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Abstract

Presence of scatter is inherent to fatigue life studies of materials and structures, for

analysis of which a wide variety of statistical tools exist. Among them, Cox (proportional

hazards) regression is widely encountered in survival studies of medical sciences, but has

not found frequent use in fatigue of materials. Of interest is the ability to treat scatter

in both applied load and fatigue life, as well as censored measurements of the latter. In

the present work, this statistical approach is adapted for fatigue life studies. For ease

of its application, it is numerically implemented as a Python module and provided for

permissive free use. The module allows to carry out Cox regression on raw fatigue life

results. Survival estimates, which provide a relationship between probability of failure and

fatigue duration, can be additionally plotted with the module. Finally, the module allows

to plot probabilistic Wöhler (S -N ) curves, which lead to a more accurate representation

of scatter in fatigue life results.
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Nomenclature

~β = vector of Cox regression coefficients

CSV = comma-separated values

f(N) = probability density function

h(N) = hazard function

h0(N) = Cox baseline hazard function

HR = hazard ratio

HNBR = Hydrogenated Nitrile Butadiene Rubber

R = software environment for statistical computing

S(N) = survival function

Ŝ(N) = survival function estimate

~x = vector of Cox covariates
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1 Introduction

It is widely acknowledged that data scatter is inherent to fatigue life testing of materials and

structures. Thus, statistical analysis of the results - namely, its adaptability and flexibility -

plays an important role in the interpretation of experimental observations [1]. In the present

work, because of expertise of the authors in the field of elastomer fatigue, the initial discussion

is to be mostly focused on this material family; however, the general discussion on statistical

analysis can be appropriately extended to a wide range of materials (including metals, compos-

ites, etc.) and structures/parts. In general, scatter appears irrespective of the type of control

prescribed by testing machines - displacement, force, strain energy, or true stress. In elastomers

and other materials, for example, scatter is mainly due to material defects introduced during

processing and their influence on fatigue crack initiation [2, 3, 4, 5]. Noticeably, the magnitude

of scatter depends also on the tested material. There exist a wide variety of statistical tools

and strategies for analysis of fatigue life results. For the sake of simplicity, the two most fre-

quently encountered strategies are discussed below; for a wider range of statistical approaches,

the authors encourage familiarization with the reviews of Lee [6] and Crowder [7].

First, simple regression analysis is carried out due to its simplicity: a specific function

(e.g. applied load as a function of fatigue life) is fitted to the available data. Moreover, there

exists a phenomenological significance in availability of “laws”, which specify the function itself.

Traditionally, the Basquin’s law of fatigue is often considered in analyzing fatigue life results,

which constitutes a simple power law fit of the Wöhler curve [8, 9]; however, many more different

and complex relationships exist [10]. The wide use of this type of regression analysis leads to

differences in their application on fatigue life data. In general, these can be summarized into

two approaches: regression is carried out for all available data points (at all loading levels); or it

is carried out on average (arithmetic or geometric) at each separate loading level. However, the

simplicity has its drawbacks: the results are poorly representative in presence of large scatter;

and, treatment of statistically censored2 results becomes complicated.

Second, parametric models consider statistical distributions - such as normal or log-normal

- on sets of fatigue life measurements, in most cases grouped around a specific loading level.

2In fatigue life, right-censoring is commonly observed, where tests have to be stopped without achieving

failure criteria, and it is known that fatigue life is above a certain duration but the exact fatigue life remains

unknown.
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Of special interest is the Weibull distribution, which is widely used for parametric statistical

analysis in engineering and other fields [11]. For example, it is the de facto method employed

for the statistical discussion of fatigue of metals and metallic parts [12]. This is a parametric

approach, where the Weibull distribution is controlled by k, ρ, and γ, the so-called shape, scale,

and location parameters, respectively. One of the main advantages of the Weibull distribution

is that the shape parameter k can be changed to equal or approximate different types of

