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Abstract For decades, multiaxial fatigue tests have
been proposed in order to derive models for fatigue life
prediction of elastomers. Nevertheless, the importance
of quantifying the multiaxiality has not sufficiently
been discussed. In this paper, a new method is pro-
posed to handle the multiaxiality in elastomers fatigue
testing. It is based on the pair (K2,K3), two invariants
of the Hencky (true) strain tensor. Thanks to the ex-
ample of the simultaneous uniaxial tension-torsion fa-
tigue of a Styrene Butadiene Rubber, we demonstrate
that it is possible to prescribe a constant multiaxiality
level throughout different tests. The method consists
in fixing the multiaxiality indicator K3, and then in
varying the strain level with the intensity of distor-
sion indicator K2. Results show that the fatigue lives
seem to unify with K2 regardless of the values of K3.
They also demonstrate that the initiation crack angle
depends on the multiaxiality indicator K3 but not on
K2. Finally, the relevance of the approach is acknowl-
edged by comparing the pair (K2,K3) to the classical
largest principal stretch ratio and biaxiality factor.

Keywords elastomers · fatigue · multiaxiality ·
uniaxial tension-torsion · Hencky strain invariants

1 Introduction

Rubber is used in a wide range of applications, in-
cluding engine dampers, tires, joints in nuclear facili-
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ties, etc. In service, the majority of rubber components
undergo cyclic mechanical loadings, inducing the pro-
gressive degradation of the material until failure: this
phenomenon is called fatigue. When dealing with me-
chanical fatigue, rubber parts are subjected to very
complex loading conditions whose characteristics (am-
plitude, frequency ...) can vary dramatically all along
the life of the structure, rendering the life prediction
very difficult. For about two decades, authors have
proposed predictions of the fatigue life of rubber com-
ponents, based on stress, strain, energy and/or other
mechanical quantities. Even though of high interest,
the prediction of fatigue life is not directly the issue of
the current paper, and the reader can refer for example
to Mars and Fatemi (2002), and Tee et al. (2018) for
reviews, and André et al. (1999), Saintier et al. (2006),
Ayoub et al. (2014), and Behroozinia et al. (2019) for
recent advances.

Once models for fatigue life prediction are derived,
a large quantity of fatigue tests results are necessary
to identify their parameters. Practically, loading con-
ditions are commonly divided into two categories: uni-
axial loading conditions that apply along one given
direction, and multiaxial loading conditions that ap-
ply along different directions. Even though structures
in service rarely experience uniaxial loading condi-
tions, several models have been proposed to predict
the fatigue life of rubber-like materials under uniaxial
loading conditions (Poisson et al., 2011; Wang et al.,
2014; Juhre and Krause, 2015; Belkhiria et al., 2020).
Nevertheless, due to the nature of the phenomenon
of fatigue, it is not possible to capture its complexity
under multiaxial loadings by only considering uniax-
ial experimental results; hence multiaxial fatigue tests
are necessary. Simultaneous uniaxial tension-torsion
experiments are the most widely used for multiax-
ial fatigue of elastomers. Several specimens have been
specifically designed for these experiments: O-ring by
Mars (2001a), diabolo-like samples with different cur-
vature radii (Ostoja-Kuczynski et al., 2003; Le Cam
et al., 2008; Ayoub et al., 2010), hollow diabolo-like
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specimens (Wang et al., 2020), etc. Each of these sam-
ples has been designed to achieve specific properties
such as the absence of buckling for compressive load-
ings or high triaxiality in the mid-plane, for instance.

But in the same way that, for example, a uniax-
ial tension test and a pure shear test with the same
stretch ratio in the loading direction are not mechan-
ically equivalent, the issue of the mechanical equiv-
alence of two multiaxial fatigue tests has to be ad-
dressed. It can be simply summarized by the follow-
ing question: “how to quantify the multiaxiality of
fatigue tests in order to compare their results in a
consistent manner?” Actually, one indicator has been
used in some studies for the past two decades: the bi-
axiality ratio, denoted B by Mars (2001a), or n by
Zine et al. (2006). For plane stress tests, it is de-
fined as the ratio between the two largest principal
true strains: B = n = ln(λ2)/ ln(λ1), with λ1 ≥ λ2. Its
main purpose is to classify fatigue tests in simple cat-
egories regarding its value: B = −0.5 for uniaxial ten-
sion, B = 0 for pure shear, and B = 1 for equibiaxial
tension. However, when dealing with multiaxial tests,
say uniaxial tension-torsion, B can take any value be-
tween −0.5 and 0, rendering the comparison between
different tests difficult: can a multiaxial test charac-
terized by B = −0.4 be compared to a multiaxial test
characterized by B = 0.25? More generally, is B the
optimal indicator of the multiaxiality?

