
HAL Id: hal-04371353
https://hal.science/hal-04371353

Submitted on 3 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visual servoing for dual arm shaping of soft objects in
3D

Célia Saghour, Mathieu Celerier, Philippe Fraisse, Andrea Cherubini

To cite this version:
Célia Saghour, Mathieu Celerier, Philippe Fraisse, Andrea Cherubini. Visual servoing for dual
arm shaping of soft objects in 3D. Humanoids 2023 - 22nd IEEE-RAS International Con-
ference on Humanoid Robots, Dec 2023, Austin, TX, United States. pp.1-7, �10.1109/hu-
manoids57100.2023.10375172�. �hal-04371353�

https://hal.science/hal-04371353
https://hal.archives-ouvertes.fr

Visual servoing for dual arm shaping of soft objects

Célia Saghour, Mathieu Célérier, Philippe Fraisse and Andrea Cherubini
LIRMM, Université de Montpellier, CNRS Montpellier, France.

Abstract— We propose a real-time vision-based dual arm
controller for manipulating soft objects in three dimensions.
Our controller relies on a data-based approach to learn how
the object deforms, without any prior knowledge of the shape
nor material. We control the two arms with a cooperative
task representation, which makes them move together in an
absolute frame and/or relatively to one another. This allows
object deformation in the relative frame and/or object motion
in the absolute frame. Through a short initialization phase for
extracting visual features with a Principal Component Analysis
on the object contour points, we estimate an interaction matrix.
This matrix relates the visual features to the robot control
inputs for the cooperative task. At each step of the deformation,
the process is reiterated with the last data and the interaction
matrix is updated along a sliding window. Experiments on a few
different objects show the accuracy of the method in real-time.

I. INTRODUCTION

Despite the presence of non-rigid objects everywhere in
our daily life and the increasing need for automating their
manipulation, to date there is no generally applicable and
easily implementable method to shape such objects. The high
number of Degrees of Freedom (DOF) of soft objects makes
it difficult to control their deformation during manipulation.

Manipulating objects such as clothes [1], wires [2] or tying
suture on biological surfaces [3], [4] constitute important and
open challenges in robotics and related areas. Folding clothes
[5] or picking fruits and/or vegetables [6] are simple tasks
for humans, which prove difficult for robots. Such tasks often
involve two important aspects: the use of two coordinated
arms, and the handling of non-rigid objects.

The works [7] and [8] have developed uncalibrated visual
servoing, a method where the model mapping visual data
to robot control is estimated online. Yet, these works focus
only on rigid objects. In humanoid robotics, visual servoing
for eye-to-hand coordination is largely used for tasks such as
reaching and grasping [11] or manipulating rigid objects [12]
sometimes in interaction with a human [10]. More recently,
researchers have designed visual shape servoing controllers,
relying on model estimation [13], neural networks [14]
or reinforcement learning [15] to compute the command.
Although these methods present good results, the first one
requires a prior knowledge of the object (shape, material
parameters) which limits its range of application, while the
others require huge datasets and training time. It should also
be noted that most of those methods rely only on single arm
manipulation.

*This work was supported by European Union Horizon 2020 Research
and Innovation Programme as part of the project SOPHIA under grant
agreement No 871237.

Fig. 1: The goal of our work is to control a dual arm robot
so that the initial contour (blue) reaches the target contour
(red) in three dimensions.

In this paper, we propose a real-time, dual-arm vision-
based shape servoing controller. Our method does not require
any prior knowledge of the object, apart from its color,
needed for visual extraction. It applies to soft objects of
different shapes and materials, with very short initialization
time. In addition, our task representation allows a cooperative
control of the two arms, to command 3D deformations and/or
3D motions of the tracked part of the object.

II. RELATED WORK

Few works present research on soft object manipulation
using a dual arm robot; most works on multi-robots manip-
ulation of soft objects are compiled in survey [16].

