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Abstract—A plug-in hybrid electric vehicle (PHEV) sat-
isfies the driver’s power demand with two types of energy
potentials: fuel and electrical energy provided by a battery.
Classically, the battery consumption is planned over a trip to
minimize the expected fuel consumption. A cautious driver
will save battery potential to cross restricted areas (with
desired low or even zero fuel consumption) without the fuel
engine. This paper proposes an approach to minimize energy
consumption while controlling the risk of a PHEV falling short
of battery potential when crossing a restricted area. We use
a nonlinear Gaussian process, trained on real vehicle data,
for predicting the vehicle consumption. We take into account
prediction uncertainty by ensuring that the driver’s highest
power demand will be satisfied with a high probability. The
interest of the approach is demonstrated by a simulated trip
around Paris.

I. INTRODUCTION AND PROBLEM DESCRIPTION

A. Context

Since the European Union measures on reducing air pol-
lution [1], 247 European cities have created low emission
zones [2] so as to restrict access to vehicles meeting specific
emission criteria [3]. Confirming positive results [4], [2],
most cities are now planning a gradual increase of restric-
tions, resulting by 2030 in so-called “zero-emission vehicle
zones” (ZEV zone) [5]. In order to boost the deployment
of ZEV zones, the European Commission proposed a
new standard [6] motivating plug-in hybrid electric vehicle
(PHEV) to be equipped with geofencing technologies so as
to avoid the internal combustion engine (ICE) being used in
such areas. Other ZEV zones projects are planned outside
of the EU, such as in cities of Foshan and Luoyang (China),
or Kevadia (India) [5].

A PHEV, satisfies the driver’s power demand with two
types of energy potentials: fuel (stored in a tank) and
electrical energy (provided by a battery). Therefore, PHEVs
will only be allowed in certain cities, provided that the ICE
remains switched off within the ZEV zone. Due to PHEVs
having a reduced range in full-electric mode, it is crucial to
manage the battery potential (∆Eb) so as to guarantee that
the vehicle will be able to reach a charging station or to
drive out of the ZEV zone.

B. Purpose of this work
Trip description: When a driver enters a destination

into the vehicle’s navigation system, the future trip is
planned. The powertrain controller computes a vector of
descriptive variables xi (or “driving context”) for each
future road section1. These latter are computed in advance,
as portions of the road with fixed length—this length can
be made larger provided it does not significantly modify
the characteristics of the section, which are average speed,
average road slope, and expected auxiliary consumption2.

1) Consumption plan: On any future road section, fuel
and battery energy consumptions obviously compensate
each other to satisfy the driver’s power demands. For a
PHEV with limited battery energy potential, the optimal
planning of battery energy consumption over the whole trip
significantly reduces the global fuel energy consumption.
When crossing a ZEV zone, the fuel energy consumption
must be set to 0: the PHEV thus relies on the battery only.

To manage such additional consumption constraints,
this paper builds a predictive energy management strategy
(PEMS) [7], [8], that aims at optimally planning both
fuel and battery energy consumptions ∆Efi and ∆Ebi on
a driving context xi. Let ∆Ei =

[
∆Efi,∆Ebi

]>
be the

joint energy consumption vector. The corresponding plan of
remaining energy potential are Ei, Efi and Ebi (for instance,
Ebi = Ebini +

∑i
k=0 ∆Ebk · d lk), where d lk is the length of

road section k. The PEMS solves the following problem:

max
∆E

Efn, such that for all i = 1, . . . , n, (1a)

∆Ei = Wi, (1b)
Ei = EWi, (1c)

∆Ei ∈
[
∆Ei,∆Ei

]
, (1d)

Ei ∈ [Ei, Ei] . (1e)

It computes a consumption plan ∆E for both energy sources
so as to maximize the remaining fuel at arrival Efn (1a)

1Indices refer to road sections, e.g. xi is the descriptive vector of road
section i ∈ {0, . . . , n}; as a convention, we refer to a set of values by
dropping the index, e.g. the horizon of events is x = {x0, . . . ,xn}.