distributions, e.g. k = 1 to the exponential, k = 2 to the Rayleigh, k = 2.5 approximates the

log-normal, and k = 3.6 approximates the normal distributions. As evident, the Weibull and

other statistical distribution analyses are mostly performed on only one variable (referred to as

univariate analyses). Hence, presence of scatter in the loading (i.e. stress of the S -N curve)

cannot be taken into account in the basic Weibull form. Moreover, methods exists to take into

account right-censored data, e.g. for Weibull distribution [13, 14, 15]; however, they are limited

by their parametric nature, which require large sample populations for a proper fit.

At this point, it should be mentioned that there are also non-parametric approaches. They

are useful in cases where data does not fit a particular distribution or if the number of sam-

ples is small; for example, the fit of a Basquin’s law or of a parametric distribution (such

as Weibull) can be difficult and eventually provide erroneous conclusions. Here, we focus on

the Kaplan-Meier estimator [16], which is a univariate non-parametric approach that is widely

used in medical sciences to carry out survival analysis. Its main advantage lies in being a

useful comparative tool when analyzing time-to-event studies, especially those with incomplete

observations [17]. Such approach has been considered in fatigue studies of various metal alloys.

However, the influence of its widespread use in medical sciences is evident as these metals are

used for applications in prostheses or implants [18, 19], medical equipment [20, 21], etc.

Building upon these observations, the present work aims to develop a statistical tool, which

tackles the following objectives:

Obj1. Consider scatter of several variables (multivariate analysis);

Obj2. Take into account right-censored data;

Obj3. Ease of application in both academic and industrial environments; release of the numerical

implementation under open source/permissive use;

Obj4. Naturally, such tool should be extended to the plotting of S -N or Wöhler curves.
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At the same time, it has to be considered that fatigue life results present a non-linear behavior

for some materials at relatively low loading levels in form of endurance limits; hence, the

statistical analysis should also reflect this phenomenon.

Thus, the Cox regression (or Cox proportional hazards model), widely used in medical

sciences, can be introduced to solve these objectives [22]. Cox regression is a semi-parametric

approach and has been applied in general reliability studies (as outlined in the review of Kumar

and Klefjo [23]). However, interestingly, it appears that the Cox regression is rarely encountered

in fatigue studies; there are few studies that focus on fatigue of prostheses [24] and medical

equipment [21], as well as of oil pipelines [25], and engine turbine blades [26]. However, these are

limited in their scope and relatively not highly cited; thus with the present work, the authors

hope for a more general application of this powerful tool in fatigue studies. The application

of the model, both mathematically and numerically, is presented in the following sections. For

ease of future application, the corresponding code is presented within the text.
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2 Cox Regression

2.1 FROM MEDICAL SCIENCE TO FATIGUE STUDIES

The extensive base of knowledge developed for application of Cox regression in medical sciences

[27] can be applied to fatigue life studies, because a direct parallel can be drawn between the

two [23, 28]. Putting it in simple terms, survival of a patient is parallel to fatigue life; similar

connections can be made for treatment of categorical covariates (e.g. sex vs. material type),

continuous covariates (e.g. age vs. applied load), censored data (e.g. patients leaving a study

vs. end of experiments before failure), etc.

2.2 THEORY

The Cox proportional hazards model is based on the hazard function

h(N) =
f(N)

S(N)
(1)

where f(N) is the probability density function (PDF) and S(N) is the survival function. Prac-

tically, the hazard function represents the probability that a specimen at cycle N will undergo

failure in the next instant; often, it is referred to as the conditional (instantaneous) failure rate

[11]. The hazard function of the Cox model is generalized to

h(N,~x) = h0(N) × exp
(
~β · ~x

)
(2)

where N is the fatigue life, ~x = (x1, x2, . . . , xm) is a vector of m continuous or categorical

covariates (such as load or material type, respectively), ~β = (β1, β2, . . . , βm) is a vector

of unknown regression coefficients that measure the impact of corresponding covariates, and

h0(N) is referred to as the baseline hazard and corresponds to the hazard when ~x = 0. The

Cox proportional hazards model can naturally take into account both multivariate analysis and

right-censored data, tackling objectives 1 and 2.

