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Abstract: Information on the biological parameters of exploited fish stocks facilitates the objective
assessment and management of these living resources. The sardine (Sardina pilchardus) is consid-
ered as overexploited in northwest Africa. It is a key species of the Canaries current large marine
ecosystem (CCLME) of the Atlantic Ocean due to its socioeconomic importance, as well as being a
key intermediary species in marine food web. A massive decline in caught fish for Senegal over half
a century is also reported (61,648 t in 1994 to 7486 t in 2017). Here, we analyzed the age and growth
parameters of sardines in the Exclusive Economic Zone of northern Senegal. Maximum body size
was 31 cm total length (TL). A growth performance index (ϕ′) and a growth rate coefficient (K) of 2.65
and 0.85, respectively, were determined, with this being the first record for this country. Sardines had
higher asymptotic length (L∞, 30.5 cm TL) and age (6 years) in northern Senegal compared with Mo-
rocco (Atlantic Ocean) and the Mediterranean Sea. The asymptotic length found in Northern Senegal
was also higher than in other part of the CCLME and Mediterranean Sea. This difference might be
attributed to differences in the pelagic habitat, environmental factors, and/or fishing pressure. This
study provides new insights towards establishing management measures, especially in data-poor
fisheries and should act as an advocacy to increase sub-regional collaborations.

Keywords: fish growth; fish stock management; Sardina pilchardus; size spectra; small pelagic; West
Africa; Senegal

1. Introduction

The rate at which fish grow is a parameter that influences how individuals respond to
various physiological stressors [1,2]. Growth parameters vary in time and space, depending
on parental condition (e.g., weight and condition), food availability (abundance and qual-
ity), environmental parameters (temperature and salinity), and evolutionary stressors (e.g.,
density, fishing pressure) [3–5]. Thus, information obtained from growth parameters could
help identify the adaptation strategies and environmental conditions of a given species [6],
facilitating the modeling of population dynamics and impacts of anthropogenic factors for
many fisheries considered poor in data [7].

The species Sardina pilchardus inhabits subtropical regions (8◦ N–14◦ N, 32◦ W–43◦ E),
occurring in fish schools [8] at high concentrations along the northwest coast of Africa,
Mediterranean Sea, Atlantic coast of the Iberian Peninsula and Bay of Biscay [9]. Plasticity
in the growth performance, survival, and other life-history characteristics of this species
is the key to their dynamics. Their sensitivity to environmental fluctuations makes them
good targets for evaluating how climatic variability is impacting marine ecosystems [2,4].
If species fail to adapt or adjust to climate change, this issue could impact food security [2].
In northwest Africa (including Morocco, Mauritania, and Senegal), S. pilchardus remains
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the dominant fish species in commercial fisheries, constituting about 45% in biomass for
all catches in small pelagic species in 2017. The total sardine catch in the sub-region
(Morocco, Mauritania, Senegal) in 2017 increased by 14 percent from 2016, from about
1,068,000 tonnes (t) to more than 1,220,000 t [10]. Sardina pilchardus is overexploited in the
waters of the Mediterranean [11,12] and Atlantic Ocean off west Africa [10]. Fréon and
Stéquert [13] recorded S. pilchardus catches of 653.5 t in Senegal in 1979, and the FAO [14]
documented an increase to 3391 t in 2011. Sardina pilchardus are almost exclusively caught
by artisan fishers using motorized canoes with purse seines (400 m to 1000 m long) as
fishing gear in Senegal (see ref. [15]).

Sardina pilchardus has been extensively studied in the Mediterranean waters [9,16,17],
Atlantic coast of the Iberian Peninsula [18,19], Bay of Biscay [20–23], and Atlantic Ocean
off northwest Africa [24–26]. However, most data on the growth of this species are dated
and/or confined to the Morocco waters, where most sardines are caught (more than
90% [27]). Given the low catches of this species in Senegal, data on the growth of S. pilchardus
in this country are rare. In particular, fish stocks for which little or no data are available
present a serious problem for stock assessments [28].