2The data used in the example, and the road pre-processing (including
the road section characteristics) are actually provided by Renault S.A.S.,
and cannot be disclosed due to a privacy agreement.



while meeting the driver’s local (1b) and global (1c) power
demands, respectively Wi =

[
Wfi,Wbi

]>
and EWi such that

EWi = Eini +

i∑
k=0

Wk · d lk. (2)

Here, Eini =
[

Ef ini, Ebini
]>

; and the road section lengths d lk
converts energy consumptions (in kWh/km and L/100km)
into energy potentials (in kWh and L).

Additional constraints may restrict both energy consump-
tions ∆Ei within powertrain limits

[
∆Ei,∆Ei

]
for some road

sections (1d) (typically, in a ZEV zone). Similarly, both
energy potentials Ei are restricted within energy storage
limits [Ei, Ei] (1e) (the battery must have at least 10% to
avoid damaging cells).

2) Robust estimation: The PEMS generally assumes that
future powertrain local and global power demands W and
EW are perfectly known, which is seldom the case. Indeed,
various kinds of uncertainty may arise. Aleatory uncertainty
is due to random events (e.g., traffic jams) corrupting initial
estimates. Epistemic uncertainty results from the dynamic
model at hand being ill-known due to scarce observations,
which reduces the power of statistical inference (e.g., the
actual behavior of the vehicle at a very high speed is
much less frequently observed). Model uncertainty, due to
approximations (e.g., neglecting battery aging), results in
higher discrepancies between actual plan of both energy
consumptions and both power demands.

To account for these uncertainties, we model local power
demands Wf and Wb using two independent Gaussian
Process Regression models (GPR) [9]. A GPR results
in a Gaussian pdf on an estimated power demand, the
uncertainty being quantified by its variance. Here, one
GPR estimates the fuel local power demand Wfi given the
driving context xi and the planned battery energy consump-
tion ∆Ebi; and the other estimates the battery local power
demand Wbi from the planned fuel energy consumption
∆Efi and xi (for more details on these models, we refer
the reader to our previous work [10]). GPR estimates (e.g.,
Ŵfi) are composed of an expected value (W?

fi) and a noise
term (W̃fi) accounting for the uncertainties:

Ŵfi(∆Ebi,xi) = W?
fi(∆Ebi,xi) + W̃fi(∆Ebi,xi), (3a)

Ŵbi(∆Efi,xi) = W?
bi(∆Efi,xi) + W̃bi(∆Efi,xi). (3b)

Global power demand estimates ÊW (and thus ÊWf and
ÊWb) can be computed using Eq. (2). These estimates are
Gaussian, being a linear combination of Gaussian demands.
We will refer to their expectation and noise as EW

? and ẼW.
Power demand estimates being uncertain, the PEMS should
be cautious so as to avoid violating the energy consumption
constraints (e.g., by falling short of battery storage in a ZEV
zone, where the ICE shouldn’t be used). Obviously, sparing
battery energy potentials for ZEV zones exclusively would

make a PHEV of little interest. Therefore, we propose
to minimize the vehicle’s fuel energy consumption, while
guaranteeing—at least with a high probability—that both
fuel and battery power demand will be satisfied.

C. Outline

This paper addresses the PEMS optimization problem
defined by (1), where local and global power demands W
and EW are replaced with their probabilistic estimates Ŵ and
ÊW, obtained from the fuel and battery energy consumption
plans ∆E. Energy consumptions constraints such as (1d)
allow to adapt the PEMS to take ZEV zones into account.
After reviewing related works in Section II, Section III
presents a new strategy which guarantees with a controlled
risk that the vehicle’s full electric range will be sufficient
to cross the ZEV zone identified when planning the trip.
Section IV discusses the results obtained on two simulated
scenarios, where the models used are nevertheless learnt
from real data measured with a PHEV. Finally, Section V
concludes the paper and draws some perspectives of work.

II. RELATED WORK

To our knowledge, few works consider adapting the
PEMS so as to guarantee a sufficient electric range to cross
a ZEV zone [11], [12]. None of them take into account the
fact that the estimated power demands are uncertain.