The exponent of a given coefficient β is referred to as the hazard ratio (HR) as

HRi = exp βi (3)

and its value indicates the following:

• HRi = 1 - no effect of covariate i;
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• HRi > 1 - as value of covariate i increases, e.g. load, the event hazard increases and

subsequently duration of survival decreases;

• HRi < 1 - the opposite, as value of covariate i increases, e.g. load, the event hazard

decreases and duration of survival increases.

It is important to note that the proportional term of the “Cox proportional hazards model”

name comes from the key assumption of the model: hazard curves are proportional for groups of

observations. In other words, if applied on fatigue life data, this assumption implies that if one

specimen (tested under one given condition) has a risk of failure (hazard) that is for example 10

times higher than under some other condition at some time t, then the risk of failure remains 10

times higher at any other time. Thus, it is important to examine the validity of this assumption

(hence, it is implemented in the given module as will be shown in the following section). Further

details and nuances of the Cox proportional hazards model have been extensively outlined by

Cox [22], Grambsch & Therneau [29], Bradburn et al. [30], and many others.

2.3 NUMERICAL IMPLEMENTATION

To tackle objectives 3 and 4, i.e. the practical application of the method and subsequent

plotting of Wöhler curves, a small Python module has been developed that allows for statistical

analysis of fatigue data. The module (and its documentation) is released under permissive use

of the MIT license [31], and the code and its documentation are available from the project’s

GitHub page3. Python is chosen for its wide-ranging use in engineering applications (allowing

for further integration), being open source, and available on leading operating systems. On the

other hand, extensive and robust implementation of Cox analysis has been developed for the

R-programming language and environment in the widely used, tested, and optimized survival

library [32, 33]. Hence, the present module has been built on top of the rpy2 Python module

that acts as an interface for the R-environment.

Within the R-environment, the survival library’s coxph() function is called: it fits a Cox

proportional hazards model corresponding to equation (2). The function is called with the

default parameters, particularly ties are resolved by the Efron approximation [33]. Moreover,

functions survfit() and cox.zph() are called, respectively, for creation of survival function

estimate curves and to test the proportionality hazards assumption for a Cox regression model

3https://github.com/kubat-n/cox-fatigue-life
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fit; for the former, the Kaplan-Meier method [16] is used by default. For more details, refer to

the extensive documentation of the library [33, 34].

From a user perspective, one is required to input just the following data on each tested

specimen:

1. Test time durations (in consistent units);

2. Survival statuses (according to fatigue life criteria) at these respective durations: 1 for

failed and 0 for survived;

3. Load magnitudes;

4. Any other covariates (variables) that are tested, e.g. material type, etc.

The input is arranged in a m-by-n matrix as shown in Table 1 and can be additionally imported

in form of a CSV (comma-separated value) spreadsheet. Afterwards, with calling appropriate

functions of the module, one can extract statistical information of the fit: the hazard ratio,

statistical significance (p-values and other tests), etc. Furthermore, one is able to plot a Kaplan-

Meier survival estimate for any combination of covariates: the corresponding figure shows the

evolution of probability with respect to the units of fatigue life measurement. Finally, Cox

regression is then adapted for creation of probabilistic Wöhler (S -N ) curves. A practical

example is presented in the following section.
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3 Practical Example

3.1 EXPERIMENTAL PROGRAM

Fatigue life tests are performed on two formulations (materials A and B) of an elastomer,

HNBR (hydrogenated nitrile butadiene rubber); the differences between the two materials are

on a chemical level, where the weight percentage of acrylonitrile monomers and the percentage

of hydrogenation are changed for both materials. The relevant details of the experimental

program are the following:

