N
N

N

HAL

open science

Can Robots Mold Soft Plastic Materials by Shaping
Depth Images?

Ege Gursoy, Sonny Tarbouriech, Andrea Cherubini

» To cite this version:

Ege Gursoy, Sonny Tarbouriech, Andrea Cherubini.
als by Shaping Depth Images?. IEEE Transactions on Robotics, 2023, 39 (5), pp.3620-3635.

10.1109/tr0.2023.3288836 . hal-04371386

HAL Id: hal-04371386
https://hal.science/hal-04371386

Submitted on 3 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Can Robots Mold Soft Plastic Materi-

https://hal.science/hal-04371386
https://hal.archives-ouvertes.fr

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2023.3288836

IEEE TRANSACTIONS ON ROBOTICS

Can robots mold soft plastic materials
by shaping depth images?

Ege Gursoy, Sonny Tarbouriech, Andrea Cherubini

Abstract—Can robots mold soft plastic materials by shaping
depth images? The short answer is no: current day robots can’t.
In this article, we address the problem of shaping plastic material
with an anthropomorphic arm/hand robot, which observes the
material with a fixed depth camera. Robots capable of molding
could assist humans in many tasks, such as cooking, scooping
or gardening. Yet, the problem is complex, due to its high-
dimensionality at both perception and control levels. To address
it, we design three alternative data-based methods for predicting
the effect of robot actions on the material. Then, the robot can
plan the sequence of actions and their positions, to mold the
material into a desired shape. To make the prediction problem
tractable, we rely on two original ideas. First, we prove that
under reasonable assumptions, the shaping problem can be
mapped from point cloud to depth image space, with many
benefits (simpler processing, no need for registration, lower
computation time and memory requirements). Second, we design
a novel, simple metric for quickly measuring the distance between
two depth images. The metric is based on the inherent point
cloud representation of depth images, which enables direct and
consistent comparison of image pairs through a non-uniform
scaling approach, and therefore opens promising perspectives
for designing depth image — based robot controllers. We assess
our approach in a series of unprecedented experiments, where a
robotic arm/hand molds flour from initial to final shapes, either
with its own dataset, or by transfer learning from a human
dataset. We conclude the article by discussing the limitations of
our framework and those of current day hardware, which make
human-like robot molding a challenging open research problem.

Index Terms—Robotic Manipulation, Vision-Based Control,
RGB-D Image Processing, Machine Learning.

I. INTRODUCTION

HROUGHOUT evolution, humans have assimilated
amazing manipulation skills. An example is sculpting,
which has progressed from prehistoric cave handprints to Re-
naissance masterpieces (see Fig. 1'). Achieving these results
requires many capabilities. First, the sculptor must conceive a
rough representation of the intermediate shapes, leading from
initial to desired state of the molding material. Then, s/he
must choose and use the most appropriate actions and tools for
obtaining each of these intermediate shapes. While sculpting,
s/he relies on perception (mostly visual and tactile) of the
material properties and shape, to continuously update the
process. Similar, albeit simpler, skills are needed for everyday
tasks, such as gardening, cooking, massaging or manipulating
cloak.
Recently, [1], [2] have presented impressive robotic sculpt-
ing, achieved with a dual arm manipulator cutting clay via a
hot wire. Other pioneer works on robotic sculpture include [3],

All authors are with LIRMM, Univ. Montpellier, CNRS, Montpellier,
France. firstname.lastname@lirmm. fr

Figure sources: https:/en.wikipedia.org/wiki/File:GargasFlutings.jpg and
https://www.michelangelo.org/images/artworks/moses.jpg

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 1: It took over 20’000 years for human sculpture to evolve
from the prehistoric cave finger flutings of Gargas in France
(left) to Michelangelo’s Moses (right).

[4]. While their approaches are very original, the authors of
these works focus on a specific task (sculpting), and rely
on tools (e.g., hot wire) customized for their application and
matter (e.g., clay). In the authors’ view, molding in human-
like manner soft materials would enable robots to perform a
plethora of new operations and assist humans in many daily
chores, well beyond robotic sculpture [1]-[4]. However, to
date, roboticists have mainly focused on rigid object manipu-
lation. The reason is that manipulating soft materials requires
perceiving and modeling deformations at a high frame rate.
While visual features can be consistently detected and tracked
on rigid objects, they change over time on deformable ma-
terials, misleading both model-based and feature-based visual
trackers. Tactile and force feedback could also be beneficial.
These senses could complement the 3D geometry measured
by vision, to infer the material’s mechanical properties. Yet,
complicated contact models are necessary to map force/tactile
signals to the corresponding object surface displacements.
Furthermore, the force/tactile measures should cover, with
sufficiently high resolution, the whole robot skin. To the best
of our knowledge, to date there exists no machine with such
actuation and sensing capabilities.

In our previous work [5], we have addressed kinetic sand
molding with 2D vision. Yet, without depth information, the
set of controllable actions/effects is reduced. Typically, in [5],
we could only modify the material’s visible contours. That
experience convinced us to opt, here, for depth vision, which
— compared to 2D vision — enables shaping along all three
directions. Besides, depth cameras, such as the Microsoft

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2023.3288836

IEEE TRANSACTIONS ON ROBOTICS

Kinect and the Intel RealSense, have recently gained a huge
success in robotics.

Therefore, here, we explore the possibility of deforming
soft plastic materials® by relying solely on depth images (i.e.,
with neither a model of the material, nor tactile feedback, nor
registered point clouds). We propose the direct use of raw
depth images instead of point clouds, to avoid cumbersome
processing involving registration, and requiring high compu-
tational times and memory usage. Our rationale is similar to
the one which motivated visual servoing directly in the image,
rather than in the 3D space [6].

A. Related Work

Researchers have used point clouds to detect objects in
indoor scenes [7], and to estimate their 6-DOF pose using
3D Geometric and Photometric feature descriptors [8]. A
related application is semantic object labelling, realized in [9]
with deep learning. These techniques require rich datasets,
such as the Yale-CMU-Berkeley real-life objects set [10],
which is specifically designed for benchmarking manipulation
research. Crowd-sourcing can be useful to build and label point
cloud datasets, as shown in [11]. Another application of point
clouds is robot grasping, both with hands and suction cups.
Pas and Platt [12] propose to detect grasp points on novel
objects presented in clutter, while accounting for the robot
hand geometry. The authors of [13] have introduced Dex-Net
3.0, a dataset of 2.8 million point clouds, suction grasps, and
grasp robustness labels, which computes the quality of the seal
between suction cup and local object surface. Point clouds are
studied well beyond robotics, with applications including plant
phenotyping [14].

Despite this success, point cloud dimensions make process-
ing cumbersome: even most current day implementations of
the Iterative Closest Point (ICP) algorithm [15] for aligning
two point clouds are too slow for robot feedback control. ICP
has been originally designed and applied to rigid scenes [16],
with improved versions, as in [17], where translation and
rotation are decoupled, and a fast Bound and Branch algorithm
globally optimizes the 3D translation parameter first. Re-
cently, [18] has proposed a fast (milliseconds) and certifiable
algorithm for the registration of two point clouds in the
presence of numerous outlier correspondences. The authors
of [19] have extended point registration to non-rigid clouds,
via a robust transformation learning scheme. The principle is
to iteratively establish point correspondences and learn the
nonrigid transformation between two given sets of points.
To this end, they cast the point set registration into a semi-
supervised learning problem.

At a higher level, many efforts have been put into non-rigid
object tracking. DynamicFusion [20] is a dense simultaneous
localization and mapping framework capable of reconstructing
non-rigidly deforming scenes in real-time, by fusing RGB-D
images. Since it does not require a template or other prior
scene model, the approach is applicable to a wide range of
moving objects and scenes. Other model-free approaches are:
[21], which tracks — using touch and vision — the surface of a

2Plastic materials remain deformed after the external force is removed.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

deformable object to be grasped by a robot, and [22], where a
neural network can visually segment a pizza dough. An elegant
alternative [23] consists in including — if they are known — the
physical properties of the object, to track it from a sequence
of point clouds, with a probabilistic generative model.

When it comes down to shaping the object, the robot should
be capable of predicting the next state given the current state
and a proposed action. To this end, [24] use some defined
primitive tool action for rearranging dirt and [25] presents
a Convolutional Neural Network for scooping and dumping
granular materials. The authors of [26] learn a particle-based
simulator for complex control tasks; this simulator adapts
to new environments or to unknown dynamics within few
observations.