Optimization under uncertainty can take several
forms [13]. Our problem, formulated within a probabilistic
framework, is a stochastic program [14], [15], and more
specifically a chance-constrained program. Chance-
constrained programming has been introduced by [16] to
determine a production plan robust to adversarial demands.
It makes use of cautious statistical decision functions [17]
which transform the optimization of uncertain variables
into the optimization of an accurate worst-case regret [18].
The resulting conservative decision is sub-optimal, with the
additional cost being called the price for robustness [19].
When uncertainty is described by a multivariate normal
distribution, this problem was shown to be convex [20].
Closer to our problem, [21] reviewed recent advances
in safe decision-making for robotics, and compared
frameworks used in reinforcement learning and control
theory. Our work connects to optimal trajectory planning
methods which guarantee a so-called safety level II for
state and command probabilistic constraints.

Dynamic programming (DP) is the reference approach
for optimizing offline the PEMS of a vehicle [22]. Derived
from Bellman’s principle of optimality [23], DP solves
the optimization in a recursive manner. Starting from the
final state over a discretized horizon of time, it selects the
optimal action at each previous possible state. For online
optimization, the A? algorithm reduces the space of actions
with an heuristic [24]. When actions cause random changes



of the system’s state, DP becomes a Markov Decision Pro-
cess (MPD) [25], [26]. Constrained MDPs [27] and robust
MDPs [28] reduce the action domain so that the optimized
set of actions, or policy, complies with probabilistic safety
constraints. However, [29], [30] showed that expressing
such a chance-constrained domain is NP-hard. Moreover,
when cumulative resource constraints are considered as for
PEMS, [31] showed that the optimization domain must be
reduced in several additional iterations. As a consequence,
reinforcement learning (RL) has been developed to replace
the optimization by learning a policy which predicts near-
optimal actions depending on the states of the system from
the cost of observed trajectories. However, RL does not
necessarily guarantee that constraints are satisfied during
the execution phase [32]. Despite the recent advances in
the cautious exploration of the state-actions domain [33],
[34] with constraints approximated around an initial policy
[35], or with probabilistic stability guarantees [36], safe
RL remains an open research problem, and control theory
generally achieves better formal safety guarantees.

In control theory, the PEMS is a model-predictive control
(MPC) strategy [37] which plans an optimal command, with
future events being predicted by a dynamical model. How-
ever, MPC is sensitive to uncertain model predictions. In
[38], MPC strategies providing formal probabilistic safety
guarantees are reviewed. The first approach, referred to as
robust MPC, defines a probabilistic reachable set [39] of
the state-action space before performing the optimization.
The reachable set can be computed offline as in [40], or
online using iterated GPR predictions as in [41], [42]. It
can also be approximated via moment matching [43], with
a smoothness Lipschitz constant [44], or with deep quantile
regression [45]. The second approach, safety filtering, cor-
rects the outputs of any optimal controller, such as MPC
or RL, to ensure that safety constraints are satisfied. For
this purpose, control barrier functions [46], [47] or model
predictive safety filters [48] can be used.

Our contribution is inspired by the iterative Gaussian
Process-based MPC [49], [50], which iteratively optimizes
a command, the uncertainty being estimated by a GPR
given the previous command; the robust MPC [41], which
approximates inequality constraints with logarithmic barrier
terms; and the collision avoidance algorithm [51], which
uses a conditional value at risk metric. Section III will
introduce a new robust MPC algorithm for the non-linear
PEMS problem.

III. METHOD : A NEW ROBUST PEMS ALGORITHM

A. Cautious optimization

Solving the optimization problem defined above requires
to turn the uncertain interval constraints (1b) and (1c)
into deterministic constraints: the optimisation uses a sin-
gle power demand value (consistent with the estimated
distribution) for each future road section. Classically, the