In recent years, research for soft object manipulation has
mainly focused on learning methods, and none of them, to
the best of the authors’ knowledge, consider cooperative task
representation. The authors of [17] use Deep Reinforcement
Learning for clothing manipulation. To alleviate the need for
heavy data-sets imposed by regular reinforcement learning
methods, the authors propose two different algorithms that
allow the learning process to be more efficient. However,
samples (80 to 300 in their experiments) need to be gen-
erated by a human operator for prior policy initialization.
Similarly, in [18], the authors use both Fast Point Feature
Histogram and Principal Component Analysis (PCA) to
obtain a feature vector, and Deep Neural Networks (DNN)
to learn the deformation function between the object and the
end-effectors. The network is trained online, but the DNN
model is initialized with 100 data beforehand. The need for
numerous training data is something we aim to remedy.

Some works focus on specific types of objects, such as
Deformable Linear Objects (DLO). Paper [19] presents a
model-free servoing method for shaping deformable wires.

The approach tracks the deformations, to extract a visual
feature based on a geometric B-spline model, and to estimate
iteratively the deformation Jacobian for control. In [20],
Coherent Point Drift is used for state estimation, relating
the point cloud of the DLO between two iterations. The
authors however use learning by demonstration for task and
trajectory planning, needing teaching by human operators.
While these methods show good results with two end-
effectors and in 3D, the use of B-spline modeling can only
be used to represent one-dimensional shapes for one, while
the second requires demonstrations for control.

In [21], the authors use contour moments as a state
representation of the manipulated object. Their method is
applicable for elastic, composite and rigid objects, but is
limited to the 2D manipulation space. Similarly, the authors
of [22] obtain a good encoding of the object shape, via PCA.
Their method shows very promising results for moving and
deforming 2D contours with a single arm moving in the plane
(3 DOF). It can also be applied on both rigid and soft objects,
allowing a large range of applications.

We build on top of that work, going farther and performing
deformations in SE (3) with two cooperating robot arms,
bearing in mind applications such as ”shape and place”. Our
contributions are the following:
• While [22] considered 3 DOF planar motion (two trans-

lations and one rotation) of a single arm, we increase
the robot operational space dimension to 12 DOF (6 per
arm), hence extending the range of applications.

• We apply the cooperative task representation [?] to
control the deformation and/or the pose of the object
separately. We explore how both tasks affect the global
deformation and the reaching of the target.

• We validate our controller in 3 dimensions (including
orientation) in a series of experiments, with different
objects and targets.

III. PROBLEM STATEMENT

We consider a dual-arm robot with both end-effectors
holding an object, rigid or deformable. The dimension of
the robot operational space is 12 (i.e., each end-effector is
free to move in SE(3)). The robot observes the object with
a fixed RGB-D camera. The goal is to modify the position
and/or shape of the object, to see it in a given fashion (a
target image), shown in Fig. 1.

In some cases, the task may consist only in giving the
object the desired shape, without caring about its position
and orientation. For such a task the robot is redundant: it
only requires 6 DOF, and can use the other 6 for other
purposes. Yet, doing this is not trivial if each end-effector
is modeled and controlled separately, as in [19]. A solution
is to use the cooperative task representation introduced in [?]
and outlined in Fig.2, to describe the task as the combination
of an absolute task and/or a relative task. The absolute task
frame Fabsctrl is attached to one of the arms chosen arbitrarily
(the left one in our case) by a virtual link (dashed orange in
the figure) and it is described in the absolute reference frame
Fabsref , which is fixed in the world. The relative task describes

the pose of one end-effector Frelctrl in the frame of the other
one Frelref . This representation allows to consider as relative
task the object deformation, and as absolute task, the object’s
pose. Then, for operations which solely imply deformation or
shaping, only the relative task matters, “freeing” the absolute
task’s 6 DOF. On the contrary, for rigid object manipulation
consisting only in translating or orienting, the relative task’s
6 DOF are “freed”. More formally, two alternatives are
possible (k = 6 or k = 12 DOF), as one can either control
only one of the poses or both the relative and absolute poses:

r = rref ∈ R6 or r =

[
rabs

rrel

]
∈ R12. (1)

with ref = {abs, rel}. To represent orientations, we use
angle-axis vectors qr = [xr yr zr], so rref is defined as:

rref =
[
xref yref zref xrefr yrefr zrefr

]> ∈ R6. (2)