Stock assessment is about providing fisheries managers with possible management
choices and their consequences [29]. Commercial fish species have substantial data sets that
can be incorporated by complex stock assessment models [30]. These data may include time
series of total removals, catch-at-length or catch-at-age, relative or absolute abundance data,
fishing effort, and information on life history parameters. These data sets are generally
unavailable for most fisheries. Fisheries and stocks lacking these multiple types of data
are referred to as data poor or “data limited” fisheries [31–33]. However, data-limited
stock assessment is a broad field that includes several families of models [34]. These
models have been developed to meet the demand for management of unassessed and
data-limited fisheries, stocks, and species [32,35]. In such data-limited situations, two main
quantitative approaches, based on data availability, can be used to assess the exploitation
status of data-poor fisheries. These are the Length-Based Bayesian (LBB; [36]) and Length
Based Integrated Mixed Effects (LIME; [37]) models, both length-based models applicable
when only information on the catch size composition is available. Size frequency data [3]
represent key information in species ecological processes. Due to the rapid availability of
length data for many stocks, a number of length-based stock assessment methods have been
developed and applied to estimate biological parameters and understand fish population
dynamics [36,38,39]. Simple size-based assessments can be carried out for many stocks
considered too data poor to assess [36] and allow estimating fish growth and mortality
rates (e.g., refs. [40,41]). It is possible to apply generic management procedures, which are
not necessarily the best practice for a given fishery, but better than taking no action [42].
Prince et al. [43] stated that the extension of the meta-analysis of species combined with
general knowledge in the strategy of target species could be used to predict the life cycle
characteristic ratios of highly exploited populations. Simple size-based assessments could
be conducted on many stocks currently considered data poor for evaluation [43]. In
the context of change in environmental conditions, fisheries managers must respond, by
applying adaptive management strategies, to achieve sustainable and efficient management,
even for data-poor stock [44] as in Senegal.

The current study aimed to provide estimates of the growth parameters of S. pilchardus
in northern Senegal. The acquired growth parameters were then compared with those
found in the literature off northwest Africa (e.g., Morocco), in the northeast Atlantic (Bay
of Biscay and Iberian Peninsula) and the Mediterranean Sea (e.g., Greece, Italy, Spain). The
results of this study are expected to contribute baseline information for the development of
appropriate management measures.
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2. Materials and Methods
2.1. Study Area

The northern part of Senegal (Figure 1) extends from Saint-Louis (16◦04′ N) northwards
to the tip of the Cap-Vert peninsula (14◦36′ N, Dakar). This region is characterized by the
presence of strong swells, a succession of dunes on the coast. A large mudflat of 20 to 80 m in
depth is located on either side of the mouth of the Senegal River (15◦15′ N–16◦30′ N). From
October, this area is characterized by cold (15 to 16 ◦C) [45–47], salty waters (35 to 36.5‰)
that extend over the entire continental shelf by January [48,49]. The Senegal River con-
tributes to the structuring of the marine area for a limited period (during periods of heavy
river flows), during which time a stratified thin superficial lens of less saline water that does
not reach the bottom forms [50,51]. This area forms a convergence zone, where the orienta-
tion of the coast facilitates the accumulation of water (upwelling) or downwelling [48]. The
northern area supports very important fishing centers, including Saint-Louis, Fass Boye,
Mboro, and Kayar [15], which correspond to the present ecological conditions. Traditional
fishing communities have a strong presence [52].
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Figure 1. Map of the study area with the localization of sampling stations corresponding to the main
landing ports along the Senegal coast. The Northern section includes Saint-Louis, Kayar, and Yoff.

2.2. Biological Data

The data used in our study were collected during artisanal fisheries surveys in 2015
(987 specimens) over keys artisanal landing sites (Kayar, Saint-Louis, and Yoff) located on
the north coast of Senegal (from 16◦04′ N to 14◦36′ N; Figure 1). Surveys carried out by the
fishery research vessel (FRV) Dr Fridtjof Nansen [53] in 2007 (2153 specimens) and 2008
(811 specimens) were also included (Table 1). These fish surveys were conducted from
November to December, with a few surveys during the June- to-July period (2007, 2008
and 2015). Samples consisted of random collections of individuals from survey hauls and
landings. The method of capture deployed by the FRV Fridtjof Nansen was dependent
on the size of the catch. Either the entire catch was sorted and measured or only sub-
samples. At all trawl hauls, the catch was sorted according to species, and number and
weight measurements were taken for all fish species. Key species length and weight are
recorded using an electronic fish meter connected to a customized data acquisition system
(Fish2Data and Biotic Editor; Version 1.9) running on the server of the vessel. Outlier
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data were excluded from the analyses. A total of 3951 fish samples were recorded during
surveys (Table 1). Total length (TL in cm) of fish samples was measured to the nearest
1 mm. Sampled individuals were grouped into 1 cm interval size classes to calculate
size–frequency distributions and to estimate growth parameters.

Table 1. Size distribution of Sardina pilchardus (unsexed, expressed in centimeter) specimens (n = 3951)
collected in Northern Senegal in landing sites (2015; n = 987) and during scientific cruises at sea (2007,
n = 2153; 2008, n = 811).