B. Contributions

In this paper, we consider a manipulator equipped with an
anthropomorphic hand and capable of applying three different
actions at various positions of some plastic material, while
observing it through a fixed depth camera. The robot must
mold the material into a desired shape, by finding and applying
the correct sequence of actions at the right positions. To find
the correct sequence, the robot should predict the effect of
each action on the environment, which is represented by a
depth image. We rely on some realistic hypotheses, to make
the prediction problem tractable, so that it breaks down to
replacing local rectangular patches within the depth image. We
generate the patches consequent to action execution, with three
alternative data-based methods, two with encoder-decoder
image generator network, and a simpler one with difference
compensation. We train all three prediction methods with a
robot dataset and with a human dataset, and we design a novel
scalar metric for assessing the methods’ precision, in terms of
distance between point clouds. We assess our method in a
series of experiments, where a robot molds desired shapes,
either with its own dataset, or by transfer learning from the
human dataset. Finally, we show that our method for finding
the correct sequence of actions could generalize across actions,
materials, and geometry.

The contributions of our paper are the following:

1) We propose an original framework for depth image —
based robot shaping of un-modeled plastic material.
Given an initial and a desired point cloud of the material,
the robot plans and executes a sequence of different
actions at various positions to mold the material. Due
to its high dimensionality, the problem of predicting
posterior (consequent to robot actions) point clouds,
without a model of the material, would be intractable
without an original idea: we show that, under reasonable
assumptions, the shaping problem can be mapped from
point cloud to depth image space, with the following
benefits.

« Point cloud registration and matching are not re-
quired anymore,

« the lower needs in terms of computation time and
memory usage make the action effect prediction and
action planning sub-problems tractable,

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2023.3288836

IEEE TRANSACTIONS ON ROBOTICS

o standard image processing techniques as well as
deep learning can be applied directly to the depth
images.

2) To attain depth image — based shaping, we define a scalar
metric for measuring the distance between two point
clouds, in depth image space. The proposed distance
metric is based on the observation that depth images
inherently encode a point cloud, allowing for the direct
comparison of image pairs in a consistent manner. In
our work, we use this metric: (a) as the loss function
of the generator which models changes produced by a
robot action, (b) as a measure for planning the sequence
of actions leading from initial to final point clouds, and
(c) to assess the success of a point cloud shaping task.
Since it is the weighted mean value of the difference
between two 2D images, this metric can be computed
very quickly, and with low memory needs, opening
promising perspectives for designing depth image —
based robot controllers.

3) We assess the framework in a series of unprecedented
experiments with a robotic arm + hand, molding flour
from initial to final shapes, by relying on both a robot
and a human dataset. By exploiting transfer learning
from the human, we do not need numerous robot exper-
iments as in [25]. Furthermore, in contrast with similar
works [24], [25], [26], by using a anthropomorphic
robot, we push robotics one step closer to human-
like molding. Yet, robotic molding remains an open
problem, due to the many limitations of current day
robots, emphasized in our experiments.

II. MODELING DEPTH IMAGES AND POINT CLOUDS

In this section, we recall the fundamental notions of depth
image theory, required in our work.

The luminance of each pixel of a depth camera of resolution
w X h and quantification b bits is:

Lywel=1{01,..2"-1}CcN (1)

with (u,v) € T = {1,...,w} x {1,...,h} C N? the pixel
coordinates. The entire depth image is the matrix:

Lll Llw

L= € Lwxh,)

L L
In the following, we refer to depth images simply as images.
We express point coordinates in meters in the camera frame
(center at the camera optical center, X increasing with the
pixel columns, Y increasing with the pixel rows, Z coincident
with the optical axis, and positive for points in front of the
camera). Assuming a linear depth model, for any point p =
(XY Z)' seen in the depth image at (u,v), luminance L.,
can be converted to Z:

Z in Zmaw
Z (Luv) - ’m;billluv + Zmam S [Zmlna Zmam] . (3)
This requires knowing the camera depth range

[Zmin, Zmaz) € RT. Note that this model clips at Z,q.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

(respectively, Z,,in) the depths of all points which have depth
greater (smaller) than Z,,,,, (Zmin); the corresponding pixels
are black (white), with L, = 0 (L., = 2° — 1). We consider
un-distorted perspective projection (i.e., a pinhole camera
model). Then, the two other camera frame coordinates of p
can be derived from Z as:

YWy and Y (v) = -7 4)
Ja Ty

with (ug, vo) € [1,w] x [1,h] C R? the camera principal point
coordinates in the image plane and (f,, f,) € R? the camera
focal lengths expressed in pixels. All points visible in the depth
image belong to the camera viewing frustum F C R3, which
is a truncated pyramid lying between Z,,;, and Z,,4z-

Let us define m the vector function which combines (3)
and (4) to map a pixel and its luminance to the camera frame
coordinates of the corresponding point:

X (u) =

m: IxL — F
v — Y (v)
Luv Z (Luv)
Note that this mapping is bijective:
m~!: F — IxL
Y — 1Y/ Z + o
z R

This is not the case of standard cameras, which cannot measure
the point depth.

Definition: visible point cloud. Let us now represent the
depth image as a set D of w x h triplets, containing the
coordinates of each pixel of L along with its luminance:

D= {(ui,vi,Luivi)T,i: 1. wx h} CIxL. (7

The visible point cloud P = {p1, ... Pwxr} C F correspond-
ing to L is the image (in mathematical terms) of D under m:

m: D — P (8

Note that dim P = w x h. Note also that not all points of P
exist physically. In particular, points corresponding to L,,, = 0
and to L, = 2° — 1 are artefacts due to the limited camera
range. Furthermore, two points in P cannot be on the same
optical ray (or else, one will occlude the other):

V(pj,pj)eptﬂkeR:pizkpj. 9)

In this paper, we will also use normalized pixel coordinates:

U — Ug vV — 19

T = and y = , (10)
f x fy
to rewrite equation (4) as:
X=2Z and Y =yZ. (11

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2023.3288836

IEEE TRANSACTIONS ON ROBOTICS

TABLE I: Actions used in this work, with their characteristics.

Action a® Description Tllustration Effect on L AX (mm) AY (mm) AZ (mm)
Grasp a9 The hand 191t1ally in claw 218 195 50
shape is closed.
The closed fist pushes
k p
Knock a downward. - 84 75 50
Press a” The fist bottom pushes 46 103 50
downward.
Pinch a” The index and middle ' 0 85 50
fingers close.
|
Poke aP The index finger pushes 20 18 50
downward.

III. PROBLEM STATEMENT
A. The point cloud shaping task

Consider a robot, observing via a fixed depth camera the
environment. The robot can execute — on the point cloud P
representing the environment — an action a.

Definition: Robot action a. An action is a set of joint space
trajectories, which makes the robot modify . Each action a’
is applicable at a position t = (XY Z)T in the camera frame,
within a finite set of possible (action-dependent) positions, t7,
j=1,...,N. We name A = {a%} the set of all actions over
all positions.

In this work, we have selected 5 actions (grasp, knock,
press, pinch and poke) after having inspected the database
of human sculpting images presented in [5]. Table I shows
the characteristics of each of these actions: name, description,
illustration (when applied by humans), effect on a depth image
L, and “size” (parameters AX, AY, AZ, which we will detail
hereby).

We model the robot and environment (i.e., the point cloud)
as a discrete-time system. At each iteration k € [1, K] C N,
the robot executes an action a; € A on point cloud P. The
joint space trajectories of the action are completed within the
iteration, and the point cloud is changed to a new point cloud

Pk+1 =f (Pk, ak) s (12)

with f (.) an appropriate mathematical function modeling the
point cloud changes.
Hypotheses We rely on the following assumptions:
1) The process is Markov; therefore, we can remove the
dependency from k and rewrite (12) as:

P.=1f(P,a).

This assumption also implies that: 1/ no deforming
phenomena, aside from those caused by a, act on the
point cloud, and 2/ the deforming phenomena caused
by a are constant.

(13)

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

2) The effect of each action on the point cloud is bounded
in the 3D space, and contained within a box, denoted
B;; for action a’/. We have designed the actions in A, so
that all boxes B;; are entirely visible (i.e., B;; C F). We
formalize this hypothesis as follows: the points which
differ between the prior and posterior point clouds are:

pe (PUPa,)\ (PNPa,)
— peB,; =X XTI x[Y ;YT x[Z27;Z7],
(14)
with (X*Y*2%)" =t + (AXAYAZ)". The box is
centered at the action’s position t7, and its size depends
on the action type (e.g., an action may affect a bigger
volume than another, see Table I).
3) The positions of all actions in A have the same Z co-
ordinate, and the depth of B;; is negligible with respect
to the action depth (AZ << Z),s0 2~ ~ ZT =~ Z.
4) The effects of the actions are position invariant: given
i, the effect of a* on the points contained in B;; is the
same for all t;, j =1,...,N.

