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Abstract

In supervised learning problems, it is common to have a lot of unlabeled data, but
little labeled data. It is then desirable to leverage the unlabeled data to improve
the learning procedure. One way to do this is to have a model predict “pseudo-
labels” for the unlabeled data, so as to use them for learning. In self-learning, the
pseudo-labels are provided by the very same model to which they are fed. As these
pseudo-labels are by nature uncertain and only partially reliable, it is then natural
to model this uncertainty and take it into account in the learning process, if only
to robustify the self-learning procedure. This paper describes such an approach,
where we use Venn-Abers Predictors to produce calibrated credal labels so as to
quantify the pseudo-labeling uncertainty. These labels are then included in the
learning process by optimizing an adapted loss. Experiments show that taking
into account pseudo-label uncertainty both robustifies the self-learning procedure
and allows it to converge faster in general.

Keywords: Self learning, Venn-Abers predictors, credal labels

1. Introduction

The use of data and machine learning becomes more and more frequent, in part due
to more and more data being generated by users. However, a large part of these
data are unlabeled. In classical supervised learning, these latter cannot be used to
train the model. This is particularly problematic in situations where the amount of
labeled data is small, which usually happens when obtaining expertise is costly.

Semi-supervised learning techniques address this particular situations by propos-
ing methods that learn from both labeled and unlabeled data. There are many such
techniques, and we refer for example to Van Engelen and Hoos (2020) for a recent
survey and taxonomy. Self-learning is a specific semi-supervised learning approach
which consists in replacing missing labels with model predictions, and then incor-
porate these data in the training set. Such predicted labels are often called pseudo-
labels. While the idea of self-learning and automatic labeling is not new (Yarowsky,
1995) and has been applied successfully for quite some time in different fields such
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as image processing (Dópido et al., 2013), it has recently known a revival of inter-
est (Sohn et al., 2020; Petrovai and Nedevschi, 2022). However, replacing unknown
labels by wrong predictions may lead to lower performances, which can even be
made significantly worse in some cases.

A solution to this issue is to replace the unknown labels by uncertain labels,
typically probabilistic ones Leistner et al. (2009), and to train the model by using an
adequate loss function (e.g., cross-entropy). However, such probabilistic estimates
are themselves not guaranteed to be accurate and reliable estimates, for instance
when the learning methods either rely on too strong assumptions Domingos and
Pazzani (1996) or when they display too high variance Provost and Domingos (2003).
A classical way to obtain more reliable probabilistic estimates is to calibrate those
probabilities (Song et al., 2021). However, such calibrated probabilities may not be
able to reflect how reliable the estimates are, in the sense that they will not properly
quantify their epistemic uncertainty, e.g. whether or not they rely on a lot of data.
In order to even augment the expressiveness of provided pseudo-labels, Lienen and
Hüllermeier (2021) recently proposed to consider specific convex sets of probabilities
as pseudo-labels, and more recently to use conformal prediction (see Lienen et al.
(2022)) in order to derive such convex sets.

While the probability sets considered by Lienen and Hüllermeier (2021) have the
advantage to be simple and not to increase significantly computational costs, they
have the caveat that precise probabilities cannot be modeled, since such sets will
always contain at least one degenerate probability distribution which puts all the
probability mass on a given class1. In this paper, we consider the same idea of using
probability sets as pseudo-labels, but rather than considering conformal prediction
outputs, we use Venn predictors (Lambrou et al., 2015), and more precisely Venn-
Abers predictors (Vovk and Petej, 2012), as we focus on the binary case.

The paper is organized as follows. Reminders about learning, credal labels
and Venn-Abers predictors are given in Section 2. Section 3 then discusses how
learning from credal labels issued from Venn-Abers predictors can be performed
by adapting the Kullback-Leibler divergence to this setting, and presents our pro-
posed self-learning scheme. Section 4 provides experimental results on various data
sets, showing that using calibrated credal labels generally improves the self-learning
procedure, and can prevent from potential model degradation.

2. Preliminaries

These preliminaries will introduce the basic building blocks needed to present our
proposed approach.