expectation of the distribution is chosen. However, a robust
approach rather considers “pessimistic” fuel and battery
energy demands, by picking a quantile (either left-tail or
right-tail) of the estimated distribution: such worst-case
replacements aim at ensuring that the probability of the
constraint being violated is small. Choosing this “adver-
sarial quantile” may be difficult, to such an extent that
some authors [30] proposed to make it a sub-problem of
the robust optimization process. To alleviate the complexity,
and inspired by [51], which uses a conditional value at risk
metric, we proceed as follows. First, the fuel consumption
plan is constrained to meet te expected fuel demand,
estimated based on the battery energy consumption plan.
Conversely, the battery consumption plan is constrained to
meet the expected battery power demand, estimated from
the fuel consumption plan. Safety margins are applied to
both upper and lower bounds of the interval constraints
for both energy consumptions and both energy potentials.
These margins are computed so that local and global power
demands, which might deviate from the expected ones,
remain within a safety interval over energy consumptions
and energy potentials with a desired risk.

1) Demand satisfaction constraints: The energy con-
sumptions ∆Ei and energy potentials Ei should be chosen
so as to satisfy the driver’s power demands, i.e. they should
be “close” to the expected estimation of local and global
power demands W?

i (∆Ei,xi) and EW
?
i (∆E,x). For each

road section i = 0, . . . , n, we thus replace Eq. (1b)-(1c)
with

∆Ei − W?
i (∆Ei,xi) ∈ [−ε∆E,i, ε∆E,i] , (4a)

Ei(∆E)− EW
?
i (∆E,x) ∈ [−εE,i, εE,i] ; (4b)

the positive thresholds ε∆E,i and εE,i specify how firmly the
energy consumption and energy potential plans are driven
to satisfy the expected local and global power demands.

2) Cautious consumption restriction constraints: The
PEMS should determine both energy consumptions ∆E so
as to keep the probability of the PHEV running out of
battery supply Eb in a ZEV zone close to zero. This can be
naturally done by specifying an additional constraint similar
to (1e).

For this purpose, we start from (1c), in which we replace
EWi with ÊWi; and we introduce safety margins si and si,
i.e. (positive) slack variables measuring the gap between
the estimated demands ÊWi(∆E,x) and the bounds Ei, Ei:

si = Ei − ÊWi(∆E,x), si = ÊWi(∆E,x)− Ei. (5)

Instead of replacing the random variables ÊWi(∆E,x) in
Eq. (5) with their expectations, we make cautious (pes-
simistic) replacements by using the quantiles qi,1−α and
qi,α:

si = Ei − qi,1−α(∆E,x), si = qi,α(∆E,x)− Ei;



these replacements guarantee that each constraint in Eq. (5)
is violated with probability α—which we obviously set to
a small value. Both quantiles obviously depend on ∆Ei:

qi,1−α(∆E,x) = EW
?
i (∆E,x) + u1−α · σi(∆E,x),

qi,α(∆E,x) = EW
?
i (∆E,x)− u1−α · σi(∆E,x),

with u1−α the 1 − α-level quantile of the standard Gaus-
sian distribution, and σi(∆E,x) the standard deviation of
the distribution of W̃i(∆E,x). Finally, using the positivity
constraints si ≥ 0 and si ≥ 0, and Eq. (4b), we get

Ei(∆E) ≤ Ei + εE,i − u1−α · σi(∆E,x), (6a)
Ei(∆E) ≥ Ei − εE,i + u1−α · σi(∆E,x). (6b)

This set of constraints can be seen as a generalization of
(1e), where 1 − α determines the level of cautiousness of
the PEMS strategy, whereas εE,i adjusts the strategy so as
to find a feasible solution in presence of uncertainty (which
is antagonistic). For this reason, we replace (1e) with (6a)-
(6b). In summary, our cautious PEMS strategy solves:

min
∆E
−Efn, s. t. ∀i = 1, . . . , n, (7a)

∆Ei − W?
i (∆E,x) ∈ [−ε∆E,i, ε∆E,i] , (7b)

Ei(∆E)− EW
?
i (∆E,x) ∈ [−εE,i, εE,i] . (7c)

∆Ei ∈
[
∆Ei,∆Ei

]
, (7d)

Ei(∆E) + u1−α · σi(∆E,x) ≤ Ei + εE,i, (7e)
Ei(∆E)− u1−α · σi(∆E,x) ≥ Ei − εE,i. (7f)

B. Practical implementation

The cautious PEMS problem defined above by (7) has
nonlinear inequality constraints. It is not necessarily con-
vex, pending on the monotonicity (and smoothness) of
the GPR prediction function. To cope with nonconvexity,
we first transform the constrained PEMS problem into an
unconstrained problem using Lagrangian relaxation, and
use a gradient descent algorithm with momentum.