)T

Definition: point cloud shaping task Given a final desired
point cloud P,, the point cloud shaping task consists in
shaping point cloud P into P,. We define dj, (Px,Px) € RT
as a scalar function, which measures the distance between Py,
and Py, so that d, = 0 <= P, = P.. Then, the task
of shaping a point cloud to P, with an accuracy d > 0,
consists in applying a finite sequence of actions within .A:
s« = {ai,..

.,ag} so that after K iterations: dgx < d. We
tolerate such an upper bound on the accuracy, since even a
human would be incapable of perfectly reproducing (dx = 0)
a given point cloud. Yet, the sequence of actions should make
dg decrease. More formally, it must be possible to apply, at

each iteration k, an action a; to reduce dj:
dpy1 < dg. (15)

The above equation assumes that the task can be solved
using a greedy algorithm. Greedy heuristics are known to

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2023.3288836

IEEE TRANSACTIONS ON ROBOTICS

Fig. 2: Geometric interpretation of R,,. Perspective (top)
and lateral (bottom) view of the pinhole projection of point
clouds @ (orange) and P (red). We show (for the white pixel)
that the depth offset |Z, — Z,| (green) differs from the point
distance (purple) by scalar factor R,,,,. This factor is constant
on ellipses centred at the camera principal point, and increases
with the sizes of the ellipses. In the top figure, we outline these
elipses, which characterize image R. We also show (in blue)

the camera and image frames, as well as «, the angle between
the pixel projecting ray and the optical axis.

produce suboptimal results on many problems, and longer term
planning should be preferred. Yet, since the focus of this paper
is not planning, we have posed this assumption to simplify the
point cloud shaping implementation. Below, we explain how
we have defined d.

B. Distance between two Visible Point Clouds

Consider two point clouds P and Q, visible by the depth
camera in images Lp and Lg. In this Section, we define
the metric d (P, Q) € R used in our work to measure the
distance between P and Q.

A common way of defining d is to set it equal to the mean
of the distances between all the pairs (P, Q) of points matched
in the two point clouds:

d(P,Q) =

1
o X lp—dl. a0

(p,a)eM
Alternative approaches are the Chamfer distance or the Earth
Mover’s Distance [27]. However, all these metrics require
computing M, the set denoting the association between the
point clouds, which is defined as:

M = {(pl7QZ) :Vpy € P,qp = argmin ||p; — qml|, € Q}.
" (17
This matching operation can be solved by the well known
point-to-point ICP algorithm [15]. Although it is one of the
widely used algorithms for aligning three dimensional models
given an initial guess of the required rigid transformation,
ICP’s complexity (quadratic with the point cloud dimension)
makes it very slow.
In this pilot study, the task’s complexity is reduced, since
the robot can realize a limited number of actions. For human-
like molding — which requires many more action types and

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

positions — the distance computation time becomes crucial,
at both learning and planning steps. In this perspective, a
metric based on depth images will scale up much better than
one based on point clouds. Furthermore, a point cloud uses
approximately %60 more memory than the equivalent depth
image. Hence, using point clouds will substantially increase
memory usage and may not be suitable for deep learning on
consumer GPUs.

For all these reasons, we propose to match points from P
and Q which project to the same pixel in images Lp and Lg
(see Fig. 2). Naming

{ Pyy = M (U" v, Lﬁu)

quv = m(u7v7 L'IqL?)) (18)

with LP ~(respectively, LZ) the luminance of pixel (u,v) in
depth image Lp (Lq), we propose to use:

M= {puvvquvvv(u,v) € I} .

Note that since their pixel projection (u,v) is the same,
Puv and gy, have identical and y. Applying first (11) and
then (3), we can express their relative distance as:

19)

2 2 2
Ip—all, = \/(pr —aZq)” + (YZp —yZq)” + (Zp — Zy)
=V1+22+y%|Z, - Z,
Zmaz — Lmi
— " max min Lp _ Lq .
R 2b _ 1 | uv u'U|
(20)

In this equation we have noted: Z, = Z (L), Z, = Z (L%,)

2 2
and R,, = \/1—1— (%) + (%) . The value R,, is
independent from the point clouds, is constant on ellipses
centered at the camera principal point (where it is 1), and
it increases with the sizes of the ellipses. A geometric in-
terpretation when f, = f, is Ry, = 1/cosa, with « the
angle between the pixel projecting ray and the optical axis
(see Fig. 2). For the Intel RealSense D435, with nominal
parameters® ug = 424, vy = 240, f, = 415, fy = 373, Ryy
varies between R = 1 (for the principal point) and R = 1.568
(for the four corner pixels).
Injecting (20) in (16) for all the pixels yields:

Zmaa: - Z in

1P Q=)

> RylLh, - L%,]. (@D

(u,v)ET

Since Z,q, and Z,,;, are the same for all pairs of images
(Lp,Lg), we can remove them from the equation. We can
also divide by R, to redefine the distance on unit interval U/:

E(u v)ET R’U«U|L€v - ng‘
d(P,Q) = ’ — euU=100,1. 22
(P,Q) = S 0.1, @
Let us now define matrix
) Ry Ry
ey (23)
Ry Ry

3See https://www.intelrealsense.com/depth-camera-d435

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2023.3288836

IEEE TRANSACTIONS ON ROBOTICS

| o

o<f—00

—o°

Fig. 3: The same two point clouds, red and orange, each com-
posed of three points, seen with different camera orientations
(left) and (right).

shown in Fig. 2 for the Intel RealSense D435. Then, naming
I=RoLey“*", (24)

with o the Hadamard product, d can be expressed as a function
of these new normalized images I:

A(P.Q)=dM, 1) = 3 |

(u,v)eT

— 18] @9

Therefore, in the rest of the paper (except when specified) we
work with images I, rather than L.

We have analytically proved that our distance is equivalent
to the weighted pixelwise difference between the two depth
images. To illustrate the difference between our distance and
an unweighted version, refer to the example of Fig. 3. The
same two point clouds, red and orange, each composed of
three points, are seen with different camera orientations in
Fig. 3(left) and Fig. 3(right). With our technique, the distance
between the point clouds is the same in Fig. 3(left) and
Fig. 3(right), as it should be (i.e., viewpoint invariant). Instead,
with the unweighted version, which merely uses the depth
differences, the distance in Fig. 3(right) will be much smaller
than in Fig. 3(left). To summarize, our method calculates
the geometric distance between two points instead of its
projection along the camera axis (i.e., instead of the difference
between the two points’ depths). Hence, we think that our
metric is faster and at least as easy to interpret than other
similar metrics, such as Chamfer distance or the Earth Mover’s
Distance. Thus, it can also be useful for planning algorithms.

Proposition 1. If both P and Q are visible point clouds,
d(P,Q) = 0 if and only if P = Q. Therefore, d is an
appropriate metric for the Point Cloud Shaping Task.

Proof: Since d (P, Q) is a sum of absolute values, if it is
null, I?, = 19 V (u,v) € Z. Since each I, (respectively, I9,)
is proportional to L? (respectively, L1) by the corresponding
element of R, if d(P,Q) = 0 then L2, = L% . Then,
mapping the two images with m will yield identical point
clouds, so if d(P,Q) = 0 then P = Q. Conversely: if
the point clouds are identical (P = Q), applying m~* to
each one will yield identical depth images (L, = L,). Then,
applying (24) followed by (25) leads to d (P, Q) = 0. [|

IV. PREDICTING THE ACTION EFFECT ON A POINT CLOUD

In this section, we explain how to predict the effect of an
action on a point cloud.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

TABLE II: Pixel coordinates of the top left (u,v) and bottom
right (@, v) pixel of the rectangle embedding the image of 5.

<=
>0 | max (1, min Lf;,X /ZF + o]
<0 | max (1, min szX /Z~ +u0] w
v=
>0 | max (1, min |_ny /ZF + o], h
<0 | max (1, min |_ny /Z~ + o], h
X+t
>0 | max (1, min LfIXJr/Z + uo],)
<0 | max (1, min |_sz+/Z++uo] w)
Y+
>0 | max (1, min Lny+/Z +vol, h
<0 | max (1, min ([fyY1T/Z% +vo],h
A. Outline

At each iteration, action a changes the current point cloud
‘P, to produce a new point cloud P,, according to (13). Since
a can be any action within A = {a%}, we must rewrite (13)
for each possible a*’. We can do this by embedding the effect
of a% within the expression of f:

Pois =9 (P), (26)

with:

fij . R3><w><h *>R3><w><h

27
To predict the effect of each possible action a®, we need to
know each f%/. Both the domain and codomain of these func-
tions have very high dimension (3 x w x h), and we need dim .A
of such functions! This clearly makes the prediction problem
intractable, unless we exploit the other work assumptions to
simplify it.

