtained by ICP can be
interpreted as a possibility distribution 𝜋𝑥 defined by
𝜋𝑥 (𝑤 𝑗 ) = 𝑝𝑤 𝑗 for all 𝑤 𝑗 ∈ 𝛺, the 𝛼-cuts of which are
the conformal sets obtained from the 𝑝𝑤 𝑗 .

Proof First, we obviously have 𝑝𝑤 𝑗 ∈ [0; 1] for all 𝑗 =
1, . . . , 𝐾 , with 𝑝𝑤 𝑗 being as large as 𝑤 𝑗 is a plausible label.
Thus, the set of degrees 𝜋𝑥 (𝑤 𝑗 ) = 𝑝𝑤 𝑗 defines a legitimate
possibility distribution. Note that this latter is in general
unnormalized.

In addition, we recall that according to (6),

𝑃(𝑝𝑤 𝑗 ≤ 𝛿) ≤ 𝛿 ⇔ 𝑃(𝑝𝑤 𝑗 > 𝛿) ≥ 1 − 𝛿;

this means that the set 𝛤 𝛿 (𝑥) with confidence level 1 − 𝛿
defined by Eq. (7) can be rewritten as

𝛤 𝛿 (𝑥) =
{
𝑤 𝑗 : 𝜋𝑥 (𝑤 𝑗 ) ≥ 𝛿

}
, (12)

which is the definition of the (𝛿)-cut of the possibility
distribution 𝜋𝑥 .

In general, p-values will not be normalised though, and
the possibility distribution derived from them will not
correspond to a probability set.

3.2. Normalised ICP

ICP is first applied to obtain the p-values for each class.
These p-values can be interpreted as a possibility distribu-
tion 𝜋𝑥 as described in Proposition 1; however they are gen-
erally not normalised, in the sense that max𝑤∈𝛺 𝜋𝑥 (𝑤) < 1.
In practice, one may wish to handle normalised distributions
for various reasons:

• First, one may wish to output a non-empty confor-
mal set 𝛤 𝛿 (𝑥) whichever 𝛿 in Equation (12)—unless
𝛤 𝛿 (𝑥) = ∅ can be given a meaningful interpretation;
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• Second, being able to interpret the prediction as a
probability set may be necessary or useful, for instance
to use various decision rules [5, 26] or to use learning
methods using credal labels [16].

In our case, the normalisation strategy should preserve
the conformity property given by Definition 2. This means
in particular that if 𝛤 𝛿𝜋 (𝑥) are the sets obtained from 𝜋𝑥 ,
then the sets 𝛤 𝛿

𝜋′ (𝑥) given by the normalised 𝜋′𝑥 should
satisfy 𝛤 𝛿𝜋 (𝑥) ⊆ 𝛤 𝛿

𝜋′ (𝑥) for all 𝛿 ∈ [0, 1]. This ensures
that if our initial predictions were valid in the sense of
Definition 2, the new ones will be too, albeit in a more
conservative way. Note that having 𝛤 𝛿𝜋 (𝑥) ⊆ 𝛤 𝛿

𝜋′ (𝑥) for
all 𝛿 ∈ [0, 1] is equivalent to require 𝜋 ≤ 𝜋′: hence, any
normalisation strategy giving such a 𝜋′ can be considered.

However, as we said, such 𝜋′ will provide more cautious
and conservative predictions. It is therefore natural to limit
as much as possible this increase in conservativeness, as
the conformal procedure already guarantees predictions to
be well-calibrated. Therefore, a second natural desiderata
in our setting is that the normalised 𝜋′ should be as close
as possible to the original 𝜋.

In order to satisfy these two conditions, we propose to
normalise the distribution by changing only the maximum
p-value for one, i.e

𝜋∗𝑥 (𝑤∗) = 1, (13a)
𝜋∗𝑥 (𝑤) = 𝜋𝑥 (𝑤), for all 𝑤 ≠ 𝑤∗; (13b)

with 𝑤∗ = arg max (𝜋(𝑤)). The normalization in Eq. (13)
amounts to assume that the most plausible class is indeed
completely plausible, i.e. 𝛱 (𝛺) = 1.

It should be noted that such a normalisation is uncommon
in both evidence theory and possibility theory. It can be
compared to two common other normalisation rules in
evidence theory: Dempster’s normalisation, which results
in

𝜋𝑑 (𝑤) =
𝜋(𝑤)

max𝑤∈𝛺 𝜋(𝑤)
,

and Yager’s normalisation, which amounts to compute

𝜋𝑦 (𝑤) = 𝜋(𝑤) + (1 − max
𝑤∈𝛺

𝜋(𝑤)).