1. The reason for this is that they are possibility distributions, see Dubois and Prade (1992).
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2.1. Reminders on semi-supervised and self-learning

The classical semi-supervised setting considers both a labeled data set

DL = {(xi, yi)}ni=1 ⊆ (X × Y)n

and an unlabeled data set

DU = {(xi,Y)}mi=n+1 ⊆ (X × 2Y)m−n,

assumed to come from the same underlying distribution, where X ,Y are the input
and categorical discrete output spaces. In this paper, we will consider the binary
classification setting, i.e. Y = {0, 1}.

The goal of semi-supervised learning methods, and of learning methods in gen-
eral, is usually to learn a real-valued scoring function hθ : X → R from the available
data DL ∪ DU . The model hθ can then be used to make a prediction ŷ for any
observation x by using a threshold c, that is ŷ = 1 if hθ(x) > c, 0 else. Typical
examples are SVMs with hθ(x) ∈ (−∞,∞) and c = 0, or logistic regression with
hθ(x) ∈ [0, 1] and c = 0.5. Note that a sigmoid transform makes it possible to
retrieve the second case from the first one. In this paper and to facilitate read-
ing, we will assume that hθ ∈ [0, 1], and may be interpreted as a (non-calibrated)
probability, with hθ(x) = p̂(y = 1|x).

In a nutshell, self-supervised learning (Triguero et al., 2015) in its basic form
consists in (1) learning a model hθ0 from DL, (2) to select some unlabeled data
x ∈ DU and complete them by a prediction hθ0(x), before (3) (x, hθ0(x)) is added to
DL: the procedure can then be repeated iteratively, learning a new model hθ1 and so
on, until a stopping condition is met. While such an approach can benefit from an
accurate model hθj , it can also suffer from the incorporation of inaccurate or unre-
liable predictions to the data set. To circumvent such an issue, this paper proposes
to consider an approach where all data points from DU are labeled at once, yet not
by precise labels or single probabilistic labels, but by convex sets of probabilities—
which reduce to intervals in binary classification. The idea of using such convex sets
is that they provide a generic, rich and flexible way to represent model predictions
together with their associated uncertainty, thus bypassing the need to select the
pseudo-labeled data to be added to DL, and allowing for a differentiation between
reliable and unreliable predictions.

2.2. Credal sets and credal Learning

A credal set (Destercke and Dubois, 2014) is a closed convex set of probability
distributions. We will denote by ∆Y the set of probabilities over Y, and by K ⊆ ∆Y
a credal set defined over Y. The advantage of credal sets is that they can model all
kinds of knowledge about a label, from missing and partial labels to probabilistic
and classical ones. In the present case of binary spaces, one key advantage is that
any credal set can be summarized by the interval [p(1), p(1)], with the corresponding
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Figure 1: Some examples of credal labels

bounds for p(0) being retrieved by using the relation p(0)+p(1) = 1. A probabilistic
label is then modeled by p(1) = p(1), and a missing (or totally unreliable) label by
[p(1), p(1)] = [0, 1]. Figure 1 illustrates various situations, with their associated
probability intervals.

A question is then to know how to learn from such credal labels. In classical
supervised binary classification via loss minimization, we train a classifier hθ on data
having the form (x, y) by optimizing a loss function L using the hard label y and
the probability output by hθ. Here, we consider a loss function defined on the space
of probabilities, i.e., L : ∆Y ×∆Y → R; a classical example in the binary case is the
binary cross-entropy

LBCE(p, hθ(x)) = p(1) lnhθ(x) + (1− p(1)) ln(1− hθ(x)).