• Flat dumbbell specimens are utilized in uniaxial tension with a gauge length of 10 mm;

• The applied load is controlled in true stress with four target constant amplitudes (4, 6,

8, and 10 MPa) at R=0; here, target implies that the applied true stress is not exact

at each loading level and for each tested specimen, as would be ideally required in order

to carry out any classic univariate approach; as a consequence, analysis of data takes a

multivariate character by introduction of “scatter” along the loading axis;

• End of failure criterion is considered as complete failure of a specimen; at the lowest

amplitude of 4 MPa, tests have been stopped after 2 million cycles (about 6 days in

duration), thereby introducing right-censoring in some of the results.

For more information, the details of the procedure are available in [35, 36].

3.2 APPLICATION AND RESULTS

Table 2 contains the raw fatigue data for the two formulations and Fig. 1 shows the correspond-

ing values. It is evident that the present data set exhibits the two aforementioned difficulties –

scatter in both loading (stress) and fatigue life, and censored points around 2 million cycles –

which justify the use of the Cox model.

The Cox analysis starts by creating of a CoxFatigueAnalysis object (where analysis is

the name assigned to the object).

In [ 1 ] : a n a l y s i s = CoxFatigueAnalys is ( [ ’ s t r e s s ’ , ’ mate r i a l ’ ] , [ f loat , str ] )

Here, the input variables are two lists containing the names of the covariates to be tested and

their subsequent Python data types. Second, the data are imported from a file that is arranged

in a matrix as depicted in Table 1.
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In [ 1 ] : a n a l y s i s . import f rom csv ( ’ input data . csv ’ )

Subsequently, Cox regression is performed on the data by calling the function cox regression.

The proportionality assumption of the Cox model can be tested by the function cox zph.

In [ 1 ] : a n a l y s i s . c o x r e g r e s s i o n ( )

In [ 2 ] : a n a l y s i s . cox zph ( )

The results of the regression and the proportionality test can be obtained by print(analysis)

or by calling print cox r output (which displays the output generated by the summary function

of the R-environment). The results of the cox regression as applied on the data of Tab. 2 are:

In [ 1 ] : print ( a n a l y s i s )

Out [ 2 ] :

Cox propo r t i ona l hazards model output :

Cox r e g r e s s i o n on va r i a b l e s s t r e s s , mater ia lMater ia lB , :

beta se ( beta ) HR−.95 HR HR+.95 p

s t r e s s 0 .97237 0.11074 2 .1283 2 .6442 3 .2852 0 .0

mater ia lMater ia lB −1.3573 0.29184 0.14525 0.25735 0.45598 3 .3063 e−06

Propo r t i ona l i t y assumption from cox zhp ( ) (p>0 .05) :

rho ch i sq p

s t r e s s : 0 .0599 0 .1637 0.68573

mater ia lMater ia lB : 0 .0486 0 .1281 0.72045

GLOBAL: nan 0.5049 0.77688

With respect to the regression results, the coefficient (beta), the hazard ratio (HR) and its

lower (HR-.95) and upper (HR+.95) 95% confidence intervals, as well as the log-rank test p-value

are of most interest. For the continuous covariate stress, the hazard ratio HR = 2.64 > 1

indicates a strong relationship between the increase in true stress amplitude and the increased

risk of failure. This can be interpreted as: in most general terms, an additional increase

in amplitude by 1 MPa induces the hazard of failure (at each respective cycle) by a factor

of 2.64 for both MaterialA and MaterialB. Of course, such trend is clear even from simple

observations of Fig. 1 and, moreover, they are confirmed to be statistically significant from the

p-value of the log-rank test p = 0 < 0.05. A similar interpretation can be made in comparison

of the categorical covariate material; note that only result for MaterialB is shown since

MaterialA is taken as reference by default. Thus, the hazard of failure of MaterialB with

respect to MaterialA decreases by around four times (HR= 0.257) with statistical significance
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p = 3.31 × 10−6 < 0.05. The relatively low p-values of each respective covariate can be said to

be indicative that the data are generally well described by the model.