In the present paper, we consider a new multiax-
iality indicator referred to as K3, which is one of the
invariants of the Hencky (true) strain tensor proposed
by Criscione et al. (2000). Coupled with a measure
of the distortion (another invariant denoted K2), we
demonstrate that pairs (K2,K3) greatly help to design
fatigue tests, and more specifically to ensure that dif-
ferent strain levels can be achieved while maintaining
constant the multiaxiality throughout the tests. The
paper is organized as follows: Section 2 introduces the
kinematic equations of the uniaxial tension-torsion of
a cylinder, and the parameters K2 and K3. In Section
3, the theoretical developments are applied to the fa-
tigue of a synthetic rubber (Styrene Butadiene Rub-
ber, SBR). Section 4 closes the paper with a discussion
on the relevance of the new indicators.

2 Methods

In this section, we derive the kinematic equations of
the simultaneous uniaxial tension-torsion of a perfect
cylinder, and introduce the parameters {Ki}i=1,2,3,
which are the indicators proposed for a new descrip-
tion of intensity and multiaxiality in the design of fa-
tigue tests.

2.1 Kinematics of the uniaxial tension-torsion of a
perfect cylinder

The equations of the uniaxial tension-torsion of a per-
fect cylinder are derived in the following; they can be
found in several previous studies, e.g. Rivlin (1949);
Ogden (1984); Ciarletta and Destrade (2014); Mur-
phy (2015).

The problem notations are summarized in Figure 1.
It consists in the study of a perfect cylinder, whose
dimensions are its length L and radius A in the unde-
formed state, which become l and a in the deformed
state, respectively. A vertical displacement U and a
twist angle α are both applied on the top surface, while
the cylinder is fixed at the bottom surface. The ma-
terial is supposed to be homogeneous, isotropic, and
incompressible. The undeformed (or reference) config-
uration is denoted (C0), and the actual deformed one
is denoted (C). The mapping χ transforms any point
P0 of (C0) into P in (C). In what follows, capital letters
(R, Z, etc.) are used for quantities related to (C0), and
lowercase letters for quantities relative to (C), unless
otherwise mentioned. (e1,e2,e3) is the cartesian coor-
dinate system, and two cylindrical coordinate systems
are used: (eR,eΘ,eZ) in the reference configuration
and (er,eθ,ez) in the deformed one.

The mapping between reference and deformed con-
figurations is defined by

r = Rλ−0.5 , θ = Θ + τλZ , z = λZ, (1)

where λ and τ are the stretch in the uniaxial ten-
sion direction and the twist angle per unit of deformed
length, respectively:

λ = l

L
and τ = α

l
= α

λL
. (2)

The deformation gradient tensor is

F = 1√
λ

(er ⊗eR +eθ ⊗eΘ)+R
√

λτeθ ⊗eZ

+ λez ⊗eZ , (3)

and the corresponding left Cauchy-Green strain ten-
sor, b = FF

T , is

b = 1
λ
er ⊗er +

(
1
λ

+λ2τ2r2
)
eθ ⊗eθ

+ λ2τr (eθ ⊗ez +ez ⊗eθ) + λ2ez ⊗ez. (4)
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Fig. 1 Notations of the uniaxial tension-torsion of a perfect cylinder.