The former has for instance been used in previous works
connected to conformal prediction [16, 3], however it should
be noted that for a given 𝜋 we have 𝜋∗ ≤ 𝜋𝑑 ≤ 𝜋𝑦 . In our set-
ting, we will therefore normalise according to Equation (13)
so that 𝜋𝑥 is altered in a minimal way.

Finally, the normalized possibility distribution is inter-
preted as a plausibility distribution, and the corresponding
belief function can be retrieved:

𝐵𝑒𝑙 (𝐵) = 1 − 𝛱 ∗ (¬𝐵) = 1 − max
𝑥∈¬𝐵

𝜋∗ (𝑥),∀𝐵 ⊆ 𝛺. (14)

𝑤1 𝑤2 𝑤3 𝑤4

0.125

0.375

0.5

0.875

1

label

𝜋
𝜋∗

𝜋𝑦

𝜋𝑑

Figure 2: Illustration of different normalisation procedures.

Note that the associated mass function is consonant [10]. A
direct consequence is that 𝐵𝑒𝑙 (𝐵) = 0 for all 𝐵 ⊆ 𝛺 such
that 𝑤∗ ∉ 𝐵, since 1 −max𝑥∈¬𝐵 𝜋∗ (𝑥) = 1 − 1 = 0.

Example 2 Following Example 1, the unnormalized possi-
bility distribution derived from the p-values at hand is

𝜋(𝑤1) = 0.875, 𝜋(𝑤2) = 0.5,
𝜋(𝑤3) = 0.375, 𝜋(𝑤4) = 0.125,

with 𝜋∗ being obtained by setting 𝜋∗ (𝑤1) = 1 and 𝜋∗ (𝑤 𝑗 ) =
𝜋(𝑤 𝑗 ) for all 𝑗 ≠ 1. The associated belief function is

𝐵𝑒𝑙 ({𝑤1}) = 1 − 0.5 = 0.5,
𝐵𝑒𝑙 ({𝑤1, 𝑤2}) = 1 − 0.375 = 0.625,
𝐵𝑒𝑙 ({𝑤1, 𝑤3}) = 1 − 0.5 = 0.5,
𝐵𝑒𝑙 ({𝑤1, 𝑤4}) = 1 − 0.5 = 0.5,

𝐵𝑒𝑙 ({𝑤1, 𝑤2, 𝑤3}) = 1 − 0.125 = 0.875,
𝐵𝑒𝑙 ({𝑤1, 𝑤2, 𝑤4}) = 1 − 0.375 = 0.625,
𝐵𝑒𝑙 ({𝑤1, 𝑤3, 𝑤4}) = 1 − 0.5 = 0.5,

𝐵𝑒𝑙 (𝛺) = 1.

As expected, whenever 𝑤1 ∉ 𝐵, we have 𝐵𝑒𝑙 (𝐵) = 0.
Figure 2 represents the three possible normalisations:

ours, Yager’s and Dempster’s. It clearly shows how these
two latter alter all p-values, contrary to the former.

Normalizing the possibility distribution in this way means
that instead of returning the empty set ∅ for higher values
of 𝛿, one will return the most likely class. This may be
perceived as a reasonable behaviour in case the true class is
assumed to be in 𝛺. In any case, this can only improve the
coverage, as we will see in the experiments.
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3.3. Predicting p-values

We have now seen that computing p-values directly gives a
belief function (or a possibility distribution) representing
our partial knowledge of the actual class label of an instance.
Therefore, being able to regress accurately such p-values
given any new test instance, e.g. using a multi-output model,
would provide us with a credal classifier with built-in
calibration guarantees. This would also allow us to avoid
having to repeatedly use the calibration set, possibly saving
some precious time at the prediction step.

Since p-values are not available in classical data sets, we
propose to first train a probabilistic model ℎ : X → P(𝛺)
so as to retrieve scores for any processed instance. Once this
model has been trained, ICP can be used to transform the
scores obtained for the training instances into p-values 𝑝𝑡𝑟 .
Using the newly labeled training data (D𝑡𝑟 , 𝑝𝑡𝑟 ), we can
consequently train a regression function (or regressor) 𝜏 :
X → [0, 1]𝐾 to directly provide p-values from any instance
𝑥 ∈ X, using the procedure summarized in Algorithm 2.

Computing p-values using this regressor is obviously
faster than computing scores before applying ICP. If we
suppose that the regressor and the probabilistic classifier
have the same complexity, we nevertheless decrease the
overall computational cost, since applying the procedure
described in Section 3.2 onto the estimated p-values 𝜏(𝑥)
provides us with a calibrated belief function for any test
instance 𝑥, without having to compare its nonconformity
scores to those of the calibration data.