With respect to the proportionality test results, of great interest is the p-value for global

test and each covariate. High statistical significance, p < 0.05, indicates a strong evidence of

non-proportionality of hazards of each covariate; the proportionality assumption is supported

by a non-significant relationship, i.e. when p > 0.05. In the present case, the p-values for

stress, MaterialB, and globally are p = 0.69 > 0.05, p = 0.72 > 0.05, and p = 0.78 > 0.05

respectively and, thus, indicating that one can assume proportional hazards.

Furthermore, the present module allows to visualize the survival function estimate obtained

from the Cox regression; as mentioned earlier, the Kaplan-Meier method is utilized to plot the

survival estimate. The Kaplan-Meier method is a non-parametric approach and thus represents

the experimental estimate of the survival function. For example, one can visualize with the

function plot cox survival 1var the survival estimate for Material B at loading levels of

4, 6, 8, and 10 MPa (since the Cox model can take into account continuous variables, the

choice of these four specific numbers is rather arbitrary and any other value(s) of stress can be

considered).

In [ 1 ] :

a n a l y s i s . p l o t c o x s u r v i v a l 1 v a r ( axes , # ma t p l o t l i b axes

’ s t r e s s ’ , # cova r i a t e t ha t changes

[ 4 , 6 , 8 , 1 0 ] , # va lue s o f the s t r e s s

[ ’ mate r i a l ’ ] , # cons tant c o v a r i a t e s

[ ’ MaterialB ’ ] ) # th e i r r e s p e c t i v e va l u e s

The corresponding plot is shown in Fig. 2a. For each curve corresponding to a stress value, the

probability of survival decreases with increasing number of cycles as expected. Similarly, if one

compares the survival curves at four stress values, it is evident that the probability of survival

decreases faster with increasing stress.

For comparison, classic Weibull analysis is carried out to estimate the survival function of

the corresponding data (even though, as mentioned earlier, the Weibull distribution is not an

optimal choice when the statistical sample size is small and right-censoring is present). The

parameters are calculated in R-environment using the survival library. For visual analysis,

the results are plotted in Fig. 2b on top of the Kaplan-Meier curves to aid in the comparison

of results. It is clear that the parametric approach of the Weibull fitting does not exactly
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correspond to the non-parametric approach of the Kaplan-Meier method. It is especially evident

for short fatigue lives at 10 MPa and 8 MPa target loading levels (where the survival function

is underestimated by the Weibull fit), for those longer than 5 thousand cycles at 8 MPa and

6 MPa (overestimated), and for those longer than 80 thousand cycles at 4 MPa (overestimated).

Furthermore, the function plot wohler curve is used to plot the probabilistic Wöhler

curves, e.g. the following code plots such curve for Material A from 4 to 10 MPa (as well

as extrapolations to 2 MPa and 12 MPa).

In [ 1 ] :

mat a = ana l y s i s . p l o t woh l e r cu rve (axw , # axes o b j e c t o f ma t p l o t l i b

’ s t r e s s ’ , # cova r i a t e load on S−N curve

[ 2 , 1 2 ] , # l i s t o f load va l u e s [min , max ]

0 . 1 , # se t the r e s o l u t i o n o f the load−ax i s

[ ’ mate r i a l ’ ] , # name( s ) o f cons tant c o va r i a t e ( s )

[ ’ MaterialA ’ ] # corresponding va l u e s

l i n e c o l o r s =( ’ y ’ , ’ y ’ , ’ k ’ , ’ k ’ , ’ k ’ ) # l i n e c o l o r s

)