B. Simplifications

First, since both the prior and posterior point clouds are
visible, we can project them on the corresponding images, by
applying (6) followed by (24). Then, we can rewrite (27) as:

fij: uwxh_>uw><h

I— Iaij. (28)

By operating on images instead of point clouds, we have re-
duced the dimensions of the functions’ domain and codomain
from 3 X w X h to w X h.

We can further simplify the problem, by considering
Hypothesis 2: the effect of actions is bounded. The projec-
tion of box B;; in the depth image can be embedded within
a rectangular region of interest (ROI). Table II gives the
coordinates of the top left (u,v) and bottom right (u,v) pixel
of this ROI, depending on the signs of X* and Y+ (Z* > 0
for all points of a visible point cloud). We derived the pixel
coordinates in the second column of the table by applying (6),
rounding to the closest integer (with |]) and then clamping the
result in the field of view. To illustrate this result, we show in
Fig. 4 two examples: a red bounding box with all four values
(X, X~, YT, Y7)negative and a green bounding box where
all four values are positive.

Note that the clamping can be removed, since under
Hypothesis 2, all B;; are entirely visible. This hypothesis

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2023.3288836

IEEE TRANSACTIONS ON ROBOTICS

(@,),

Fig. 4: Two examples of bounding boxes (a red one with all
four values X+, X—, Y*, Y~ negative and a green one,
where all four values are positive) with the corresponding
rectangular regions of interest (ROI) in the image plane. The
ROI are characterized by the coordinates of the top left (u,v)
and bottom right (u,v) pixel. Note that these pixels are the
projections of different corners of the two bounding boxes.

(equivalent to u, @ € [1,w] and v, T € [1, h]) can be guaranteed
by setting the action positions t such that:

v .9
U2 L Ay <y < B2 Ay

Under Hypothesis 3 (i.e., Z~ ~ ZT ~ Z) the ROI top left
and bottom right pixels are always:

(w,v) = (fo X~ /Z + uo, fyY ™ /Z + o)
{ (675) = (f:vX+/Z + uo, fyy+/Z + UO)
Note that since all actions have the same 2, the ROI width and
height, w =7 —u =2f,AX/Z and h =7 —v =2f,AY/Z,
are unique for a given a’ (i.e., they do not depend on t).
Let us denote

{ (1—1}?)Z+ L AX SX < (w—i;@Zﬁ _AX
(30)

Iuv e Iﬂv

D eyt 31)
Iyw
the submatrix of I, containing the values of the pixels which
could change after an action in B;;. Action a® will transform
I into a new image:

Iu@

A
L= : : e yuxl, (32)
Jizi B

By focusing on a region of the image, we have further reduced
the dimensions of the domain and codomain, from w x A to
w X h:

fi7 . Yk yuxh

L1 (33)

atl
Yet, we still need to know the function f¥ for each combina-
tion of action ¢ and position j.
To further simplify the
Hypothesis 4: actions are position invariant.

problem, we
This

exploit
last

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

simplification reduces the number of functions required:
instead of dim.A functions, it is sufficient to know the
function of each a’:

fi. Ywxh _ yuwxh

I L. (34)

In the next subsection, we explain how we determine the
function f* predicting the effect of action a’ on a region of
interest I.

C. Predicting the action effect on a region of interest

To predict the effect of a’ (noted a for simplicity) on I,
we have tested three different functions f. To design them, we
exploit — for each a — a prerecorded dataset of pairs of regions
of interest prior/posterior to the action:

g - {(Lla)lw"v(l»la)dimg}

The three designs are: difference compensation, refined gen-
erator, and difference compensation with refined generator
(denoted respectively fp, fcr, and fpcr). The designs are out-
lined in Fig. 5; we will detail them in this section, after having
explained how to build the dataset (35) of prior/posterior pairs.

1) Building a dataset of prior/posterior image ROI: We
record a sequence of depth images L, while repeatedly apply-
ing action a. We use (24) to convert each image L into the
corresponding I.

We remove all images where the environment is oc-
cluded (typically, during the action), and extract pairs of
prior/posterior images, which represent the image before/after
the action. Then, we manually annotate, in these images,
the ROI which contains a “visible” (by human standards)
difference in depth4. Afterwards, we adjust the width w and
height h of all the ROI to the mean of all the annotated ones,
and we fix their positions so that they are identical in both
images of the pair. These ROI will constitute (35).

2) Difference compensation: A first simple image process-
ing operation consists in approximating the effect of a on I,
by the average (over the dataset (35)) of the ROI differences

(35)

g
1
Al = I,-1).
1=,
This image average is added to I, to obtain a rough prediction
of the ROI, after having applied a:

fp: Ywxh o yuxh
I—1I+AL

Although this operation may lead some pixels to saturate (to
0 or 1), this occurs very rarely in practice.

3) Refined Generator: Our generator is a type of artificial
neural network which is constituted by two main parts. The
encoder maps the input into feature representations at multiple
levels and the decoder maps the features onto the pixel space.
We design and train (with the prior/posterior images from G)
a generator to generate a ROI from an input one:

fo: uwxh 5 yuxh
I—fc (D).

(36)

(37

(38)

4The annotation could be automated using standard image processing
techniques, similar to the ones we developed in [5].

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2023.3288836

IEEE TRANSACTIONS ON ROBOTICS

1=

foer(I)

fer (1)
\ /2 \4
|O| -1 t I

Fig. 5: The three prediction functions fp, fpcr, and fcog, illustrated (in red) for the poke action. For the purpose of illustration,
in the image AI we have set all negative pixels to white (i.e., to unitary value).

We have implemented fc as a modified U-net image gener-
ator [28], similar to the one used by the pix2pix generative
adversarial network [29], with the following specifications
(illustrated in Fig. 6). For the encoder, the size of the input
layer varies according to the ROI dimensions (w,). The input
is followed by 4 downscale layers, each consisting of two
3x3 convolution layers followed by a 2x2 maxpooling layer.
Filter sizes of the convolution layers are 32, 64, 128 and 256,
respectively. The decoder has 5 upscale layers and 1 output
layer. Upscale layers consist of two 3x3 convolution layers,
followed by a 2x2 upsampling layer. Filter size of convolution
layers are 512, 256, 128, 64 and 32, respectively. Outputs
of the second convolution layer from downscale layers are
concatenated with the output of the symmetrical upsampling
layer, before being fed to the following upscale layers. The
output layer is a 1x1 convolution layer with tanh activation
function. All the strides are set to 1 and rectified linear unit
activation is used in all the convolution layers, except for the
output layer. We use as loss function between the output of f¢
and the corresponding posterior I, (ground truth or expected
output, taken from G), the distance d defined in (25):

d (1, fc (I)) = |I, — fc (I)].

Note that this loss function resembles the mean absolute error,
commonly used in Convolutional Neural Networks’, with the
addition of the R,,/R weights.

(39)

5See for instance the MeanAbsoluteError class in Keras: https://keras.io/
api/losses/regression_losses

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

We have realized experimentally that f¢ is not very accurate
in predicting changes in the areas of I the least affected by the
action. In the areas the most affected by the action, the output
of fc is accurate, apart from a slight difference in its mean
pixel value. To solve both issues, we have added a refining
step (described below) to the output of the generator fc.

We start by building a boolean matrix B by applying Otsu
thresholding [30] followed by morphological erosion, to the
dataset average image difference, Al defined in (36). Then:

« pixels which are the least modified by the action are null
in B; we set their values to those of the corresponding
pixels in image I + AL

o pixels which are the most modified by the action are
unitary in B; we shift their values, output by fc, by an
offset pc, such that their mean value is identical to that
of the same pixels in I + AL

In summary:
UYuxh _y pywxh

I— Bo(fc(I)+ pcd)+
+J —B)o(I+Al,

fCR :
(40)

with J a (w x h) matrix of ones, and uc € [—1, 1] the mean
of the non-zero pixels of B o (I4+ AI — f¢ (I)).