Another important aspect is the perception of the object.
In our work, the robot has no knowledge of the object’s
material or characteristics, except for its color (needed for
visual extraction) and current shape. At each iteration, to
represent the object shape, we use the contour seen by the
RGB-D camera. We extract the target contour (to be reached)
from one of few previously saved images of the same object,
held by the robot in various positions/shapes.

It is worth discussing the limits of the contour represen-
tation. Using 3D contours as representation will make it
impossible to apply any deformation out of the image plane
or manage self-occlusions. Furthermore, the target contour is
reachable, e.g., it should not require changing from convex
to concave bending. We show a case of unreachable target
in our experiments video, linked in Section V.

We denote the visible contour, composed of the 3D metric
coordinates of p points, c ∈ R3p. Working with a task
of such high dimension (300 if p = 100 points) makes

Fig. 2: Schema of the task representation. The relative task
(green) describes the motion of Frelctrl in relation to the
relative frame Frelref , i.e. the right end-effector in relation
to the left one. The absolute task (red) describes the motion
of Fabsctrl, in relation to the absolute frame Fabsref . The dashed
line is the virtual link between the end-effector and Fabsctrl.

it complex to control the largely lower number of DOF
(k = {6, 12}) of our robot. To solve this underactuated
problem, we encode the contour c into a smaller feature
vector s ∈ Rk, with k the dimension of the required robot
pose. Furthermore, we consider that the mapping between
feature variation δs and robot pose variation δr is linear,
through what we refer to as the interaction matrix L ∈ Rk×k:

δs = Lδr (3)

In the rest of the paper, we assume the following:
• The object is already grasped by the two robot end-

effectors.
• The tracked part of the object stays entirely visible

throughout the manipulation, and can be represented by
closed contours c.

• The object target shape and (when applicable) pose
are reachable, i.e. the tracked part of the object can
physically be deformed to (and placed at) the target.

Our framework (outlined in Fig. 3) operates as follows.
First, we control the robot end-effectors (initially in open

loop), to collect a sequence of images, with the correspond-
ing extracted contours c and robot poses r. These are stored
in matrices C and ∆R, respectively. Then, we perform a
PCA (Principal Component Analysis) on the sequence of
contours C, to encode the current contour c into a smaller k-
dimensional feature vector s, via projection operator U. This
reduces the task shape dimension to the number of required
DOF. We also use these sequences of object contours and
corresponding robot poses, to estimate the inverse of the
interaction matrix L, which maps feature variations to robot
pose variations according to (3)). Since linear mapping (3)
is only valid locally, we must limit the motions to small
displacements and cannot drive the manipulators to the final
target right away. Therefore, at every iteration i, we compute
a local target c∗i , via a linear interpolation between current
and target contours (c and c∗, respectively). We encode this
c∗i into a feature vector as well, denoted s∗i . We use the
inverse of the interaction matrix L−1 to compute the robot
pose variations δr, required to drive the object to the local
target, s∗i . We then send δr to our dual-arm controller [24],
which relies on hierarchical inverse kinematics, to compute
the robot joint commands. The whole process is repeated,
by continuously updating data matrices C and ∆R at each
iteration i, until the object reaches the target shape and/or
position. While previous works made use of these different
techniques (i.e. cooperative task representations, image Ja-
cobian estimation), our work presents a promising approach
to control deformable objects in SE(3), without considering
specific actions or objects (e.g., cables or clothes).