However, in our setting, predictions are not pseudo-labels ŷ nor probabilities over y,
but a credal set K, making usual loss functions ill-defined. In such a case, a popular
choice well-fitting the standard assumptions of semi-supervised learning (i.e., that
data in DU are randomly selected and have the same distribution as data in DL)
is to consider an optimistic assumption (Destercke, 2022; Lienen and Hüllermeier,
2021) by considering the distribution within K minimising the loss, i.e.,

Lmin(K,hθ(x)) = min
p∈K
L(p, hθ(x)). (1)

The final associated empirical risk of a model hθ when observing n data (xi, yi) is
then:

Remp(θ) =
1

n

n∑
i=1

Lmin(hθ(xi)). (2)

Note that such a choice naturally extends loss functions used in the case of partial
labels (corresponding to credal set including all probabilities with a given support),
see e.g. (Cabannes et al., 2021; Liu and Dietterich, 2014). In the optimistic approach,
we want the loss function to be minimized if the probability estimated by the model
is inside the credal set, that is if p(y) ∈ K. Therefore, in this paper we consider the
Kullback-Leibler divergenceDKL (as in Lienen et al. (2022)) instead of the BCE loss
function, since this latter does not fulfill this desideratum (see A for more details).
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As reminder, the Kullback-Leibler (KL) divergence is defined as the following:

DKL(P || Q) =
∑
x∈X

P (x) ln(
P (x)

Q(x)
).

In a binary classification task, the KL divergence becomes

LKL(p, hθ(x)) := DKL(p || hθ(x)) = p(1) ln(
p(1)

hθ(x)
) + (1− p(1)) ln(

1− p(1)

1− hθ(x)
),

and the corresponding LKL
min(K,hθ(x)) is (see Appendix A for more details):

LKL(K,hθ(x)) =


0 if hθ(x) ∈ [p(1), p(1)],

LKL(p(1), hθ(x)) if hθ(x) ≤ p(1),

LKL(p(1), hθ(x)) if hθ(x) ≥ p(1).

(3)

A natural question is then how to obtain the interval [p(1), p(1)] for a given
observation. In the sequel, we propose to use Venn-Abers predictors as a convenient
way to get calibrated intervals, starting with recalling the basic idea behind such
predictors.

2.3. Venn-Abers predictors

In general, one cannot expect to have hθ(x) = p(1|x), or even the less demanding
property2 p(1|hθ(x)) = hθ(x). Satisfying such constraints amounts to require the
predictor hθ(x) to be well calibrated.

Venn predictors (Vovk and Petej, 2012) offer an easy post-hoc means to obtain
estimators with calibration guarantees. In a nutshell, if Y is a K element space, a
Venn predictor outputs K probability estimates p0, . . . , pK , one of which is guaran-
teed to be calibrated. We are here interested in the binary case Y = {0, 1}, for which
we will use Inductive Venn-Abers predictors (IVAP) (Vovk et al., 2015; Nouretdinov
et al., 2018; Peck et al., 2020). The idea is the following:

1. Divide the learning set DL into a training set DT of size l and a calibration
set DC of size k = n− l

2. Train a classifier hθ on DT , for example by solving θ = argminθ∈ΘRemp(θ).

3. Compute the scoring values hθ(x) (e.g., the probabilities output by the clas-
sifier) for all instances in the calibration set, i.e., all hθ(x) for x ∈ DC .

4. For any new test object or observation x:

(a) compute its score hθ(x) with the classifier,

2. This is less demanding since different x’s will receive the same score.
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(b) fit an isotonic regression model on ((hθ(x1), y1), ..., (hθ(xk), yk), (hθ(x), 0))
as a function g0 and another one on ((hθ(x1), y1), ..., (hθ(xk), yk), (hθ(x), 1))
as a function g1 (for the pairs (xi, yi) ∈ DC)

(c) consider the two obtained values (g0(hθ(x)), g1(hθ(x)): one of them is a
calibrated probability.

The algorithm pseudo-code for the IVAP is recalled in Appendix B. The key idea
in this paper is to consider the Venn-Abers predictors as credal sets, by considering
the probability intervals corresponding to the convex hull of the predictions output
by such a predictor. This means that an observation x would be associated with
the interval Kx = [p

x
(1), px(1)] with p

x
(1) = g0(hθ(x)) and px(1) = g1(hθ(x)).

In the next section, we will see how to combine credal learning and Venn-Abers
predictors in the context of self-supervised learning, so as to create more calibrated
credal sets and include the uncertainty on the pseudo-labels in the training process,
thus improving the calibration of the prediction model.