In a standard form, the PEMS problem minimizes the
cost function f0(∆E) = −Efn (7a), and is subject to five
constraint functions g1(∆E), . . . , g5(∆E) associated to each
of the inequality constraints (7b) to (7f), which become
positive when a solution does not comply with the con-
straints. The PEMS problem is thus relaxed into an un-
constrained problem, with noncompliant constraints being
penalized using rectified linear units (ReLU) integrated into
the objective function using positive multipliers λ0, . . . , λ5:

J(∆E) = λ0 · f0(∆E) +

5∑
p=1

λp · ReLU(gp(∆E)).

The logarithmic transformation of this function is min-
imized via the Adam gradient descent algorithm with
adaptive momentum from TensorFlow [52].

In the experiments, the multipliers are set to λ0 = 1,
λ1 = 5, λ2 = 5, λ3 = 10, λ4 = 50, and λ5 = 100.

The learning rate of the Adam algorithm is set to 0.05,
with exponential decay rates of 0.9 for the first moment
estimates, and of 0.999 for the second moment estimates.
The algorithm iterates over 1450 steps for each of the
PEMS optimizations reported in the next section. We also
set ε∆Ef,i = 0.5L/100km, ε∆Eb,i = 0.1kWh/km, εEf,i =
10−4L, and εEb,i = 10−5kWh.

IV. RESULTS

A. Accuracy of the energy demand models

In the experiments, both GPR models for the local power
demands (3) are trained from data collected with a Renault
PHEV in actual driving conditions on open road, for a total
of 3877 sections. We selected for training a representative
sample of the data using uncertainty sampling, as follows.
We started with a small subset of training samples, and
then iteratively repeated (1) training a GPR model and
(2) processing the remaining samples with it so as to
identify the samples with highest predictive uncertainty:
these latter were then incorporated to the training set. Using
this procedure, we reduced the training data to a subset of
8% (296 sections) of the initial dataset3. The remaining
92% were used to assess model performance.

Figure 1 displays the residuals for both GPR models.
The model for W?

f achieves a root mean squared error
(RMSE) of 1.42 L/100km (see Figure 1a); the model for
W?
b , a RMSE of 0.046 kWh/km (see Figure 1b).

−5.0 −2.5 0.0 2.5 5.0

(a) residuals of W?
f [L/100km]

−0.2 −0.1 0.0 0.1 0.2

(b) residuals of W?
b [kWh/km]

Fig. 1: Fuel and battery model accuracy

These prediction accuracies on each road section are
acceptable. Note that the relative uncertainty on the global
power demand at the end of the trip decreases with the
distance traveled, uncertainties compensating each other
over the trip. The remaining uncertainty on the predictions
Ŵb and Ŵb, predicted according to each context by the
GPR, will be propagated into the cautious PEMS.

3We stress that this training set size is sufficient to achieve precise
predictions, and thus to have the chance-constrained programming method
(at the core of this paper) exhibit good performances.



B. Simulated trip

Figure 2 displays a simulated trip around the current
low emission zone of the “Métropole du Grand Paris”,
scheduled to become a ZEV zone by 2030. It starts at
the Université de Technologie de Compiègne (A), and
ends at the historical headquarters of Renault in Boulogne-
Billancourt (B). The future ZEV zone is represented by the
blue shaded area. This simulated trip provides us with the

Fig. 2: Simulated trip around a low emission zone of the
Paris area, scheduled to become a ZEV zone by 2030.

vectors of driving contexts x fed to both GPR models in
the PEMS optimization. We assume that the PHEV starts
with Ebini = 50% ∆Eb and Ef ini = 75% fuel, and reaches a
charging station at the end of the trip.