IV. OUR METHOD

In this Section, we detail each of the modules which
compose our framework (again, refer to Fig. 3).
A. Image processing for object contour extraction

We use an Intel Realsense D435 camera, which looks at
the robot end-effectors and at the object from a fixed (in the

Fig. 3: Overview of our framework. The robot poses and ob-
ject contours are stored in matrices ∆R and C, respectively.
At each iteration, PCA yields the projection matrix U, for
extracting the feature vector s from contour c, and the local
target s∗i from contour c∗i , obtained by linear interpolation
between c and c∗. We also project the contour variation
matrix C to estimate the inverse interaction matrix L−1. We
use L−1 to compute the robot desired pose variations δr
needed to drive s to s∗i . These δr are finally sent to the dual-
arm controller, which computes the robot joint commands θ̇.

Fig. 4: Steps of the image processing for object contour
extraction (here, a rectangular sponge). The 2D RGB image
of the camera is used to extract a mask of the object, which
in turn lets us obtain its contour. This contour is sampled into
a constant number of pixels, which are consistently spaced
and ordered. These pixels are then projected as 3D points
using their depth and the camera intrinsic parameters.

world) position. Both the RGB and depth images are used
to obtain a sampled, ordered contour of the object in 3D at
each iteration. The different steps of the contour extraction
are presented in Fig. 4.

To simplify the image processing algorithm – which is not
the main scope of our work – we have only considered blue
objects or blue parts of the objects. After thresholding in the
HSV space, we obtain the points defining the contour of the
object. The contour is then sampled into a given number of
points p; it is essential for the contour points to be uniformly
spaced and, more importantly, always ordered the same way
from one contour to the next. Namely, the indexes of the
points in c must correspond in ci and ci+1, for the PCA

to extract the accurate contour variations. We chose to order
the contours in a clockwise direction starting from the left
end-effector. Once the contour is sampled and ordered, it is
projected in 3D metric coordinates using the pixel depth and
the camera intrinsic parameters.

The output of this module, at each iteration i, is vector:

ci = [x1i , · · · , x
p
i , y

1
i , · · · , y

p
i , z

1
i , · · · , z

p
i]> ∈ R3p. (4)

B. Generating a sequence of contours and robot poses

The next step consists in generating a sequence of contours
and corresponding robot poses. These are respectively the
contour variation matrix C and the robot pose variation
matrix ∆R, which are needed for two purposes: to extract
the contour’s principal components, and to estimate the
inverse interaction matrix. Matrices C and ∆R are built on
a sliding window containing the most recent data: at each
iteration, the oldest data in C and ∆R are removed and
replaced by the current data.

To build matrices C and ∆R, we collect the last M +
1 samples of contours c and robot poses δr (so as to get
M variations) while the robot moves. While after M + 1
iterations (i > M + 1) the robot autonomously moves using
the designed control law, for the first M + 1 iterations we
let it move in open-loop. We do this by executing a series
of small motions to deform the object, exciting one by one
each considered DOF as shown in Fig. 5. The magnitude of
these motions is chosen arbitrarily so as to sufficiently vary
the contour; we set ±0.02 m for the translations and ±π6 rad
for the rotations. The relative motions should be reduced for
stiffer or more fragile objects, to avoid breaking them. We
decided to move along each robot DOF in both directions
(±) just once yielding M = 2k. M should not be too small,
to ensure that L−1 is not under-determined, and not too large,
so that the model estimation is local and initialized quickly.

To build matrix C, we stack all the ci:

C = [c0, · · · , cM] ∈ R3p×M+1. (5)

Building ∆R is a bit more cumbersome. We must obtain
the robot pose variation δri between consecutive iterations
i − 1 and i. For the translations, we simply subtract the
components. For the orientations, we transform rotation

Fig. 5: Initialization motions of the object (here, a rectangular
sponge) for the absolute (left) and relative (right) task. Here,
each of the k = 12 DOF are stimulated: 3 translations and
3 rotations around the initial position (black) for each task.

vectors qref
ri and qref

ri−1
to quaternions, apply the quaternion

difference and then transform back to the rotation vector
representation.