4) Difference compensation with Refined Generator: The
difference compensation function fp has the advantage of
not requiring a training process. A drawback is that adding
an image average introduces noise (blur) on I. The authors
of [31] have shown that to denoise images, convolutional

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2023.3288836

IEEE TRANSACTIONS ON ROBOTICS

Encoder

Decoder

Input

I

2D Image 3x3 Convolution + ReLu 2x2 Max Pooling

Output

1=

13

2x2 Upsampling Concatenate 1x1 Convolution +Tanh

Fig. 6: Architecture of the Generator Networks fo and fpc.

autoencoders, which are simpler architectures than our gener-
ator, outperform wavelets and Markov random fields on small
samples of training images. Therefore, our third approach
consists in passing I + AI to a new denoising generator,
denoted fpc, and then refining the output, as in (40). We
have designed fpc with the same architecture as fo. Yet, the
decoder in fpc should map the latent space to a denoised
version of its input. Therefore, we train this network with the
prior images of G with AI added to them. The loss function of
fpc is the distance between its output and the corresponding
posterior ROL I, (from G):

d(1,, foc (I+ Al)) = L, — fpc (Ia+ AD)]. (41)

The images output by fpc have the same issues seen for
fc. Therefore, we apply a similar refinement step with boolean
matrix B, and design fpcg as:

Uwxh _y jwxh

I— Bo(fpc (I+AI) + upd) +
+ (I —B)o (I+AI),

focr :
(42)

with up € [—1,1] the mean of the non-zero pixels of B o
(I+ AL - fpc (I+ Al)).

We have presented three alternative functions f for predict-
ing the effect of an action on a region of interest I: fp, fcrg,
and fpcr. Having chosen one of the three (either (37), (40)
or (42)), we can replace the resulting (predicted) submatrix in
the original image I, to obtain:

Iy e o Iy
I, L, .
Lois = : .o (43)
Ifw e I%i
I B Thw

Note that we have removed from the second term the j
dependency (pedix), which appeared in (32) and which is
irrelevant since actions are position invariant.

V. FINDING THE BEST SEQUENCE OF ACTIONS FOR POINT
CLOUD SHAPING

In this section, we explain how to compute the sequence of
actions s, = {ai,...,ax} for point cloud shaping, i.e., for

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

modifying the environment from initial point cloud Py to final
desired point cloud P,.

By mapping point clouds to images with (6), we can
instantiate this path planning problem in image space, i.e.,
find s which modifies the environment from Ly to L, (i.e.,
from the depth image of Py to that of P,). Furthermore,
to express distance d according to (25), we will work with
weighed normalized images I and I, instead of Ly and L., by
applying (24). Within a set of candidate sequences of actions
S each leading from I to a different image I}s, we will choose
the one leading to the image that is the closest to I,:

S, = argmin d (I‘S,I*) .
sES

(44)

This sequence corresponds to the shortest path from I to
I, in the tree (shown in Fig. 7 with an example of forward
search) of all possible images generated by all possible actions
in A. Finding the shortest path in a tree is a classic motion
planning problem, which can be solved using many state of art
algorithms (A*, RRT, etc) out of scope here. We leave to path
planning experts the pleasure of proposing the best among
such algorithms. Since the focus of our paper is on how to
build the tree of posterior images, we propose the following
forward search algorithm (refer to Algorithm 1):

1) at each step k, generate a tree from I to all possible
(i.e., obtained after executing any action in .4) posterior
images Ij41;
update the sequence of actions with the action that yields
the image (among all I ;) which is the closest to I,
and set this image as the I, for the following step;
loop until none of the posterior images Iy, is closer to
I, than I — in other words, loop while (15) is verified;

4) output the action sequence s,.

The most challenging part of the algorithm is the prediction of
the effect of action a® on the image (lines 6 to 8). This requires
an appropriate choice of f, among the three implementations
proposed in Sec. IV.

2)

3)

A. Reinsertion of the ROI

Interested readers may find more advanced methods (often
based on motion planning or on machine learning) in the
literature on automatic action selection. A planning method for
finding intermediate states to shape a flexible wire is presented

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2023.3288836

IEEE TRANSACTIONS ON ROBOTICS

I* IO

10

S =

do=1.153

%H‘

s = {agz}
dy =1.069

s — {agQ’ akl}
dy =1.050

%
B -
—~

s. ={a% aM ar?}
ds = 1.045

s = {ag2’ak1’ap27ak2}
dy=1.048

Fig. 7: Forward search in the tree of posterior images, based on Algorithm 1. Given initial image I, and desired image I, at
each step the sequence s is updated with the action which yields the image (green) that is the closest (has smallest distance d)
to I.. In this example, the search stops after 3 steps with the sequence s, in blue, since any fourth action would increase the
distance (d4 > d3). Note the similarity between the resulting image (I3 in blue) and I,. For the sake of clarity, at each step
we only show 6 of the total dim A posterior images. Distances are expressed in mm.

Algorithm 1 Action sequence planner

Input: Initial image L(and final desired image L..
Output: Sequence of actions s, = {ay,...,ax}.
1: initialize k=0, s = ()
2: apply (24) to obtain Iyg from Lo and I. from L.
3: compute do = d (Lyp,L.) with (25)
4: loop
5. for each action a”’ € A do
6: extract submatrix I from Iy via (31)
7: using (34) predict effect of a on I: I;;;
8: with (43) inject L,i; in I to get Iy q(saii}
9: compute d;; = d (Ik_;’_ll{s’aij},l*) with (25)
10: end for
11: if 3d;; < dj then

12: find best action a; = argmin d;;
alic A
13: update sequence s = {s,ay}

14: k=k+1
15: dy =d (Ik|sa I*)

16: else

17: return s, = s
18: end if

19: end loop

in [32]. The authors of [33] use deep reinforcement learning to
choose within a finite number of actions, whereas [34] relies
on imitation learning to choose actions for cloth manipulating.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

VI. EXPERIMENTS

In this section, we present the experiments that we did to
assess our framework. The software and a video of the exper-
iments are available online at: https://github.com/gursoyege/
lirmm-farine. The video is also attached to the paper and
available at https://youtu.be/fLGf7c3cbKk.

A. Setup

Figure 8 shows our experimental setup. We focus on flour
manipulation, with the three actions grasp, knock and poke
shown — along with their parameters — in Table 1. We did
not apply actions push and pinch, since the robot actuation
restrains it from realizing these actions. The three actions can
be applied in N = 15 positions; hence, for these experiments,
the total number of actions is dim.A = 3N = 45. Flour
is placed within a custom-made wooden box of size 400
x 500 mm. We use the right arm (KUKA LWR 4+) and
Shadow Dexterous Hand of the BAZAR robot [35] with an
Intel Realsense D435 depth camera rigidly linked to BAZAR’s
right wrist. The camera parameters obtained after calibration
are ug = 421, vo = 243, f, = 433, f, = 433. Although the
image resolution is 848 x 480, to calculate d we have focused
on the region of interest containing the box and flour, which
has size 480 x 395.

The actions are realized using the RKCL framework®. This
C++ library allows to quickly set up a kinematic controller for

Ohttps://gite.lirmm.fr/rkcl/rkcl-core

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2023.3288836

IEEE TRANSACTIONS ON ROBOTICS

0 Bazar Robot
e Camera Support
o Depth Camera
° LED Lights
° ‘Workspace

Fig. 8: Experimental Setup for robotic flour shaping.

any kind of single and multi robot structures, as long as the
resulting system has a kinematic tree structure. With RKCL,
the BAZAR components used in this experiment (one KUKA
LWR 4+ arm and the attached Shadow hand) can be controlled
in the operational or in the joint space as a unique entity. To
this end, RKCL integrates a Quadratic Programming controller
for tracking a desired pose with the robot tool, while respect-
ing some constraints (e.g., joint position/velocity/acceleration
limits, restrictions in the Cartesian space to avoid collisions,
tool velocity/acceleration).

The grasping action is depicted in Fig. 9: the robot performs
six successive operations to accomplish the whole action. A
similar approach has been taken for the two other actions. To
safely manage contact with the environment, we monitor the
KUKA LWR’s joint torques and switch to the next operation if
they pass a given threshold. After each action, the arm returns
to a fixed pose such that the camera is perpendicular to the
workspace. There, the Realsense captures a depth image, at a
distance of approximately 450 mm from the flour. This value
corresponds to the depth of all actions’ positions: Z = 450
mm. Since it is much greater than the depth of the three
bounding boxes, AZ = 50 mm (see Table I), Hypothesis 3
is valid.