The principal stretch ratios {λi}i=1,2,3 are the square
roots of the eigenvalues of b:



λ1 =
[

1
2

(
R2τ2λ+λ2 + 1

λ

−

√(
R2τ2λ+λ2 + 1

λ

)2
−4λ

0.5

λ2 =λ−0.5

λ3 =
[

1
2

(
R2τ2λ+λ2 + 1

λ

+

√(
R2τ2λ+λ2 + 1

λ

)2
−4λ

0.5

(5)

2.2 Invariants of the Hencky strain tensor

The Hencky strain tensor, noted H, is generally de-
fined from the left stretch tensor, V =

√
b:

H = ln(V ) = 1
2 ln(b). (6)

It is generally referred to as the true strain tensor.
The following derivation is based on the work of

Criscione et al. (2000), in which the properties of H
have been thoroughly investigated. One of the major

advantages of H lies in its invariants, classically de-
noted {Ki}i=1,2,3 and defined as



K1 = ln(J) =
3∑

i=1
ln(λi)

K2 =
√

dev(H) : dev(H) =

√
3∑

i=1

(
ln(λi)− K1

3

)2

K3 = 3
√

6
K3

2

3∏
i=1

(
ln(λi)− K1

3

)
(7)

where J is the Jacobian of the mapping χ, and dev(∗) =
(∗) − 1

3 tr(∗)I is the deviatoric operator. The physical
meaning of {Ki}i=1,2,3 is proposed by Criscione et al.
(2000):

– K1 defines the amount of volumetric dilatation.
– K2 quantifies the intensity of the distortion the

matter undergoes. It does not contain any measure
of the dilatation, and is zero only if there is no
distortion at the considered material point.

– K3 indicates the mode of distortion. Note that K3
is not defined for K2 = 0, which is not prohibitive
since in this case, matter does not undergo distor-
tion, hence there is no mode of distortion. Table 1
presents the values of K3 for simple deformation
modes.
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K3 Deformation mode
-1 Uniaxial compression or equibiaxial tension
0 Planar tension (= pure shear)
1 Uniaxial tension or equibiaxial compression

Table 1 K3 for simple deformation modes.

In the special case of incompressibility, K1 = 0, and
Eq. (7) simplifies into


K1 = 0

K2 =
√

(ln(λ1))2 +(ln(λ2))2 +(ln(λ3))2

K3 = 3
√

6
K3

2
ln(λ1) ln(λ2) ln(λ3)

(8)

Substituting Eq. (5) into Eq. (8) gives a direct way
to compute the values of K2 and K3 for any uniax-
ial tension-torsion loading conditions (λ,τ) applied to
the cylinder. In appendix A, we provide a UVARM
subroutine to be used within Abaqus to compute the
values of K1, K2 and K3 in finite element simulations.

Finally, Figure 2 presents the iso-contours of the
multiaxiality indicator K3 (dashed lines) and the iso-
contours of the intensity indicator K2 (solid lines).
This graph is considered in the following to design
fatigue tests.

3 Application to uniaxial tension-torsion
fatigue tests of SBR

As an illustration of the new use of the parameters
(K2,K3), we apply them to the fatigue response of
a synthetic rubber. The present section describes and
briefly discusses the results of the corresponding tests.

3.1 Material and sample

The material used in this study is a Styrene Butadiene
Rubber (SBR), filled with 50 phr of N550 type carbon
blacks, and vulcanized with sulfur. It is considered as
an incompressible isotropic non-linear elastic material.

Fatigue tests were run on an Instron ElectroPuls
E10000 machine which simultaneously applies a ver-
tical displacement along the specimen revolution axis
and a twist angle around the same axis, both being
independently controlled. The specimen geometry is
shown in Figure 3. It was designed by Lectez (2014)
to achieve the two following objectives:

1. To concentrate strain in the cylindrical part of the
sample in order to ensure that failure occurs in this
zone.

2. On a given height around the mid-plane, the spec-
imen behaves as a perfect cylinder subjected to
uniaxial tension-torsion, as derived in Section 2.

3.2 Loading conditions

The relationships between the displacement U and the
twist angle α prescribed to the specimen, and the cor-
responding stretch λ and angle per unit length τ that
applies to the perfect cylinder are{

λ = 1+ U
HD

, (no unit)
τ = α

λHα
, (rad.mm−1)

(9)

where HD = 30.3mm and Hα = 25.6mm are two ge-
ometric parameters which have been calculated by
Lectez (2014).

As shown in Figure 4, all the input signals are in-
phase sine, defined by their respective peek-to-peek
values over a duty cycle: Umax for the displacement
and αmax for the twist angle. The cycles are fully re-
laxing, i.e. the minimum value of both displacement
and twist is zero.