Finally we stack all δri, to compose robot pose variation
matrix:

∆R =
[
δr1 . . . δrM

]
∈ Rk×M . (6)

C. Principal Component Analysis

Even for a small dataset and small number of contour
samples, the dimension of matrix C is too high compared
to the robot DOF (for M = 24 and p = 100 points: C ∈
R300×25). Hence, we perform a PCA on C, to reduce its
dimension. First, we shift each column of C by the mean of
all columns, c̄ =

∑
cj

M+1 , j = 0, ...,M , to obtain:

Cm = [c0 − c̄, · · · , cM − c̄] ∈ R3p×M+1. (7)

Then, we compute Q, the covariance matrix of Cm. We
obtain the eigenvector matrix U ∈ R3p×3p by performing a
Singular Value Decomposition (SVD) on Q. We select the
first k columns of U to be able to control k DOF of our
system (no redundant visual data, [23]).

They define the projection matrix Uk ∈ R3p×k. These
columns correspond to the k principal components (with
highest variances) in the dataset, and therefore determine the
directions of highest variability in the data.

At each iteration i, the reduced feature vector is then:

si = U>k (ci − c̄) ∈ Rk. (8)

D. Estimation of the Inverse Interaction Matrix

The next step consists in estimating the inverse interaction
matrix L−1 needed for control. Recall that the interaction
matrix is the linear mapping between feature variation δs and
robot pose variation δr (see (3)). This matrix is unknown for
a non-rigid object, and it should be inverted to control the
robot pose.

To this end, we project the contour matrix C into the
reduced space as follows:

S = U>k Cm ∈ Rk×M+1, (9)

and then derive the features variation over the M -
dimensional window:

∆S =
[
S1 − S0 . . . SM − SM−1

]
∈ Rk×M . (10)

Finally, the inverse interaction matrix is given by:

L−1 = ∆R∆S+ ∈ Rk×k (11)

With ∆S+ the pseudo-inverse of ∆S.

E. Controlling the robot pose

Linear approximation (3) is only valid locally. Therefore,
a control law based on L−1 cannot guarantee convergence if
the initial and final contours are too far. To solve this issue,
we design a local target contour c∗i at each iteration, via
linear interpolation:

c∗i =
c∗ − ci
n

(12)

with n big enough to ensure small displacements. Corre-
spondingly, we can project c∗i into the feature vector space
to obtain the local target feature vector:

s∗i = U>k (c∗i − c̄) ∈ Rk (13)

The desired robot pose variations are then computed via:

δri = ΛL−1i (s∗i − si) ∈ Rk (14)

with Λ ∈ Rk×k a diagonal matrix of control gains. This
feedback controller guarantees asymptotic convergence of si
to s∗i , in the ideal case that L−1 is perfectly estimated, as
proved using the Lyapunov criterion in [22].

F. Controlling the robot joints

To map the desired robot pose variations δr to the robot
joint velocities θ̇, we use the cooperative task representation,
outlined in Sect. III, and recalled here (for further details,
refer to [24], [25]). We consider δr ∈ R12 as the variation
of r defined in (1). From Jlef and Jrig (the Jacobian matrices
of the left and right arm in Fabsref), we derive the cooperative
task Jacobian matrices:

Jabs =
[
1
2Jlef

1
2Jrig

]
Jrel =

[
−ΨΩJlef

1
2ΩJrig

]
,

(15)

where

Ψ =

[
I −Υlef

0 I

]
, Ω =

[
Φlef 0

0 Φlef

]
, (16)

with Υlef the skew-symmetric matrix of the position of the
left arm in the relative task frame, and Φlef the rotation
matrix of the left arm in Fabsref .