3. Self Learning using Venn-Abers predictors

Now that we have presented Venn-Abers predictors in Section 2.3 and how learning
from credal sets in Section 2.2, we address in this Section leveraging Venn-Abers
predictors to obtain better-calibrated credal sets in a self learning paradigm.

We can already note that in the credal setting and using the loss (1), both precise
and missing labels are specific cases of credal labels: as such, the earlier data sets
DL and DU need not be distinguished from each other, and DL ∪ DU can just be
seen as a specific kind of credal dataset.

Our proposal goes as follows: starting out with DL, we split it into the two
sets DT and DC in order to apply the IVAP method later on. We then propose
to learn a first classifier hθ0 on the fully labeled set DT , through standard loss
minimisation. We then apply IVAP to produce credal labels on the observations
within DU , denoting by K0

x the credal set [p0
x
(1), p0x(1)] obtained for observation

x, thus obtaining a data set D0
U with credal labels. We then use Equation (1) on

DT ∪D0
U to obtain a new model hθ1 , and so on. More generally, at a given iteration

j in the iterative self-learning process, we have

θ̂j = argmin
θ∈Θ

∑
x∈DL∪DU

Lmin(K
j−1
x , hθ̂j−1(x)), (4)

where Kj−1
x is the credal set output when applying IVAP to x using DC and hθ̂j−1

as a model, and where for any x ∈ DL,

Kx =

{
[0.999, 0.999], if y = 1,

[0.001, 0.001], if y = 0,
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Figure 2: Initializing loop of self-training using the Venn-Abers predictors algorithm

in order to avoid numerical issues due to ln(0). This iterative procedure can then
repeated at will, for example until performances on the test set begin to degrade.
The first loop of this iterative procedure is illustrated in Figure 2. The whole
iterative procedure is summarized in Algorithm 1.

It should be noted that we could start right away by using DL∪DU , simply using
vacuous or almost vacuous intervals for observations in DU . In this paper we choose
to initialize by using only DL, for the simple reason that it makes the comparison
with standard self-learning approaches easier.

Algorithm 1 Self-learning using Venn-Abers predictors

Require: a labeled set DT , a calibration set DC , a unlabeled data set DU

Require: a hypothesis space Θ used to learn a real-valued model hθ : X → Y
Require: a number e of iteration (or a stopping criteria)
i←− 0
train hθ0 using DT

label observation x ∈ DU by Kx generated by IVAP on hθ0(x) using DC

while i ≤ e do
i←− i+ 1
train hθi using DT ∪ DU

label observation x ∈ DU by Kx generated by IVAP on hθi(x) using DC

end while
return hθe
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4. Experiments

This section reports experimental results, showing in particular that using Venn-
Abers predictors combined with credal learning in self-learning gives in general faster
convergence and overall better results, as well as more robustness in those cases
where classical self-learning performs badly.

4.1. Illustration on synthetic data

Before testing our approach on real-world data sets, we provide a small illustration
of how our method behaves on a synthetic data set. This data set with X ∈ R2 is
composed of two Gaussian conditional distributions

p(x|1) ∼ N (

(
0
0

)
,
1

2

(
11 9
9 11

)
), p(x|0) ∼ N (

(
0
0

)
,
1

2

(
11 −9
−9 11

)
).

We set n = 1000, and split D into DT of size 80, DC of size 20 and DU of size 900.
We trained a neural network with a hidden layer of 3 neurons with learning rate
λ = 0.2 on DT , and then applied our method over 10 iterations. We chose a neural
network since it is often poorly calibrated (Johansson and Gabrielsson (2019)). The
evolution of the decision boundary, as well as the size of the credal sets output by
our method, are shown in Figure 3.

We can observe that both the decision boundaries as well as our certainty or
confidence in the predictions made evolve over time, even if the set DC remains
the same. For example, we can see that the decision region for the negative class
has a tendency to shrink between the 1st and 10th iteration, and that the average
interval size associated to test data points belonging to the negative class tends to
diminish in the lower right quadrant, while increasing in the upper left quadrant.
Similarly, the interval size associated to the data points in the dense overlapping
region around point (0, 0) tends to decrease with the number of iterations, showing
that we are more and more certain of our estimates in these regions.