Figs. 3 and 4 show the corresponding probabilistic Wöhler curves for materials A and B,

respectively. For ease of visualization, the probabilities are plotted as contour regions of different

colors, each corresponding to a decrease of 5% in survival probability. Actual experimental

data points are also shown for comparison. Furthermore, solid lines correspond to almost

zero (indicated as Ŝ(N) = 0.001) and 100% (indicated as Ŝ(N) = 0.999) probabilities of

survival, as well as the mean survival (indicated as Ŝ(N) = 0.5); the upper and lower 95%

probability bounds are shown as dashed lines (indicated as Ŝ(N) = 0.05 and Ŝ(N) = 0.95

respectively). Unlike what would be expected for a realistic material response, it should be

noted that these lines are not smooth and appear somewhat irregular; this is a consequence of

the discrete nature of the estimation of the survival function as shown in Fig. 2a. It is expected

that as more specimens are tested, the smoother these curves will become. Moreover, there

is presence of horizontal asymptotic lines around 3 MPa (extrapolated stress) for Material A

(Fig. 3) and around 4.5 MPa for Material B (Fig. 4) corresponding to the mean lines; such

horizontal asymptotes are also visible for the lines for the almost zero probability (indicated

as 0.001) and the lower 95% bound (indicated as 0.050). It is of importance to note that

although presence of horizontal asymptotes could indicate presence of an endurance limit, such

fact does not explicitly guarantee it; these phenomena are caused by missing data (observed
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broken specimens or non-censored data) within the range of the fatigue lives from about 350

thousand cycles to final end of experiments at 2 million cycles as indicated by the hatched

region. Thus, there is a loss of resolution in the probability values within this range and it

is impossible to determine them without carrying out additional experiments. This presents

a limitation of the method in terms of available experimental points; however, at the same

time, it allows to identify additional required testing. Finally, it should be noted that the time

domain is limited by the last experimental observation made, i.e. at 2 million cycles. However,

as stated earlier, special attention has to be paid in interpreting the results within the domain

region where horizontal lines are observed (hatched regions in Figs. 3 and 4).

Otherwise, the probabilistic Wöhler curves of the two materials correspond to the gen-

eral hazard ratios obtained from Cox regression. For both materials, as expected, survival

probability decreases as number of cycles increases and as applied load increases. For ease of

comparison, we implemented a specific function to graphically compare two Wöhler curves for

two different values of some covariate. Here, a curve of each of the two materials, correspond-

ing either to almost zero or almost complete survival, the mean, or the upper and lower 95%

probability bounds, can be plotted for comparison. For example, the mean of Material A and

Material B and their corresponding curves shown in Figs. 3 and 4 can be plotted together with

the following code:

In [ 1 ] :

a n a l y s i s . compare curves ( ax , # axes o b j e c t o f ma t p l o t l i b

mat a , # wohler curve o f mate r ia l A

mat b , # wohler curve o f mate r ia l B

’mean ’ , # s e l e c t i o n o f which curve to p l o t

# other op t i ons :

# ’max95 ’ , ’min95 ’ , ’ s u r v i v a l ’ , ’ f a i l u r e ’

[ ’ Mater ia l A ’ , ’ Mater ia l B ’ ] # l a b e l s f o r the l egend

)

The corresponding plot is shown in Fig. 5, which clearly highlights, in a conventional manner,

that Material B has better fatigue resistance than Material A; for comparison, the original data

points are also plotted.
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4 Conclusions

Cox regression (or Cox proportional hazards model) is widely used in medical sciences; how-

ever, its application in fatigue studies has been limited even considering the direct relationship

between survivability and fatigue studies. Its use should be considered however, since the model

allows to tackle many commonly encountered problems. First, being a multivariate analysis, it

allows taking into consideration multiple covariates (variables); moreover, these covariates can

be both categorical (such as type of material) or continuous (such as applied load). From the

perspective of fatigue tests, this allows to deal with scatter not only in fatigue life durations,

but in other variables (such as loading). Second, it allows to treat censored results, especially

right-censoring when fatigue life tests have to be stopped before reaching failure.