If both the relative and absolute tasks have to be satisfied
at the same time (k = 12), a relevant choice is to prioritize
the relative task, to avoid undesired internal stress which
may damage the object and/or the robot. Taking into account
joint (position, velocity and acceleration) limits, the highest
priority task is solved through:

θ̇1 ∈min
θ̇
||Jrelθ̇ − δrrel||2

subject to: joint limits.
(17)

The obtained solution vector θ̇1 provides a null-space con-
dition to the second task, so the final joint velocities to be
sent to the robot are:

θ̇ ∈min
θ̇
||Jabsθ̇ − δrabs||2

subject to: joint limits,

Jrelθ̇ = Jrelθ̇1.

(18)

We add the relative task solution as a constraint to the
absolute task to avoid interference. Using this formulation,
the absolute task error is minimized as long as the resulting
joint velocity vector provides the best solution for (17).

If only the relative task has to be satisfied to deform the
object, and we “free” the object pose, k = 6 and we can
simply apply (17) and set θ̇ = θ̇1.

V. RESULTS
To validate the method, we conducted many experiments,

during which we tested different initial and target shapes,
as well as different objects. A video of experiments and
the source code are accessible at https://gite.lirmm.
fr/csaghour/rkcl-bazar-flex-app.git.

At the beginning of each experiment, M = 24 predefined
motions are executed. We set the number of contour points
to p = 100 and the number of intermediate targets to
n = 20. The control gain matrix was tuned experimentally
to Λ = 0.07 Ik, to obtain motions neither too fast nor too
slow.

The experiments using a rectangular sponge demonstrate
successful convergence to the different final targets (in red
in the figure), involving the deformation, as well as change
in the orientation and position of the object (see Fig. 6).The
evolution of the cooperative task frames is shown in the third
column of Fig. 6.

We define the task error as the difference between the
current contour and the final target contour:

ε = ‖c∗ − ci‖ (19)

This metric decreases until reaching an acceptable threshold
(see the last column of Fig. 6).

We also performed experiments with the other objects,
soft (a differently shaped sponge, a plastic glove) and
rigid (a cardboard box). The method proves to be effective
with those as well, as shown in Fig. 6, despite the rough
contours for an object of more complex shape like the
glove. For this experiment, noise was detected in the images,
explaining the wide oscillations of the error observed in
Fig. 6. Nevertheless, the controller converged to the final
target shape, proving the robustness of the method. Again,
tasks like bending, compressing, rotating and translating
were successfully carried out, proving the large spectrum of
applications of our controller.

Regarding the manipulation of the cardboard box, which
we considered as rigid, the experiment consists only in
orienting and translating the object. Through this experiment,
we show that our framework can be used for manipulating a
wider spectrum of objects, including rigid ones. In this case,
only k = 6 DOF are needed for the absolute task, and the 6
other DOF are freed. These could be used, for example, for
obstacle avoidance.

We can, on the contrary, choose to only deform the object
and not move its position and orientation in the space.
Then, only the relative task is needed, therefore reducing the
number of DOF to k = 6. Such an experiment is presented
in Fig. 7. To achieve this, the target is aligned so as to
match with the fixed end-effector during the experiment.
This allows us to shape the object with no concern on the
orientation and position. The error is then computed between
the aligned contour and the current contour.

VI. CONCLUSIONS
This paper presents a complete method for dual-arm

shaping of soft objects in 3D and in real time. We use a

https://gite.lirmm.fr/csaghour/rkcl-bazar-flex-app.git
https://gite.lirmm.fr/csaghour/rkcl-bazar-flex-app.git

Fig. 6: The two first columns are the robot camera view of seven experiments. Starting from different initial configurations
(in blue on the first column), we reach the final targets (in red). The third column shows the initial (transparent) and final
poses of the absolute frame F absctrl and relative frame F relctrl. The last column shows the evolution of the shape difference
defined in (19) according to the iteration step. The experiments include, from top to bottom: four different shaping of a
rectangular sponge, then shaping of different objects: a crown-shaped sponge, a plastic glove, and a cardboard box. For the
cardboard box, the relative frame F relctrl is freed, so only the absolute task F absctrl evolves. Noise in the background during the
experiment with the glove causes the shape difference to oscillate greatly, but the error still decreases.

few initializing motions to both execute a PCA to reduce the
dimensions of the visual data and to compute an interaction
matrix, and iteratively obtain robot control inputs to reach a
final target shape. The framework is able to handle objects of
different geometry and materials, soft and rigid alike without
any prior knowledge, although we experimented on a limited
variety of objects. Nevertheless, the 3D target shapes could
be successfully reached in these experiments.