4. Experiments
We validated the procedure in Algorithm 2 through two
experiments realized on real data sets, briefly presented in
Table 1. They exhibit relatively low-dimension inputs. The
“input shape” refers to the Height × Width × Number of
the channels for the Digits, Cifar10, Cifar100, Artists and
SVHN data sets since they are images. For the rest of the
data sets, it is the size of a feature vector.

For the first four data sets, we used a logistic regression
model as classifier ℎ and a random forest [2] as regression
model. For the others, we used an EfficientNet.v2 neural net-
work [24] coupled with a softmax layer for feature extraction
and classification, the regressor being implemented using
three dense linear layers. We used various classifiers and
regressors in order to test the applicability of our approach
in different settings.

The following parameters were used for training in the
second experiment: we used an Adam optimizer, with batch
size 128, initial learning rate 0.001 and momentum 0.9.
An exponential learning rate schedule was created. The
calibration data set for all experiments was set as 20% of
the training data set.

Algorithm 2 Training algorithm
Input: Training set D𝑡𝑟 , calibration set D𝑐𝑎𝑙 , test set D𝑡𝑒,

number of epochs 𝑛𝑒, number of batches 𝑛𝑏
Output: Trained classifier ℎ̂, trained regressor �̂�
split D𝑡𝑟 into 𝑛𝑏 batches D𝑏𝑡𝑟 (𝑏 = 1, . . . , 𝑛𝑏)
�̂� ← 0; ⊲ best accuracy
for 𝑖 ← 0 to 𝑛𝑒 do

for 𝑗 ← 1 to 𝑛𝑏 do
𝐿𝑐 ← classification_loss(ℎ,D𝑏𝑡𝑟 );

𝑊 ← 𝑊 − [ 𝜕𝐿𝑐
𝜕𝑊

; ⊲ update classifier
end
𝑎 ← classification_accuracy(ℎ,D𝑡𝑒);
if 𝑎 > �̂� then

ℎ̂← ℎ;
�̂� ← 𝑎;

end
end
𝑝𝑡𝑟 ← 𝐼𝐶𝑃( ℎ̂,D𝑡𝑟 ,D𝑐𝑎𝑙); ⊲ p-values of training data
𝑝𝑡𝑒 ← 𝐼𝐶𝑃( ℎ̂,D𝑡𝑒,D𝑐𝑎𝑙); ⊲ p-values of test data
Ŷ ←∞;
for 𝑖 ← 0 to 𝑛𝑒 do

for 𝑗 ← 1 to 𝑛𝑏 do
𝐿𝑟 ← regression_loss(𝜏,D𝑏𝑡𝑟 , 𝑝𝑏𝑡𝑟 );

𝑊 ← 𝑊 − [ 𝜕𝐿𝑟
𝜕𝑊

; ⊲ update regressor
end
Y ← regression_error(𝜏,D𝑡𝑒, 𝑝𝑡𝑒);
if Ŷ < Y then

�̂� ← 𝜏;
Ŷ ← Y;

end
end

data set # training
instances

# test
instances

Input
Shape # classes

Digits [9] 1437 360 (8,8,1) 10
Heart disease [9] 771 147 (9,1) 2

Titanic [13] 748 143 (7,1) 2
Symptom2Disease [1] 960 240 (384,1) 24

SVHN [19] 1437 360 (32,32,3) 10
Cifar10 [14] 50,000 10,000 (32,32,3) 10

Cifar100 [14] 50,000 10,000 (32,32,3) 100
Artists [12] 6700 1676 (512,512,3) 50

Table 1: data set description

4.1. P-value regression

For both experiments, we compared the p-value estimates
provided by the trained regressor model 𝜏 and the actual
p-values obtained via ICP. The Root Mean Square Residual
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data set Classifier Regressor Classifier
accuracy RMSR (10−3) R2 coeff.

Digits
logistic

regression random forest

96 3.6 0.84
Heart 82 3.6 0.96

Titanic 80 0.9 0.99
Symptom2Disease 96 7 0.83

SVHN

EfficientNet.v2
feature extractor +

4 dense linear layers

94 0.03 0.99
Cifar10 85 0.34 0.98

Cifar100 62 9.80 0.17
Artists 89 0.80 0.78

Table 2: RMSR and R2 coefficients

(RMSR) and the R2 coefficient, displayed in Table 2, were
computed for this purpose (our goal is to be as close as
possible to 𝑅𝑀𝑆𝑅 = 0 and 𝑅2 = 1). They were computed
by the following formulas:

𝑅𝑀𝑆𝑅 =

√︄∑𝑁
𝑖=1 | |𝜏(𝑥𝑖) − 𝑝𝑖 | |2

𝑁
,

𝑅2 =
1
𝐾

𝐾∑︁
𝑘=1

©«1 −
∑𝑁
𝑖=1

(
𝜏𝑘 (𝑥𝑖) − 𝑝𝑤𝑘𝑖

)2∑𝑁
𝑖=1

(
𝑝
𝑤𝑘
𝑖
− 1
𝑁

∑𝑁
𝑛=1 𝑝

𝑤𝑘
𝑖

)2

ª®®¬ ,
where 𝜏𝑘 (𝑥𝑖) is the p-value estimated by the regressor for
input 𝑥𝑖 and 𝑘th class.