The end of life criterion is defined as a 50% drop
in the maximum axial force measured over each cycle.
The upper limit chosen for the number of cycles is 1
million cycles, in order to restrict the total duration of
the experimental program. Finally, the frequency has
been chosen as a compromise between self-heating and
test duration: surface temperature was measured for
all tests after 500 cycles, and no elevation of more than
15◦C over the room temperature (23◦C) was reported.

Table 2 summarizes the loading conditions of the
fatigue tests. They can be divided into two groups:

K3 K2max Umax(mm) αmax(◦) Frequency (Hz)

0.5
0.45 3.51 167 1.75
0.56 4.39 212 1
0.66 5.23 257.5 0.75

1
0.5 12.92 0 1.25
0.55 14.55 0 1
0.64 17.79 0 0.75

Table 2 Loading conditions for fatigue tests.

uniaxial tension tests (K3 = 1), and tests undergo-
ing an intermediate state between uniaxial tension
(K3 = 1) and pure shear (K3 = 0), i.e. with a targeted
K3 = 0.5. The values of K2 have been chosen as close
as possible for these two groups: they correspond to
a compromise between the test duration distribution
(ensuring results for short, medium, and long fatigue
lives), self heating and machine availability. Practi-
cally, values of K2 are computed analytically at the
material point which undergoes the most damaging
history, i.e. in the mid-plane at the external radius of
the specimen (Z = L/2,R = A). Note that each test
has been repeated 5 times.

The corresponding pairs (K2,K3) are reported in
the iso-contours map of Fig. 2. All the uniaxial ten-
sion tests lie on the iso-line K3 = 1, i.e. the horizontal
axis, and all the multiaxial tests lie on the iso-line
K3 = 0.5. Moreover, experimental loading conditions
lie on the corresponding iso-contours of K2, rendering
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Fig. 2 Iso-K2 and iso-K3 in the space of the loading parameters (λ,τ). The loading conditions for K3 = 0.5 and K3 = 1 are
also displayed.

Fig. 3 Specimen mounted in the fatigue test machine E10 000
(left) and its dimensions without the metallic inserts (right).

Fig. 4 Displacement U and twist angle α applied at the top
surface of the specimen.

easy the reading of the plot: as loading conditions get
farther from the origin, the intensity of the distortion
increases.

3.3 Results

In the following, the results of the fatigue tests are pre-
sented. They consist in one Wöhler-like curve, where

the numbers of cycle to failure are plotted against
K2max , and in crack angles at the locations where fa-
tigue cracks are suspected to have initiated.

3.3.1 Fatigue life

Detailed fatigue tests results are available in Appendix B.
They are plotted in Figure 5. The use of K2max as the

Fig. 5 K2max − N fatigue results for K3 ∈ {0.5,1}. Arrows
represent censored data. One censored data point appears be-
low 106 cycles, and is due to an overload of the computer’s
buffer during the test.

fatigue life indicator seems natural, as it defines the
amount of distortion prescribed to the specimen (see
Section 3.2). Indeed, even if the trend for data corre-
sponding to K3 = 1 (for K2 = 0.55 and 0.5) is not so
clear, results of Figure 5 highlight that fatigue life in-
creases as K2 decreases. Moreover, K2 seems to unify
the results for both uniaxial tension and multiaxial
fatigue tests, i.e. regardless of the value of K3 is.

3.3.2 Crack initiation angle

As a final step, specimen surfaces have been analyzed
with a numerical optical microscope Keyence VHX-
6000 in order to determine the position of the sus-
pected initiation sites, and to estimate the initiation
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angle ω. Angles have been measured in the undeformed
configuration, as explained in Figure 6.

Fig. 6 Measurement of initiation angles after failure. The
arrows represent a slight compression force that maintains the
two broken parts together during measurement.

Except for three tests whose initiation occurred in
the bulk, all tests led to initiation at the surface of the
cylinder. Figure 7 presents the map of the initiation
angles with respect to K2. For uniaxial tension-torsion

Fig. 7 Initiation angles vs. K2 for both uniaxial tension and
simultaneous uniaxial tension-torsion tests.

tests (K3 = 0.5), all angles lie between 25◦ and 35◦ (ex-
cept one just above 20◦), whereas all uniaxial tension
tests (K3 = 1) have produced nearly horizontal angles
(below 5◦) except one.