Length (cm)
Month

1 2 3 4 5 6 7 8 9 10 11 12

20 0 0 0 0 0 0 0 0 0 0 0 0
21 3 0 8 0 1 0 0 1 0 0 4 0
22 101 42 15 14 8 12 13 26 35 22 35 71
23 15 57 45 26 5 16 17 34 46 37 27 56
24 98 46 31 41 37 63 79 45 54 65 94 71
25 83 12 11 56 27 16 7 26 46 66 32 29
26 99 0 0 32 35 0 38 41 19 44 9 45
27 46 0 0 2 40 0 78 31 0 22 8 68
28 39 25 8 22 51 1 65 37 7 45 8 53
29 15 19 17 21 56 5 71 37 1 46 5 42
30 9 31 26 16 62 11 77 38 8 46 7 37
31 33 31 13 9 23 17 21 19 8 27 9 14

2.3. Estimation of Growth Parameters

Von Bertalanffy growth parameters (K and L∞) were estimated from monthly length
frequency data using the ‘TropFishR’ (Tropical Fisheries Analysis with R; Version 1.6.3)
package [39]. These software packages contain many promising new features, but still
include the Powell-Wetherall (P-W) method [54,55] as a central component of the proposed
analyses [39]. The P-W method allows estimateing L∞ from a linearized transformation
of the annual length frequency data (LFD) (i.e., the “catch curve”) of S. pilchardus. To
do this, the mean lengths (Lmean) of all fish larger than the catch length (Lc) are calcu-
lated (Figure 2). This curve is plotted from a regression analysis of the results obtained
(Lmean − Lc) using a simple linear function of the form L∞ = a/−b. The parameters L∞ and
K (with standard errors) can be obtained from this method using manual selection of data
points for regression [39,56,57].
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Figure 2. Powell–Wetherall plot to derive an estimate of L∞ for Sardina pilchardus in Northern
Senegalese waters. Lmean is the mean length of the cohort; Lprime is any length equal and above
the length under full exploitation. The regression line identifies the first length at full exploitation,
coinciding with the largest size grouping in the length-frequency data (blue circle).

There is broad acceptance that L∞ can be easily estimated, and that it is always close to
Lmax (i.e., the length of largest individual in a given sample) in fisheries science, especially
when studying data-poor fisheries and tropical stocks [39]. The largest size classes tend
to be deselected, which appears to be beneficial, because it seems to solve the problem of
the unbalanced influence of large-size classes. A unique procedure applied to the length–
frequency data provides stock age composition and growth parameters. This procedure
uses the length–frequency data to determine the percentage of fish at each age. The growth
curve was plotted using the von Bertalanffy equation [58] as follows:

Lt = L∞(1− e−K(t−t0)) (1)

Lt is the fish size at time ‘t’ (in year); L∞ is the mean asymptotic length; ‘K’ is a constant
of dimension year−1, expressing the rate at which L∞ is approached; ‘t’ is the age; and t0 is
a theoretical age corresponding to zero length.

The growth performance index of a species was captured by the growth index (ϕ′) [59],
and was computed from L∞ and K:

∅′ = log10K + 2log10L∞ (2)

Because t0 cannot be estimated from length–frequency data, a very approximate value
of t0 was estimated by substituting L∞ (in cm) and K (year −1) in the following equation [40]:

log(−t0) ≈ −0.3922− 0.2752L∞ − 1.038 logK (3)

The growth performance index (ϕ′) was used to compare growth rates among
S. pilchardus, and to evaluate growth performance potential under different environmental
constraints [4]. According to Pauly [60], it is possible to compare the different growth
parameters obtained from a length frequency distribution with parameters based on scales
and otoliths. Thus, the growth parameters of S. pilchardus from different stocks (Mediter-
ranean sea versus Atlantic Ocean off northwest Africa) (Table 2) were used to construct an
auximetric double logarithmic plot of an individual’s coefficient of growth rate (K) against
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an estimate of its mean asymptotic length (L∞). All growth parameters were converted to
total length (TL) based on the relationship given by Fréon and Stéquert [13]:

FL = 1.106SL + 0.133 ↔ TL = 1.047SL + 0.257 (4)

where ‘FL’ is fork length; ‘SL’ is standard length; and ‘TL’ is total length (in cm).

Table 2. Growth parameters of Sardina pilchardus (unsexed) estimated in Northern Senegal (present
study) and in Northwest Africa, Iberian Peninsula, Bay of Biscay, and the Mediterranean Sea. The
growth parameters were estimated according to three different methods, i.e., scale, otoliths, or
length frequencies as in the present study (size expressed in cm and Total length). Lmax: maximum
recorded length (cm); L∞: Lt value when the growth rate is zero; K: coefficient of growth rate, t0:
theoretical time “t” when the fish length is zero, ϕ′: growth performance index. NR: not reported, LF:
Length–Frequencies.