Figure 4 displays the probabilities (of the positive class) output by the neural
network (without post-hoc calibration) at the end of the learning, as well as the size
of the credal sets. Those probabilities are reasonably accurate, and we can observe
that there is not necessarily a strong link between the value of this probability and
the reliability of the estimate, which we evaluate by the size of the output intervals:
we can observe rather extreme probabilistic estimates (i.e., far from 0.5) associated
to big or small intervals, as well as ambiguous probabilistic estimates (i.e., close to
0.5) also associated to big or small intervals.

4.2. Real data

To test our method on real data, we used six datasets: Breastcancer, Digits, Aus-
tralian, Banknote, Heart disease and the Adult datasets (courtesy of the UCI repos-
itory (Dua and Graff, 2017)). As we consider only binary classification, for the
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(a) Iteration 1

(b) Iteration 10

Figure 3: Evolution of the decision boundary and the interval sizes across 10 self-
learning iterations using Venn-Abers predictors (synthetic data)

Figure 4: Probabilities output by the classifier with interval size output by Venn-
Abers predictors at iteration 10
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Table 1: Architecture and hyperparameter
Dataset number of neurons (hidden layer) λ

Breastcancer 5 0.01
Digits 10 0.01

Australian 4 0.005
Banknote 2 0.01

Heart disease 5 0.005
Adult 10 0.001

Digits dataset, we grouped even numbers as class 0 and odd numbers as class 1. For
the Adult dataset, we randomly selected 5000 instances over the entire dataset, re-
specting the proportions of the classes so as to obtain an imbalanced test set against
which our model’s performance can be assessed. We used as classifier a neural net-
work with 1 hidden layer (the architecture and learning rate λ for each dataset is
presented on table 1). The optimizer was an SGD, with no momentum nor weight
decay. Batch size was set to 10. We use a neural network for the same reason as
we did for the synthetic data (poor native calibration). We split each dataset into
four new sets: DT , DU , DC and Dt (the test set). We compared three different
self-learning strategies:

1. a standard, classical self-learning (SL) procedure consisting of adding a batch
of new labeled data at each iteration (the batch of data for which the prediction
probabilities are the furthest away from 0.5, that is for which |0.5 − hθi | is
maximal). The size of the batch is set to 2% of the initial data set;

2. self-learning using soft labels (SLSL): at each iteration, we label DU with
hθi(x), adding this pseudo-labeled data to DU before training the classifier on
DL ∪ DU ;

3. self-learning using Venn-Abers predictors (SLVA), our proposal described in
Section 3 and Algorithm 1.

The splitting is done 10 times on different seeds: and for each split, we apply the
three strategies on 30 iterations. For each split, 20% of the data was kept for Dt

as test, and of the 80% remaining, 80 were kept as labeled data for DT , 5 or 10%
were kept3 for DC to ensure that |DC | ≥ 20, and the rest was put in DU . For
each strategy, we measured the average accuracy a of the 30 iterations over the 10
different splits, the mean accuracy a30 at iteration 30 and the standard deviation of
the accuracy σ(a30) at iteration 30. The results are given in Table 2 and Figure 5.

We can make quite several observations about these results:

• SLVA usually performs better than the other approaches. This is certainly
true in average, as shown by the three first columns in Table 2, where our

3. i.e., either 4% or 8% of the initial data set
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(a) Breastcancer (b) Digits

(c) Australian (d) Banknote

(e) Heart disease (f ) Adult

Figure 5: Accuracies on Dt for the 6 datasets along the training of 30 iterations over
10 different seeds.
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Table 2: Performances on Dt for the 6 datasets over 10 different seeds
a a30 σ(a30)