The results obtained with both metrics suggest that our
method can effectively estimate the p-values (low RMSR
and high R2). However, our approach seems to be less
efficient as the number of classes increases, since the RMSR
increases and the R2 decreases—for example, the results on
the binary Titanic data (𝑅2 = 0.99 and 𝑅𝑀𝑆𝑅 = 0.9∗10−3)
and the 10-class Digits data (𝑅2 = 0.84 and 𝑅𝑀𝑆𝑅 =

3.6 ∗ 10−3) are quite good, whereas we can see a decline in
performance for the Cifar100 and Artists data (in particular
according to the 𝑅2 metric). This is patent for Cifar100, for
which the 𝑅2 result is disastrous.

4.2. Validation curves

In order to empirically check that calibration is maintained
by our learning algorithm, we display the validation curves
in Figure 3. In each graph, five curves are provided for each
data set: the ideal 𝑦 = 𝑥 curve (purple), and the curves
obtained with ICP (blue), our method (orange), ICP with
normalization (green) and our method with normalization
(red) as per Eq. (13). We can see that both ICP and our
method appear to be well-calibrated before normalization.
After normalization, the curve is of course higher, due to
our choice which transforms the empty-set predictions into
predicting the most plausible class.

This however points out a strange behaviour of conformal
prediction, which may increase the prediction of empty sets
in order to obtain the desired coverage guarantee, when this
guarantee is low. In practice, this happens mostly when the
coverage rate is smaller than the average accuracy obtained

by the initial classifier, hence the threshold effect observed
on all the curves. Instead, the normalized possibility distri-
butions will always provide a minimal accuracy and mostly
precise predictions, unless we specify a very high coverage
rate, at which point imprecise predictions will be produced.
Incidentally, this threshold effect is less severe in our case,
as the change in coverage before reaching the classifier base
accuracy is more gradual. Our results suggest that using
conformal prediction with a guarantee level below the base
accuracy of the classifier is actually not useful, as it would
just transform singleton predictions into empty sets in order
to lower the accuracy.

Remark also that our surrogate regression method does
not perform well if the number of classes is high, as can
be seen by the performances obtained on the Cifar100 and
(to a lesser extent) Artist data. A possible explanation is
that estimating the p-values then becomes difficult, i.e the
features extracted cannot accurately represent the inputs.

5. Conclusion

In this work, we address the problem of learning a calibrated
credal classifier able to make decisions with statistical
guarantees. Inductive conformal prediction is one of the
most popular techniques for this purpose; this approach
nevertheless has drawbacks, among which its need for a
large amount of data and its high computational cost. Our
learning procedure aims at solving these issues by learning
a surrogate regression model which directly estimates the
p-values otherwise provided by ICP, from which calibrated
belief functions can then be derived.

Nevertheless, our algorithm also has limitations. First,
it currently works only for classification problems—the
extension to other learning settings, such as regression,
will be considered later. Second, it seems to be sensitive
to the number of classes in the data. This could be solved
by considering other models (or of course gathering more
training data).

One of our future works is to use the evidential labels pro-
duced by our approach in different learning settings where
taking into account label uncertainty could help improving
model robustness. Learning from evidential labels is indeed
an active research area [6, 4]; yet, how to produce or obtain
such evidential labels is still an open question [25]. Our
goal is to estimate calibrated evidential labels on unlabelled
data, so as to integrate them in the learning process. More
specifically, we aim at introducing evidential (or more gen-
erally credal) labels in self-training or co-learning strategies
[23, 27]. Such strategies consist in repeating (i) classifying
unlabeled instances and (ii) using these labeled data to
further train the classifier. Taking into account classification
uncertainty seems paramount to achieve a good classifica-
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(a) Digits (b) Symptom2Disease

(c) Heart disease (d) Titanic

(e) SVHN (f ) CIFAR 10

(g) CIFAR 100 (h) Artists

Figure 3: Validation curves for all data sets.
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tion accuracy, by avoiding undesired biases due to the lack
of data or inappropriate model assumptions.

Finally, it would also be useful to compare the current
approach with other evidential calibration methods, such
as the one developed in [28] which extend classical scaling
techniques.
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