From a theoretical viewpoint, our work raised questions on
the representations, while considering the numerous DOFs
needed to shape and move the objects. We believe that
using a relative task to describe and control exclusively
deformations is a promising approach. Our work addresses
different challenges regarding 3D motion representation,
while considering the limitations of the objects’ geometrical
representation. In an industrial context, we aim at proposing

Fig. 7: Experiment with the rectangular sponge, reaching
the target configuration from the initial position (in blue,
left) while only controlling the relative task. The target (in
red, top row) is aligned with the relative reference frame
F relref (the left end-effector) so that the aligned target (in red,
bottom row) can be achieved with only the relative task being
controlled. On the bottom row are shown the evolution of the
cooperative task frames (left) and of the error (right).

solutions for tasks such as ”deform and place”.
One of the main aspects to improve is vision. Contours

are not well suited to describe volumetric objects and limit
the deformations to those of the visible surface. Yet, a
3D volumetric sampling might be challenging to achieve,
since the success of our method largely depends on the
consistency of the points and on their order from one iteration
to the other, which is not assured with simple point clouds.
Occlusions could also be difficult to handle.

As future work, the addition of an adaptive deformation
model would be interesting, including material parameters
estimation. Such a hybrid controller would be able, for
instance, to avoid non recoverable deformation of the object
and to ensure target reachability.

REFERENCES

[1] Schlechter, A., and Dominik H., ”Manipulating deformable linear ob-
jects: Manipulation skill for active damping of oscillations.” IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2002.

[2] X. Li, X. Su, Y. Gao and Y. Liu, ”Vision-Based Robotic Grasping
and Manipulation of USB Wires,” IEEE Int. Conf. on Robotics and
Automation (ICRA), 2018.

[3] Shademan, A., Decker, R.S., Opfermann, J.D., Leonard, S., Krieger,
A. and Kim, P.C. ”Supervised autonomous robotic soft tissue surgery.”
Science translational medicine: 8.337, 2016.

[4] Zhong, F., Wang, Y., Wang, Z., and Liu, Y. H., ”Dual-arm robotic nee-
dle insertion with active tissue deformation for autonomous suturing.”
IEEE Robotics and Automation Letters: 2669-2676, 2019.

[5] Garcia-Camacho, I., Lippi, M., Welle, M.C., Yin, H., Antonova, R.,
Varava, A., Borras, J., Torras, C., Marino, A., Alenya, G. and Kragic,
D., ”Benchmarking bimanual cloth manipulation.” IEEE Robotics and
Automation Letters 5.2: 1111-1118, 2020.

[6] SepLveda, D., Fernández, R., Navas, E., Armada, M., and González-
De-Santos, P. Robotic aubergine harvesting using dual-arm manipula-
tion. IEEE Access, 8: 121889-121904, 2020.

[7] Jagersand, M., Fuentes, O. and Nelson, R., ”Experimental evaluation
of uncalibrated visual servoing for precision manipulation”. IEEE Int.
Conf. on Robotics and Automation: Vol. 4, 2874-2880, 1997.

[8] Shademan, A., Farahmand, A. and Jagersand, M., ”Robust Jacobian
estimation for uncalibrated visual servoing,” IEEE Int. Conf. on
Robotics and Automation: 5564-5569, 2010.

[9] Piepmeier, J.A., McMurray, G.V. and Lipkin, H., ”Uncalibrated dy-
namic visual servoing”. IEEE Trans. on Robotics and Automation,:
143-147, 2004.