C. Results

1) PEMS modes: We apply the optimization strategy
described in Section III-B in three different cases. The first
one (nominal) considers the blue-shaded zone in Fig. 2 as
a low emission zone and not a ZEV zone. The fuel energy
consumption can thus be optimized on the whole trip in
an optimal way, i.e. by choosing α = 0.5 ⇔ u1−α = 0.
The second one (optimal) considers the blue-shaded zone
as a ZEV zone: we thus forbid the use of ICE by reducing
the upper bound of the fuel consumption constraint (7d)
to Ei = 0; however, we solve the PEMS optimization
problem without safety margins, i.e. u1−α = 0. The third
one (optimal-cautious) implements our cautious PEMS: we
consider the zone as a ZEV zone, and solve the PEMS
using a safety margin of u1−α = 1.96, corresponding to a
2.5% risk that the PHEV will lack battery potential in the
ZEV zone. The PEMS results are displayed in Figure 3.

2) Nominal case: In the nominal case (Fig. 3a), the
battery energy consumption is distributed evenly over the
trip so as to minimize the global fuel energy consumption,
leading to a remaining fuel energy potential at arrival of
69.5%. Fuel savings are notably achieved by recharging

the battery using the ICE in low power demand sections at
a lower speed downhill, e.g. around kilometers 30 and 75.

3) Optimal case: In the optimal case (Fig. 3b), the entire
battery consumption is also evenly distributed over the trip.
The PEMS saves enough battery power to drive inside the
ZEV zone in full-electric mode. Although the ZEV zone
constraint prevents the battery from being recharged around
kilometer 75, the same remaining fuel energy potential at
arrival (69.5%) is reached. However, the credibility interval
indicates a significant risk (α = 50%) to run out of battery
before reaching a charging station.

4) Optimal-cautious case: In the optimal-cautious case
(Fig. 3c), the additional safety margin in the PEMS results
in a battery energy potential of 19.8% at arrival, which is
sufficient to guarantee (with a 2.5% risk) that the vehicle
has enough electric range to reach its destination. This
comes at the price of increasing the remaining fuel energy
potential at arrival by 0.9%, which seems reasonable when
it comes to providing further guarantees against driving
around the ZEV zone or stopping the vehicle.

V. CONCLUSION AND PERSPECTIVES

This article addresses the problem of navigating areas
with zero-emission zones, in which the use of internal
combustion engines are prohibited. It provides a solution
to guarantee with a high probability that PHEVs can cross
these areas with their engine remaining switched off.

Assuming that the future trip profile is given by the
vehicle’s navigation system, we propose a cautious PEMS
optimization strategy, which determines battery and fuel
energy consumption plans that minimize the global fuel
consumption while saving a sufficient electric range for
ZEV zones. It takes into account the uncertainty over power
demands estimated using two separate GPR models. The
resulting chance-constrained optimization problem is solved
using a simple gradient descent algorithm with momentum.

Using models trained on actual PHEV data, we evaluate
our strategy on a simulated trip enclosing a future ZEV
zone of the Paris area. Results show that it succeeds in
saving battery energy potential to navigate a ZEV zone,
with a low increase in the global fuel consumption plan.

Future work will focus on learning a joint GPR model
over both fuel and battery power demands, so as to obtain
linear relationships between both given driving conditions.
This would result in sets of linear constraints, and there-
fore to a convex optimization problem. The strategy will
also be compared with the dynamic programming strategy
previously used, in particular to evaluate the gain in terms
of computational complexity. We eventually plan to conduct
additional experiments, in particular to validate our ap-
proach in a real-life setting involving poor traffic conditions.
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(a) PEMS nominal mode
α = 50%
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(b) PEMS optimal mode
α = 50%
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(c) PEMS cautious mode
α = 2.5%

Fig. 3: Consumption trajectories provided by the PEMS in the three cases (nominal, optimal, optimal-cautious). The ZEV
zones are represented with the blue areas on the x-axis. The planned consumption is represented by the black solid line,
the 95% credibility intervals over the power demand by the colored (green, red and blue) areas. For a better comparison,
the numerical expected value of the global energy potential at arrival is displayed in the same color in each figure.
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