All these observations were expected: during the
uniaxial tension tests, the principal direction corre-
sponding to both maximum stretch ratio and maxi-
mum stress coincides with the revolution axis of the
specimen. Hence, cracks are expected to initiate in a
plane perpendicular to this axis. Regarding the mul-
tiaxial tests, when the instant of maximum tension
and twist is reached, the aforementioned principal di-
rections are tilted, hence producing cracks that are
oriented. Crack angles for pure torsion tests (K3 = 0)
have been studied by Saintier et al. (2006): they re-
port that for prescribed torsion angles between 70◦

and 100◦, all the measured crack initiation angles (us-
ing the same definition as in Figure 6) lie between 27◦

and 19◦, respectively. Mars and Fatemi (2006) also
point out that under very high shear strains (during
a torsion test for instance), failure planes tend to be
perpendicular to the specimen axis. Qualitatively, the
present results are in good agreement with the afore-
mentioned observations: superimposing uniaxial ten-
sion to torsion leads to higher crack angles. It must be
noted that for both the uniaxial tension and multiaxial
tests, the intensity of distortion K2 has no influence on
the crack angle. This further highlights the idea that
K3 is a relevant multiaxiality indicator: tests with dif-
ferent intensity of distortion (K2) but same multiaxi-
ality level (K3) produce nearly identical crack angles.

4 Discussion

As mentioned in the introduction, another indicator
(the biaxiality ratio B) has already been used in some
studies, mainly in the ones dealing with the origin and
subsequent developments of the Cracking Energy Den-
sity (CED) (Mars, 2001a,b; Zine et al., 2006). In these
works, B is introduced for plane stress or plane strain
problems as the ratio of the two largest principal true
strain,

B = ln(λ2)
ln(λ1) or λ2 = λB

1 . (10)

Considering incompressible materials, it leads to the
following expression of the deformation gradient in the
principal strain directions (here denoted {ei}i=1,2,3):

F = λ1e1 ⊗e1 +λB
1 e2 ⊗e2 +λ−1−B

1 e3 ⊗e3. (11)

Figure 8 corresponds to Figure 2 on which iso-lines
of λ1 and B have been superimposed. For clarity’s
sake, values of K3 and B do not correspond to the
same mechanical states. λ1 and K2 iso-contours are
similar: they both indicate the amount of distortion,
but note that λ1 only indicates the extension in the
direction of the first principal direction, while K2 en-
compasses all directions. B and K3 iso-contours are
similar as they both quantify the multiaxiality. Never-
theless, they differ by nature. Indeed, K3 is an invari-
ant of the true strain tensor and does not depend on
the coordinate system. Computing B necessitates to
calculate the principal stretch ratios but also to rank
them. Practically, it has been used for incompressible
material for which the knowledge of two first princi-
pal stretch ratios is sufficient (the third one being de-
duced from the incompressibility assumption, i.e. the
product of the three principal stretch ratios is equal
to one). Its use for compressible materials should be
investigated.

5 Conclusion

The present paper has shown that the use of K3 as a
multiaxiality indicator of displacement controlled fa-
tigue tests for elastomers is relevant, as compared to
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Fig. 8 Iso-K2 and iso-K3, along with iso-λ1 and iso-B in the space of the loading parameters (λ,τ).

the classical biaxiality ratio B. Indeed, it derives from
the invariants of the true strain tensor, hence it is in-
sensitive to both the choice of the coordinate system
and the ranking of the principal stretch ratios. The
proposed method ensures that fatigue tests can be de-
signed to maintain a consistent multiaxiality level, i.e.
a constant value of K3, which is an issue that has not
been dealt with before. Introducing K2 as the indi-
cator of the intensity of the distortion, we argue that
the pair (K2,K3) is a simple relevant tool to design
fatigue experiments.
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A UVARM subroutine for the computation of
K1, K2 and K3 in Abaqus.