We record sequences of depth images L of the flour, while
the actions are applied by either BAZAR or a human. Images
are acquired by Intel RealSense SDK 2.0, with temporal
filtering and hole filling enabled’. We remove all images
where either the robot or human are occluding the environment
(typically, while the robot/human is moving to execute the
action). We apply (24) to convert each image L into I. We
divide the recorded images into 6 datasets (one for each of the
3 actions, applied by either robot or human). All datasets are
publicly available at the following link: https://seafile.lirmm.
fr/d/bc9b413e83184505aa7¢e/. Each dataset contains 100 pairs
of prior/posterior images, representing the flour before/after
the action. Then, we manually annotate, in all these images,
the ROI which contains a “visible” (by human standards)
difference in depthg. For each action, we fix the same ROI
sizes for the human and robot, so that the generators can be
trained/tested across agents. The sizes (w,h) of the grasp,

7See post-processing filters in Intel RealSense SDK 2.0: https://github.com/
IntelRealSense/librealsense

8The annotation could be automated using standard image processing
techniques, similar to the ones we developed in [5].

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

knock and poke ROI are respectively: (183,183), (112, 60),
(40, 45); examples of these ROI are also shown in Table 1.

To implement both generators fo and fpc, we use Ten-
sorflow 2 ° on a Dell Precision 7550 laptop (Intel Xeon
W-10885M CPU, 64GB RAM, NVIDIA RTX 5000). We
train both networks with the Adam optimizer [36], setting
a = 0.0002, f; = 0.5, 2 = 0.999 and € = 1075,

B. Results of Image Prediction

First, to assess our distance d, we have compared the time
needed to compute the distance between a pair of depth
images, using: our distance, Chamfer distance and Earth
Mover’s Distance (EMD). The results (on Dell Precision 7550
mentioned above) are: our distance takes 17 ms, Chamfer 153
ms and EMD 157 ms'?. These results confirm our choice.
It should also be noted that both Chamfer and EMD rely on
point clouds, with the drawbacks on memory usage mentioned
above.

Then, we realized a series of experiments to assess the
functions fp, for and fpcr. We split each of the 6 datasets
into training+validation (75%) and testing (25%) subsets. For
cross-validation, the partitions are done four times, each time
selecting randomly — as test subset — a different 25% of the
whole dataset. The labeled (training+validation) set G is used
to: train generators fc and fpc, find the average difference AL
boolean matrix B, and mean offsets uc and pp. We train a
different generator: for each action (three), agent (two: human
or robot), task (two: predicting with fo or denoising with
fbe), and partition (four) adding up to a total 48 networks.
For each network, we set the training duration to 500 epochs
(approximately 1 hour).

Figure 10 shows the distances (in mm) between the pre-
dicted and true ROI (mean and standard deviation of the 4
tests) for each action and for each choice of f (either fp, for
or fpcor). The distances are obtained by expressing distance
d according to (25), and then converting it to mm. We repeat
the measures four times (graphs a-d) by training and testing
on either human or robot.

We can draw various conclusions from these graphs. First,
testing after having trained with the same agent (Figures 10a
and 10d) provides lower error than transferring from one agent
to the other (Figures 10b and 10c); on average, 1.75+0.42 mm
versus 2.53 £ 0.46 mm. This is because the images of human
and robot actions are quite different, also due to the hand sizes.
Yet, the transfer learning error is low enough to encourage
some of the real robot tests, which we will present in the next
Section. Second, training and testing on robot (1.59 =+ 0.41
mm) outperforms training and testing on human (1.92 + 0.43
mm), likely because of the machine’s lower variability. Third,
independently from the agent and prediction strategy f, the
error (both mean and standard deviation) tends to increase
from poke to knock to grasp. This is because of their difference
in terms of repeatability (e.g., the effect of a poke, which

https://www.tensorflow.org

10We wused the following implementations: https://www.tensorflow.
org/graphics/api_docs/python/tfg/nn/loss/chamfer_distance and https:
/len.wikipedia.org/wiki/Earth_mover’s_distance#PyTorch_Implementation,

for Chamfer and EMD (respectively).

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2023.3288836

IEEE TRANSACTIONS ON ROBOTICS

12

Fig. 9: Six snapshots taken during the grasp action. Left to right: the arm moves above the desired location; the arm goes
down, while the hand opens; the hand closes to grasp some flour; the hand opens to release the flour; the arm goes up; the
arm returns to the starting position, to free the camera field of view.

s DCR

s CR

Knock Grasp Poke Knock Grasp Poke

(a) Train on R and test on R. (b) Train on R and test on H.

Knock

Grasp Poke Knock Grasp Poke

(¢) Train on H and test on R. (d) Train on H and test on H.

Fig. 10: Mean and standard deviation of the distances (in mm)
between the predicted and true ROI, when using fp (orange),
fcr (green) or fpcr (blue). The four graphs are obtained by
training and testing on either human or robot data (denoted
respectively H and R).

involves only one finger, varies less than that of a grasp).
Last, but not least, there is no relevant difference between the
mean and standard deviation of the three prediction functions,
fp (orange), for (green) or fpcr (blue). Overall, the three
functions perform similarly: fp with error 2.09 + 0.44 mm,
fcr with error 2.13 + 0.44 mm, fpcr with 2.21 4+ 0.44 mm.

To better discriminate between the three prediction func-
tions, we have run tests with training+validation subsets of
5, 10, 25, 50 and 75 images, while keeping the same testing
subset of 25 images. We consider robot data for both training
and testing and average over all three actions. The results —
plotted in Fig. 11 — show that as the dataset increases, the deep
learning methods fpcr and for decrease the error faster than
the more naive fp. This is likely because, with more data,
the image output by fp tends to blur, while the generator
embedded in fpor and for succeed in capturing the depth
image details.

Finally, we have assessed the importance of the refining
step, by comparing the prediction error with and without
refinement. More specifically, we have compared the errors
of fo, for, foc and fpeog in Table III. The results clearly
show the usefulness of the refinement step (values in the third
and fifth column are all lower than those in the second and
fourth column).

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

2.1

2.04

1.9

181

171

164

154

10 20 30 40 50 60 70

Fig. 11: Mean error (in mm) of fp (orange), fcr (green) or
focr (blue) over the three actions as the training+validation
dataset increases: 5, 10, 25, 50 and 75 images.

TABLE III: Mean error (in mm) of fo, for, foce and fpor.

Datasets fc fcr fbc focr
Train on R and test on R 1.65 1.56 | 1.73 1.60
Train on R and teston H | 2.68 | 2.51 2.80 2.55
Train on H and test on R | 2.70 | 2.55 [2.95 2.71
Train on H and test on H | 1.96 1.90 | 2.11 1.97

C. Robotic point cloud shaping

Since among the three prediction functions, for appears to
be the most promising as data increases (see Fig. 11), we have
used it in the following experiments to predict the effect of an
action on a region of interest.

We have run two series of experiments: the first four
with robot-generated images and the next two with human-
generated images. In both series, for each of the three actions,
we take the best network fo among the four dataset partitions,
and then proceed as follows. Given a pair of images (Lo of
the initial point cloud Py, and L, of the final desired point
cloud P,), we run Algorithm 1 (with fog applied at line 7)
to obtain the sequence of actions s, for shaping the point
cloud from Py, to P,. Then, we control BAZAR robot, so
that it sequentially executes the actions in s,, starting from
point cloud Py. The final desired depth images L. have been
shaped by the robot in the first series of experiments, and by
the human in the second series.

The results are shown in Fig. 12. For each of the six
experiments, we show (from left to right) the initial image Ly,
the final desired image L., the image predicted by Algorithm
1, and the image obtained by the robot; we also indicate
the computed sequence s, and the evolution of d (in mm)
over the experiments. In all six experiments, Algorithm 1
retrieves the actions which were applied by the agent to obtain
L., although not necessarily in the same order. As the robot
replays the sequence, the distance diminishes at each step in all

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2023.3288836

IEEE TRANSACTIONS ON ROBOTICS

experiments (see blue curves). As expected, the final distance
is higher in the transfer learning experiments (both dataset and
desired image are human-made) than in the entirely robotic
experiments. This is due to the difference in shape and size of
the human and robot actions, which is visible by comparing
the fourth image to the second and third images, in the last
two experiments.