Dataset SL SLSL SLVA SL SLSL SLVA SL SLSL SLVA
Breastcancer 0.953 0.951 0.959 0.961 0.962 0.968 0.019 0.009 0.015
Digits 0.851 0.817 0.838 0.882 0.838 0.876 0.032 0.018 0.025
Australian 0.815 0.789 0.827 0.857 0.851 0.859 0.026 0.023 0.014
Banknote 0.907 0.881 0.926 0.980 0.976 0.986 0.007 0.013 0.008
Heart disease 0.775 0.768 0.782 0.815 0.820 0.818 0.039 0.036 0.035
Adult 0.578 0.653 0.741 0.578 0.713 0.745 0.018 0.029 0.017

approach outperforms the baselines 5 times out of 6; but also at the end of
the learning process (a30 in Table 2), where our approach outperforms the
baselines 4 times out of 6, and remains close to the best method in the two
remaining ones.

• SLVA is also more robust accross all the used data sets, as it is either the best
performing method or remains close to it, while SL and SLSL display greater
variability (e.g., SLSL does not perform well on Digits, SL is very bad on
Adult and both under-perform on Breastcancer).

• SLVA also converges faster to asymptotic performances, as indicated by the
fact that the slope of the green curve is usually steeper in Figure 5, and that
a (the average accuracy over iterations) is higher for SLVA.

• SLVA is the only method that has no problem with dealing with the Adult
data set: for this latter one, the convergence of SLSL is very slow, and the
performances of SL are extremely bad, and even quickly degrade after the
fifth iteration.

In terms of variance, all methods seem to be on par, with no method really
showing an advantage over the others. However, the remarks above indicate that
using calibrated credal sets to replace unlabeled data can be considered as a se-
rious alternative to standard self-learning approaches, as it usually exhibits better
performances without adding any computational cost when dealing with binary clas-
sification problems using the DKL loss function.

5. Conclusion

In this paper, we have introduced a new approach of self learning, taking into account
the uncertainty of new labeled data added to the training set. It concerns binary
classification task by loss optimization. If we have little labeled data and many
unlabeled data, using the approach presented here can help making the best use of
the latter to train a classifier while being robust to pseudo-labels.

12
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Experiments show that our approach compares favorably with classical self learn-
ing approaches, as it either gives better or comparable performances. In particular,
it seems that when data are imbalanced, using this approach can improve robustness
and avoid slow convergence or even failure of self-learning approaches using (possi-
bly uncalibrated) soft labels or hard labels. In addition, it is likely that accounting
for the uncertainties (both epistemic and aleatoric) in the self-learning process will
increase the acceptability of the approaches ny users.

As a first follow-up to the present work, we would like to perform further ex-
periments to confirm some of our observations as well as testing the limit of the
presented framework. Of particular interest would be to confirm the good behavior
of our approach in the case of imbalanced data, but also to see how the method per-
forms when the size of the calibration set evolves. Related to this last item is also
the idea to let the calibration set vary in composition and possibly in size over time.
Indeed, at each iteration, one could think of re-sampling the calibration set within
DL, rather than keeping the same one. We could also think about integrating an
increasing amount of data from DL into DC as the credal labels within DU become
more precise.

Finally, an obvious extension is to take this idea of self-supervised learning to
more complex learning problems. A first candidate is to go towards multiclass
problems, in which case Venn predictors (Vovk and Petej, 2012) outputs |Y| proba-
bilities, and to recast our learning optimization problem within such a setting. An
open question is how to deal with the increasing computational time in this setting.
There is an Inductive version of Venn Predictors Lambrou et al. (2015) , that has
complexity O(n2 ∗ |Y|) which seems optimal for this case. Another promising direc-
tion for credal self-supervised learning using calibrated outputs is gradual domain
adaptation, in which self-learning approaches are used to solved a transfer learning
problem (Zhang et al., 2021; Kumar et al., 2020; Wang et al., 2022).
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Sébastien Destercke and Didier Dubois. Special cases. Introduction to Imprecise
Probabilities, pages 79–92, 2014.

Pedro Domingos and Michael Pazzani. Beyond independence: Conditions for the
optimality of the simple bayesian classi er. In Proc. 13th Intl. Conf. Machine
Learning, pages 105–112, 1996.