In the present paper, the theory behind the Cox regression analysis has been summarized

and a subsequent Python module is developed (and provided) for its straightforward application

on fatigue life results. The module computes important Cox analysis values, such as the hazard

ratios and the statistical significance; additionally, the proportionality assumption of the model

can be tested. Furthermore, survival estimate curves are available for a combination of various

covariates. The module also plots probabilistic Wöhler (S -N ) curves, which propose a more

complete representation of scatter in fatigue life results. Finally, two different Wöhler curves

can be compared. A practical example on actual experimental results is given to demonstrate

the relevance of the developed module.

By releasing the present module under permissive free use license, the authors hope for

greater use of Cox regression in fatigue studies as well as for further improvement of the module

itself.
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5 Tables with captions

Table 1: Arrangement of input data.

Rows

1 to m

Columns 1 to n

fatigue life fatigue survival load (covariate 1) covariate 2 ... covariate (n-2)

1 duration 1 status 1 load 1 value 2 1 ... value (n-2) 1

... ... ... ... ... ... ...

2 duration m status m load m value 2 m ... value (n-2) m
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Table 2: Fatigue lives of materials A and B; survival status of 1 indicates a broken specimen,

0 - censored point.

Material A Material B

Fatigue Life (Cycles) Status True Stress (MPa) Fatigue Life (Cycles) Status True Stress (MPa)

566 1 10.37 3085 1 10.34

931 1 10.04 790 1 9.95

610 1 10.01 564 1 9.95

70 1 9.99 1845 1 9.91

285 1 9.83 933 1 9.91

550 1 9.80 622 1 9.87

98 1 9.76 2359 1 9.49

262 1 9.70 797 1 9.44

877 1 8.43 5752 1 8.14

4434 1 8.30 2665 1 7.99

1373 1 8.27 3222 1 7.99

1218 1 8.05 16082 1 7.99

3332 1 8.02 781 1 7.93

884 1 7.97 915 1 7.79

2419 1 7.78 2858 1 7.69

1353 1 7.49 37484 1 7.68

3565 1 6.15 2223 1 7.67

2632 1 6.07 8113 1 7.55

1136 1 6.00 12488 1 6.06

9599 1 6.00 54051 1 6.00

2700 1 5.94 37485 1 5.99

3595 1 5.88 169456 1 5.99

13599 1 5.85 21553 1 5.96

1372 1 5.70 114465 1 5.92

199734 1 4.22 44332 1 5.87

1999500 0 4.13 57267 1 5.87

353376 1 3.98 1999900 0 4.02

49040 1 3.97 85904 1 4.02

288358 1 3.95 1999800 0 4.00

57521 1 3.94 1999900 0 3.96

207959 1 3.93 1999900 0 3.94

6474 1 3.93 1999900 0 3.93

1999500 0 3.90 76374 1 3.93

30048 1 3.88 1999900 0 3.92

72278 1 3.80 1999900 0 3.91

313566 1 3.78 221901 1 3.82
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6 List of figure captions

Figure 1: Raw fatigue lifetime data for materials A and B.

(a)

(b)

Figure 2: Survival function estimates for different stress values of Material B; (a) Kaplan-Meier

as returned by plot cox survival 1var(); (b) Comparison with a classic Weibull fit; shape,

k, and scale, λ, parameters are indicated in the legend.

Figure 3: Probabilistic Wöhler curve for Material A; actual experimental points are shown;

hatched region indicates loss of resolution in probability (see the text for details).

Figure 4: Probabilistic Wöhler curve for Material B; actual experimental points are shown;

hatched region indicates loss of resolution in probability (see the text for details).

Figure 5: Comparison of mean curves for materials A and B; hatched region indicates loss of

resolution in probabilities.
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