D. Generalizing across actions, materials, and geometry

Given the limitations of the robot hardware, we decided to
run another series of experiments on human data, to validate
our methodology in more general situations. In particular, we
assessed the following aspects:

« applying any among all five actions of Table I (including
pinch and press),

o shaping new — non granular — material with the functions
fp, fcr trained on flour; to this end, we used kinetic sand,
a plastic toy material that mimics the physical properties
of wet sand,

e experimenting action superposition (i.e., situations where
multiple actions affected the same region),

« shaping non-flat surfaces (both irregular and of constant,
non-null curvature).

t

0 k

s, _{agS ag9 f13 f15 .a a” a 14 Ll

S, = {a912 f10 a p7}

Pl}

S, = {agS ag9 f13 p37ap27ap17ap47af147af15} 0

Fig. 12: Six robot experiments, with the neural networks
trained on the robot dataset (top four) and on the human dataset
(bottom two). For each of the six experiments, we show four
images (left to right: initial image Ly, final desired image L.,
predicted image, and image obtained by the robot) as well as
the computed sequence s, and the evolution of d (in mm) after
each action ay, is applied.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

13

We have run five experiments on kinetic sand, shown in
Fig. 13, with fcr as prediction function. The actions can be
applied in N = 21 positions; hence, for these experiments,
the total number of actions is dim.A = 5N = 105. In all
experiments and for each of the five actions, we take the best
network fc among the four human dataset partitions, and then
proceed as follows. Given a pair of images (Lo of the initial
point cloud Py, and L, of the final desired point cloud P,),
we run Algorithm 1 (with for applied at line 7) to obtain
the sequence of actions s, for shaping the point cloud from
Po, to P.. Then, we verify if the predicted image qualitatively
resembles the final one, and whether Algorithm 1 predicts a
sequence of actions similar to the actually applied one.

For each of the 5 experiments, we show (from left to
right) the initial image Ly, the final desired image L. and
the image predicted by Algorithm 1; we also indicate the
computed sequence s, and the evolution of d (in mm) over
the experiments.

In the first experiment, the initial shape has a constant cur-
vature of approximately 15 cm. For the four other experiments,
we start with very irregular non-flat shapes (with standard
variation of the depth from its mean £17 mm — see first
column of Fig. 13). In the fourth and fifth experiments, we
obtained the desired image by apply overlapping actions.

In four of the five experiments, Algorithm 1 retrieves the
same type, position and number of actions which the human
applied to obtain L., although not necessarily in the same

k
Sy = {a'rG ak21 aP apl nl0 ap3}

1 +—

ISH

0 k 4
— {agll an16 ap4}
2
- - - ’
— 1"12 a ap18 aplS} O' k 5
1
d
0 k 4
k14 k8 n7}
3
————e
d
07 k4

15,719 ,pl3 ,pl7
s, = {a% a9 aPl3 arl’}

Fig. 13: Five experiments, with the neural networks trained
on the human dataset. For each experiment, we show three
images (left to right: initial image Ly, final desired image L.,
and predicted image) as well as the computed sequence s, and
the evolution of d (in mm) after each action ay, is applied.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2023.3288836

IEEE TRANSACTIONS ON ROBOTICS

order. The only exception is the third experiment. Here, our
method predicts two knock and two poke actions at the same
position (see s, at the third line of Fig. 13), whereas the
applied sequence was: s, = {a’m, akd, aplg}. When applying
knock and poke to generate L., the human has penetrated the
material more than usual. On the human dataset, the deepest
points generated by knock and poke have depths respectively
6.80 mm and 7.05 mm. Instead, to generate L., the human
applied a knock and a poke of maximal depths 19.60 mm and
17.05 mm, respectively. Therefore, the solution proposed by
Algorithm 1 is coherent with the task. It should also be noted
that in all five experiments, the distance diminishes at each
step (see blue curves).

Finally, we repeated the five experiments using the naive fp
function to predict action effect. The results were much less
satisfying in terms of both final image quality and distance
error. In none of the experiments, Algorithm 1 managed to
retrieve the type, position and number of actions which the
human applied to obtain L,. This result leads us to believe
that the molding problem cannot be solved by such a simple
approach, and that particularly in complex scenarios such as
the ones studied here, deep learning can provide a much better
solution to the action prediction problem.

VII. CONCLUSIONS AND FUTURE WORK

Although our results are encouraging, they are preliminary
— to say the least. The path towards robotic molding is still
long and paved with obstacles.

First, the current hardware substantially limits the range of
robot operation. Even an extraordinary robot like the Shadow
Dexterous Hand, used here, is designed for conventional rigid
object manipulation, and can by no means reproduce the
versatility and adaptability of the human hand. It is rigid, has
non-reproducible behavior (due to cable actuation), is weak
(e.g., not strong enough to penetrate compressed flour) and
tends to break easily. This is also why if was difficult to actuate
the fingers, and in two out of three robot actions (all except
grasp) we maintained a constant hand posture while in contact
with the material. We had to dedicate most of our time to find
the appropriate material and actions, in order to record relevant
data without breaking the robot! Also in terms of perception,
the gap between technology and nature is critical.

Present-day force sensing is far from providing good ac-
curacy at the low ranges required by our application, and it
could not be used to close the actions’ feedback loop (e.g., to
decide when or how to grasp the flour). Our Shadow Hand is
equipped with five (one per fingertip) SynTouch LLC Biotac
tactile sensors. Yet, these sensors are uncalibrated and only
provide information if the fingertip touches the environment,
which is rarely the case when molding. Furthermore, to shield
the robot mechanics and the Biotac themselves from flour, the
hand wears a glove, which biases the Biotac readings. The
ideal sensor for molding should cover palm and fingers, and
be dirt and waterproof. For all these reasons, although we
acknowledge the importance of force sensing, we have only
focused on visual feedback.

In the future, solutions to these actuation and perception
issues may come from soft [37] and underactuated [38] robots

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

or from dense tactile skins [39]. Another worthy aspect is that
humans generally rely on both hands for molding; yet, this
introduces other difficulties, beyond the scope of this paper

A second limitation comes from the absence of a physical
model, which led us to use deep machine learning. We could
improve our deep learning methods by adding data from
multiple humans (not just one, like here), relying on better
computational resources, or automating image annotation as
in [5]. Yet, our results show that deep learning outperforms
image difference in generalizing across actions, materials and
geometry (e.g., irregular surfaces). One of the limitations of
the neural networks developed here is that they are not scalable
in terms of image size, and therefore lack robustness with
respect to variations of the action depth coordinate. Due to
their synthetic nature, the predicted images may contain some
artifacts and discontinuities. Yet, despite these artifacts, our
framework could compute the correct sequence of actions.

A third issue, outlined above, is that our framework relies
on too many assumptions, which should gradually be relaxed,
to make it applicable in real scenarios. For instance, we
cannot afford variations in the relative pose between the
camera and workspace, unless a rigorous calibration phase is
carried out systematically, to guarantee consistency between
the robot operational space and the camera frame. Besides,
our action space is limited to predetermined actions. This
raises the question of whether our method could provide a
reasonable prediction for unknown actions. Furthermore, the
action sequence search problem requires the actions to be
applied at a limited and known set of positions, making it
easily intractable in ambitious scenarios. To generalize to
continuous action positions, one could use random sampling,
Monte Carlo tree search or particle swarm optimization, to
select the best sequence of actions/positions. These approaches
are more general than greedy ones, since they explore a
larger space of possible actions sequences. Yet, they can be
computationally expensive, especially if the search space is
large and the prediction model complex (as is the case here).

Despite the above issues, there is still room for hope. For
instance, we believe that our approach — transforming the
prediction problem and the distance metric from 3D point
cloud to depth image space — is a promising avenue of research
for soft plastic object manipulation. First, it can be enriched by
2D image processing techniques (e.g., convolution, mutual in-
formation). Second, in contrast with state-of-art methods (such
as Iterative Closest Point), it guarantees the fast computation
and low memory usage required for robot molding — at both
learning and planning steps. Third, it could encompass a coarse
mechanical model of the object. Generally, in the authors’
view, the future of soft plastic object manipulation lies in the
successful integration of a coarse physical model, refined with
data-based techniques.

ACKNOWLEDGMENTS

The authors would like to thank Benjamin Navarro for his
help on the robot programming and André Crosnier, Fabrice
Caussidery, Phlippe Fraisse, Hervé Louche, Serge Mora, Jean-
Michel Muracciole for their suggestions on the material to be
used in the experiments.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TR0.2023.3288836

IEEE TRANSACTIONS ON ROBOTICS

[1]

[2]

[3]

[4

=

[5]

[6

=

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

S. Duenser, R. Poranne, B. Thomaszewski, and S. Coros, “Robocut: Hot-
wire cutting with robot-controlled flexible rods,” ACM Trans. Graph.,
vol. 39, no. 4, aug 2020.

Z. Ma, S. Duenser, C. Schumacher, R. Rust, M. Bacher, F. Gramazio,
M. Kohler, and S. Coros, “Stylized robotic clay sculpting,” Computers
Graphics, vol. 98, pp. 150-164, 2021.

N. Xuejuan, L. Jingtai, S. Lei, L. Zheng, and C. Xinwei, “Robot 3D
sculpturing based on extracted nurbs,” in IEEE Int. Conf. on Robotics
and Biomimetics (ROBIO), 2007.