13



Rodriguez Bordini Destercke Quost

Inmaculada Dópido, Jun Li, Prashanth Reddy Marpu, Antonio Plaza, José M Biou-
cas Dias, and Jon Atli Benediktsson. Semisupervised self-learning for hyperspec-
tral image classification. IEEE transactions on geoscience and remote sensing, 51
(7):4032–4044, 2013.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http:

//archive.ics.uci.edu/ml.

Didier Dubois and Henri Prade. When upper probabilities are possibility measures.
Fuzzy sets and systems, 49(1):65–74, 1992.

Ulf Johansson and Patrick Gabrielsson. Are traditional neural networks well-
calibrated? In 2019 International Joint Conference on Neural Networks (IJCNN),
pages 1–8, 2019. doi: 10.1109/IJCNN.2019.8851962.

Ananya Kumar, Tengyu Ma, and Percy Liang. Understanding self-training for grad-
ual domain adaptation. In International Conference on Machine Learning, pages
5468–5479. PMLR, 2020.

Antonis Lambrou, Ilia Nouretdinov, and Harris Papadopoulos. Inductive venn pre-
diction. Annals of Mathematics and Artificial Intelligence, 74:181–201, 2015.

Christian Leistner, Amir Saffari, Jakob Santner, and Horst Bischof. Semi-supervised
random forests. In 2009 IEEE 12th international conference on computer vision,
pages 506–513. IEEE, 2009.
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Appendix A. Choice of Kullback-Leibler divergence as loss
function

In this appendix, we explain why we choose DKL(P || hθ(x)) over binary cross
entropy when considering the credal loss Lmin.

As explained, Lmin is the minimum of the loss function L taken over the credal
labelK and the estimated probability hθ(x). We want this Lmin having the following
properties:

1. Lmin(Kx, hθ(x)) = 0 if hθ(x) ∈ K,

2. Lmin(Kx, hθ(x)) = L(p(1), hθ(x)) if hθ(x) ≤ p(1),

3. Lmin(Kx, hθ(x)) = L(p(1), hθ(x)) if hθ(x) ≥ p(1).

Indeed, if our prediction hθ(x) is inside the interval-valued credal label, we would
like to not penalize it.

However, such properties are not satisfied by usual binary cross entropy BCE,
the main reason being that given a fixed hθ(x), BCE is linear in p and its partial
derivative according to p is a constant:

∂BCE

∂p
= ln(hθ(x))− ln(1− hθ(x)).

This means that the minimum of the binary cross entropy Lmin(Kx, hθ(x)) is one of
its bounds p(1) or p(1), no matter if hθ(x) ∈ K or not. Hence, this function cannot
serve our purpose.

In contrast, once we fix hθ(x), the KL divergence DKL is not linear in p and its
partial derivative according to p is given by:

∂DKL

∂p
= ln(

p(1)

hθ(x)
)− ln(

1− p(1)

1− hθ(x)
),

∂2DKL

∂p2
=

1

p(1)
+

1

1− p(1)
≥ 0.

Hence, DKL is convex in p(1) and its minimum is reached for:

∂DKL

∂p
= 0⇔ p(1) = hθ(x).

Since DKL is convex, if p(1) < hθ(x), the minimum is reached for p(1) = p(1) (and
conversely for p(1) = p(1) if p(1) > hθ(x)). Thus, DKL satisfies the three properties
mentioned above, explaining why it is preferable to BCE.
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Appendix B. Inductive Venn-Abers predictors

Algorithm 2 refers to IVAP described in Section 2.3.

Algorithm 2 Inductive Venn-Abers predictors

Require: an underlaying scoring function hθ trained on the training set
{(x1, y1), ..., (xl, yl)},

Require: calibration set {(xl+1, yl+1), ..., (xm, ym)},
Require: x ∈ test set
for y ∈ {0, 1} do
compute scoring function (hθ(xl+1), ..., hθ(xm), hθ(x))
compute isotonic calibrator (g(hθ(xl+1), yl+1), ..., g(hθ(xm), ym), g(hθ(x), y))
set py = g(hθ(x, y))

end for
return (p0, p1)
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