[10] Agravante, D. J., Cherubini, A., Bussy, A., Gergondet, P. and Kheddar,
A., ”Collaborative human-humanoid carrying using vision and haptic
sensing,” IEEE International Conference on Robotics and Automation
(ICRA): 607-612, 2014.

[11] Vahrenkamp, N., Böge, C., Welke, K., Asfour, T., Walter, J. and
Dillmann, R., ”Visual servoing for dual arm motions on a humanoid
robot,” 2009 9th IEEE-RAS International Conference on Humanoid
Robots: 208-214, 2009.

[12] Claudio, G., Spindler, F. and Chaumette, F., ”Vision-based manip-
ulation with the humanoid robot Romeo,” 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids): 286-293,
2016.

[13] Jin, S., Wang, C., Tomizuka, M., ”Robust deformation model ap-
proximation for robotic cable manipulation”. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS): 6586-6593, 2019.

[14] Nguyen, A., Do, T.T., Reid, I., Caldwell, D.G. and Tsagarakis, N.G.,
”V2cnet: A deep learning framework to translate videos to commands
for robotic manipulation.” arXiv preprint arXiv:1903.10869, 2019.

[15] Wu, Y., Yan, W., Kurutach, T., Pinto, L., and Abbeel, P., ”Learning to
manipulate deformable objects without demonstrations.” arXiv preprint
arXiv:1910.13439, 2019.

[16] Herguedas, R., López-Nicolás, G., Aragüés, R. and Sagüés, C. Survey
on multi-robot manipulation of deformable objects. In 2019 24th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA): 977-984, 2019.

[17] Tsurumine, Y., Cui, Y., Uchibe, E., Matsubara, T. Deep reinforcement
learning with smooth policy update: Application to robotic cloth
manipulation. Robotics and Autonomous Systems, 112, 72-83, 2019.

[18] Hu, Z., Han, T., Sun, P., Pan, J., and Manocha, D., ”3-D deformable
object manipulation using deep neural networks.” IEEE Robotics and
Automation Letters 4.4: 4255-4261, 2019.

[19] Lagneau, R., Alexandre K., and Maud M., ”Automatic shape control of
deformable wires based on model-free visual servoing.” IEEE Robotics
and Automation Letters 5.4: 5252-5259, 2020.

[20] Tang, T., Wang, C., and Tomizuka, M. A framework for manipulating
deformable linear objects by coherent point drift. IEEE Robotics and
Automation Letters, 3(4): 3426-3433, 2018.

[21] Qi, J., Ma, G., Zhu, J., Zhou, P., Lyu, Y., Zhang, H. and Navarro-
Alarcon, D. Contour moments based manipulation of composite
rigid-deformable objects with finite time model estimation and
shape/position control. IEEE/ASME Transactions on Mechatronics,
27(5): 2985-2996, 2021.

[22] Zhu, J., Navarro-Alarcon, D., Passama, R., and Cherubini, A., ”Vision-
based manipulation of deformable and rigid objects using subspace
projections of 2D contours.” Robotics and Autonomous Systems, 142:
103798, 2021.

[23] Chaumette, F., Dombre, E. and Khalil, W., ”Visual servoing. In Robot
Manipulators: Modeling, Performance Analysis and Control”, Chap.
6: 279-336, ISTE, 2007.

[24] Tarbouriech, S., ”Dual-Arm control strategy in industrial environ-
ments”, chapters 2-3. PhD, Université Montpellier, 2019.

[25] Jamisola Jr, R. S., Roberts, R. G., ”A more compact expression of
relative jacobian based on individual manipulator jacobians”. Robotics
and Autonomous Systems: 158-164, 2015.

	INTRODUCTION
	RELATED WORK
	PROBLEM STATEMENT
	OUR METHOD
	Image processing for object contour extraction
	Generating a sequence of contours and robot poses
	Principal Component Analysis
	Estimation of the Inverse Interaction Matrix
	Controlling the robot pose
	Controlling the robot joints

	RESULTS
	CONCLUSIONS
	References