L. Pagliarini and H. Hautop Lund, “The development of robot art,”
Artificial Life and Robotics, vol. 13, no. 2, pp. 401-405, 2009.

A. Cherubini, V. Ortenzi, A. Cosgun, R. Lee, and P. Corke, “Model-
free vision-based shaping of deformable plastic materials,” Int. Journal
of Robotics Research, vol. 39, no. 14, pp. 1739-1759, 2020.

F. Chaumette and S. Hutchinson, “Visual servo control, Part I: Basic
approaches,” IEEE Robotics and Automation Magazine, vol. 13, no. 4,
pp. 82-90, 2006.

A. Anand, H. S. Koppula, T. Joachims, and A. Saxena, “Contextually
guided semantic labeling and search for three-dimensional point clouds,”
Int. Journal of Robotics Research, vol. 32, no. 1, pp. 19-34, 2013.

H. Hwang, S. Hyung, S. Yoon, and K. Roh, “Robust descriptors for
3d point clouds using geometric and photometric local feature,” in
IEEE/RSJ Int. Conf. on Robots and Intelligent Systems, 2012.

F. Engelmann, T. Kontogianni, J. Schult, and B. Leibe, “Know what
your neighbors do: 3d semantic segmentation of point clouds,” in
Computer Vision —ECCV 2018 Workshops, L. Leal-Taixé and S. Roth,
Eds. Springer International Publishing, 2019, pp. 395-409.

B. Calli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. Srinivasa,
P. Abbeel, and A. M. Dollar, “Yale-cmu-berkeley dataset for robotic
manipulation research,” Int. Journal of Robotics Research, vol. 36, no. 3,
pp. 261-268, 2017.

J. Sung, S. H. Jin, and A. Saxena, “Robobarista: Object part based trans-
fer of manipulation trajectories from crowd-sourcing in 3d pointclouds,”
in Int. Symposium on Robotics Research, 2015.

A. Pas and R. Platt, Using Geometry to Detect Grasp Poses in 3D Point
Clouds. Springer International Publishing, 01 2018, pp. 307-324.

J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg, “Dex-
net 3.0: Computing robust vacuum suction grasp targets in point clouds
using a new analytic model and deep learning,” in IEEE Int. Conf. on
Robotics and Automation, 2018.

I. Ziamtsov and S. Navlakha, “Machine learning approaches to im-
prove three basic plant phenotyping tasks using three-dimensional point
clouds,” Plant Physiology, vol. 181, no. 4, pp. 1425-1440, 2019.

Z. Zhang, “Iterative point matching for registration of free-form curves
and surfaces,” Int. Journal of Computer Vision, vol. 13(12), pp. 119-152,
1994.

N. Fioraio, K. Konolige, and W. Garage, “Realtime visual and point
cloud slam nicola fioraio willow garage,” in Proc. of the RGB-D
workshop on advanced reasoning with depth cameras at Robotics:
Science and Systems (RSS), 2011.

Y. Liu, C. Wang, Z. Song, and M. Wang, “Efficient global point cloud
registration by matching rotation invariant features through translation
search,” in European Conference on Computer Vision, 2018.

H. Yang, J. Shi, and L. Carlone, “TEASER: Fast and certifiable point
cloud registration,” IEEE Trans. on Robotics, vol. 37, no. 2, pp. 314—
333, 2021.

J. Ma, J. Wu, J. Zhao, J. Jiang, H. Zhou, and Q. Z. Sheng, “Non-rigid
point set registration with robust transformation learning under manifold
regularization,” IEEE Trans. on Neural Networks and Learning Systems,
vol. 30, no. 12, pp. 3584-3597, 2019.

R. A. Newcombe, D. Fox, and S. M. Seitz, “DynamicFusion: Recon-
struction and tracking of non-rigid scenes in real-time,” in 2015 IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2015, pp.
343-352.

F. F. Khalil, P. Curtis, and P. Payeur, “Visual monitoring of surface
deformations on objects manipulated with a robotic hand,” in IEEE Int.
Workshop on Robotic and Sensors Environments (ROSE), 2010.

M. Staffa, S. Rossi, M. Giordano, M. De Gregorio, and B. Siciliano,
“Segmentation performance in tracking deformable objects via WNNs,”
in IEEE Int. Conf. on Robotics and Automation, 2015, pp. 2462-2467.
J. Schulman, A. Lee, J. Ho, and P. Abbeel, “Tracking deformable objects
with point clouds,” in IEEE Int. Conf. on Robotics and Automation,
2013.

S. Elliott and M. Cakmak, “Robotic cleaning through dirt rearrangement
planning with learned transition models,” in IEEE Int. Conf. on Robotics
and Automation, 2018.

C. Schenck, J. Tompson, D. Fox, and S. Levine, “Learning robotic
manipulation of granular media,” in Conf. on Robot Learning (CoRL),
2017.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

(35]

[36]
[37]
[38]

[39]

Y. Li, J. Wu, R. Tedrake, J. Tenenbaum, and A. Torralba, “Learning
particle dynamics for manipulating rigid bodies, deformable objects, and
fluids,” arXiv preprint arXiv:1810.01566, 2018.

H. Fan, H. Su, and L. J. Guibas, “A point set generation network for 3d
object reconstruction from a single image,” CoRR, vol. abs/1612.00603,
2016. [Online]. Available: http://arxiv.org/abs/1612.00603

0. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234-241.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” CVPR, 2017.

N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. on Systems, Man, and Cybernetics, vol. 9(1), pp. 62—66,
1979.

V. Jain and H. S. Seung, “Natural image denoising with convolutional
networks,” in Advances in Neural Information Processing Systems,
vol. 21, 2009, pp. 769-776.

M. Moll and L. E. Kavraki, “Path planning for deformable linear
objects,” IEEE Trans. on Robotics, vol. 22, no. 4, pp. 625-636, 2006.
G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap,
J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep re-
inforcement learning in large discrete action spaces,” arXiv preprint
arXiv:1512.07679, 2015.

M. Laskey, C. Powers, R. Joshi, A. Poursohi, and K. Goldberg, “Learn-
ing robust bed making using deep imitation learning with DART,” arXiv
preprint arXiv:1711.02525, 2017.

A. Cherubini, R. Passama, B. Navarro, M. Sorour, A. Khelloufi,
O. Mazhar, S. Tarbouriech, J. Zhu, O. Tempier, A. Crosnier, P. Fraisse,
and S. Ramdani, “A collaborative robot for the factory of the future:
Bazar,” Int. Journal of Advanced Manufacturing Technology, vol. 105(9),
pp. 3643—3659, December 2019.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd Int. Conf. on Learning Representations, ICLR, 2015.

J. Shintake, V. Cacucciolo, D. Floreano, and H. Shea, “Soft robotic
grippers,” Advanced Materials, vol. 30(29), p. 1707035, 2018.

C. Della Santina, G. Grioli, M. Catalano, A. Brando, and A. Bicchi,
“Dexterity augmentation on a synergistic hand: The pisa/iit softhand+,”
in 2015 IEEE-RAS 15th International Conference on Humanoid Robots
(Humanoids), 2015, pp. 497-503.

Z. Kappassov, J.-A. Corrales, and V. Perdereau, “Tactile sensing in
dexterous robot hands -— review,” Robotics and Autonomous Systems,
vol. 74, pp. 195-220, 2015.

Ege Gursoy received the M.Sc. in Robotics in
2020 from Université de Montpellier, France. From
2020 to 2021 he worked at UM as a research
engineer in the IDH (Interactive Digital Humans)
research group. Currently, he is a PhD candidate in
a collaboration between Université de Montpellier
and Monash University, Australia.

Sonny Tarbouriech received the M.Sc. in Electrical
and Computer Science Engineering in 2014 from the
Ecole Polytechnique de Montpellier and a second
M.Sc. in Robotics in 2016 from the University of
Sherbrooke, Canada in 2016. From 2016 to 2019,
he worked at Tecnalia and was a PhD student at
Université de Montpellier, under the supervision of
Prof. Philippe Fraisse. Since graduation, Sonny has
been working at UM as a research engineer in the
IDH group.

Andrea Cherubini received the M.Sc. in Mechan-
ical Engineering in 2001 from the University of
Rome La Sapienza and a second M.Sc. in Control
Systems in 2003 from the University of Sheffield,
U.K. In 2008, he obtained the Ph.D. in Control
Systems from La Sapienza, and started a three year
postdoc at INRIA Rennes. Since 2011, he is at Uni-
versité de Montpellier, first as Associate Professor,
and then as Full Professor. At UM, he is in charge of
the Robotics Master, and leads the IDH (Interactive
Digital Humans) research group.