!!! This subroutine is used to compute
!!! the Ki that are quantities deriving
!!! from the Hencky strain tensor
!!! invariants (see Criscione et al. (2000))

SUBROUTINE UVARM(UVAR ,DIRECT ,T,TIME ,
1 DTIME ,CMNAME ,ORNAME , NUVARM ,NOEL ,
2 NPT ,LAYER ,KSPT ,KSTEP ,KINC ,NDI ,NSHR ,
3 COORD ,JMAC ,JMATYP ,MATLAYO , LACCFLA )

C
INCLUDE ’ABA_PARAM .INC ’

C
CHARACTER *80 CMNAME , ORNAME

CHARACTER *3 FLGRAY (15)
DIMENSION UVAR( NUVARM ), DIRECT (3 ,3)
DIMENSION T(3,3), TIME (2)
DIMENSION ARRAY (15) , JARRAY (15)
DIMENSION JMAC (*), JMATYP (*), COORD (*)
DIMENSION HENCK (6), PE(3), ANPE (3 ,3)
INTEGER LSTR , NSHR , NDIR
REAL K1 , K2 , K3

C
!!! Assign ’LE ’ to HENCK

CALL GETVRM (’LE’,ARRAY ,JARRAY ,FLGRAY ,
1 JRCD ,JMAC ,JMATYP ,MATLAYO , LACCFLA )

C
!!! Hencky strain tensor

HENCK (1) = ARRAY (1)
HENCK (2) = ARRAY (2)
HENCK (3) = ARRAY (3)
HENCK (4) = ARRAY (4)
HENCK (5) = ARRAY (5)
HENCK (6) = ARRAY (6)
HENCK (7) = ARRAY (4) ! Symmetric tensor
HENCK (8) = ARRAY (5)
HENCK (9) = ARRAY (6)

C
!!! Parameters for the function SPRIND

NDIR = 3
NSHR = 3
LSTR = 2 ! 2 for the eigenvalues of a

! strain tensor
!!! SPRIND is used to compute the eigenvalues
!!! of a tensor . The result is assigned to PE

CALL SPRIND (HENCK ,PE ,ANPE ,LSTR ,NDIR ,NSHR)
C
!!! Compute the Ki using the principal
!!! extensions PE

K1 = PE (1) + PE (2) + PE (3)
K2 = ((PE (1))**2 + (PE (2))**2 +

1 (PE (3))**2)**0.5
K3 = 3*(6**0.5)* PE (1)* PE (2)*

1 PE (3)/( K2 **3)
C
!!! RESULTS
!!! K1 , K2 , K3

UVAR (1) = K1
UVAR (2) = K2
UVAR (3) = K3

C
RETURN
END

B Fatigue tests results
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K3 n◦ K2 Umax (mm) αmax (◦) Freq. (Hz) Nf
Surf. T (◦C)
@ 500 cycles

0.5

1 0.45 3.51 167 1.75 1000000 34
2 0.45 3.51 167 1.75 140994 32
3 0.45 3.51 167 1.75 892646 32
4 0.45 3.51 167 1.25 477000 -
5 0.45 3.51 167 1.25 77749 31
6 0.56 4.39 212 1 16984 33
7 0.56 4.39 212 1 8843 33
8 0.56 4.39 212 1 52712 32
9 0.56 4.39 212 1 68971 33
10 0.56 4.39 212 1 16944 33
11 0.66 5.23 257.5 1 3657 37
12 0.66 5.23 257.5 0.75 9670 32
13 0.66 5.23 257.5 0.75 10046 35
14 0.66 5.23 257.5 0.75 11405 31
15 0.66 5.23 257.5 0.75 6843 31

1

16 0.50 12.92 0 1.25 88340 34.5
17 0.50 12.92 0 1.25 13431 34
18 0.50 12.92 0 1.25 21482 35
19 0.50 12.92 0 1.25 26363 34
20 0.50 12.92 0 1.25 36438 34
21 0.55 14.55 0 1 25400 34
22 0.55 14.55 0 1 24535 34
23 0.55 14.55 0 1 57604 35
24 0.55 14.55 0 1 194490 32
25 0.55 14.55 0 1 17408 32
26 0.64 17.79 0 0.75 6326 34
27 0.64 17.79 0 0.75 11507 36
28 0.64 17.79 0 0.75 5151 33
29 0.64 17.79 0 0.75 13352 34
30 0.64 17.79 0 0.75 4080 34

Table 3 Results of the fatigue tests.