Country Lmax Method L∞ K t0 ϕ’ Reference

Mediterranean Sea

Greece

NR NR 16.6 0.39 −1.64 2.04 Laskaridis [17]
NR NR 16.7 0.48 −1.31 2.13 Pauly [61]
18 Scale 18.1 0.30 −3.21 1.99 Tserpes [62]
21 LF 20.8 0.86 NR 2.57 Voulgaridou and Stergiou [9]

18.5 NR 19.5 0.39 −0.48 2.17 Antonakakis et al. [63]

Italy 20.4 Otoliths 20.5 0.46 −0.5 2.29 Stergiou [64]
NR NR 18.8 0.38 −2.3 2.13 Colloca et al. [16]

Morocco

17.9 Otoliths 19.8 0.27 −3.52 2.11 Idrissi [26]
NR Otoliths 21.3 0.25 −2.79 2.06 Idrissi [26]
NR Otoliths 21.8 0.27 −2.93 2.11 Idrissi [26]
NR NR 25.2 0.23 NR 2.16 Erzini [65]

Iberian Peninsula

Portugal 16 Otoliths 14.3 NR NR NR Sylva et al. [66]
North Portugal 23.4 LF 20.8 0.6 NR 2.64 Sylva et al. [67]
South Portugal 23.4 LF 20.4 0.1 NR 2.34 Sylva et al. [67]

Portugal NR LF 22.4 0.67 NR 2.53 Erzini [65]
Spain NR Otholiths & LF 20.08 0.23 −1.1 1.91 Pertierra and Morales-Nin [68]

Bay of Biscay

France

NR LF 20 0.32 NR 2.11 Pauly [61]
NR LF 25 0.25 NR 2.19 Pauly [61]
NR LF 16.4 0.56 −0.66 2.18 Pauly [61]
NR LF 19 0.4 NR 2.16 Pauly [61]

Spain

NR LF 28.4 0.23 NR 2.27 Froese [69]
NR NR 22.5 0.33 −1.81 2.22 Pauly [61]
NR NR 20.9 0.53 −1.11 2.36 Pauly [61]
NR Otoliths 20.7 0.69 −0.64 2.47 Alemany and Alvarez [70]

Northwest Africa

Morocco

NR NR 21.6 0.49 NR 2.36 Belveze [24]
NR NR 21.2 0.68 NR 2.49 Belveze and Erzini [71]
NR LF 22.2 0.26 NR 2.10 Bouchereau et al. [72]
NR Otoliths 21.6 0.82 −0.13 2.58 Erzini [25]

Senegal 33 LF 30.5 0.85 −0.58 2.65 Present study

2.4. Statistical Analysis

Statistical analyses were performed using “stats” and “Hmisc” R packages [73,74].
Significance was set to α < 0.05. We used analyses of variance (ANOVAs) to compare
total length distributions, followed by Kruskal–Wallis tests. Estimated growth parameters
(Table 2) of sardine stocks in the Mediterranean and Atlantic Ocean off northwest Africa
were used to construct an auximetric plot of the K parameter against the corresponding
estimate of asymptotic length L∞. This graph was used to compare intra-species and
inter-species growth performance [4]. The growth performance index (ϕ′) of different
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oceanic regions (Mediterranean and Atlantic Ocean off northwest Africa) was tested by
Kruskal–Wallis tests. The growth performance index (ϕ′) was used to compare growth
rates, and to assess the potential for growth under different environmental stresses, such as
overexploitation and climate change.

3. Results
3.1. Population Structure

The size distribution of S. pilchardus in the sea off northern Senegal peaked at 26 ± 1 cm.
The maximum length (Lmax) of samples recorded was 31 cm. Comparison of monthly
variability of the size distribution showed a significant difference in S. pilchardus (ANOVA:
F-value = 11.86, p-value < 0.001; Kolmogorov–Smirnov: D = 0.13162, p-value < 0.001;
Figure 3).
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Figure 3. Size frequency distributions for Sardina pilchardus caught off the Northern Senegalese
waters. The total length was used (in cm); mode at 26 cm (n = 3951). The observed distribution (bars)
and a trend curve (polynomial).

3.2. Growth Parameters

Growth parameters were estimated as (Figure 4) L∞ = 30.5 cm (i.e., closer Lmax);
t0 = −0.58; K = 0.85. Our results showed that S. pilchardus grew rapidly during the first
and second year of life, and then growth slowed down gradually until it was almost
negligible after five years (Figure 4). More than 60% of maximum length was achieved
during the second year of life (Figure 4). The estimated values of L∞ and K were plotted on
an auximetric plot (Figure 4).

No statistical differences was found between the growth performance index (ϕ′) of
historical data collected off the coast of Senegal and data collected from other areas off
Northwest Africa (Kruskal–Wallis; chi-squared = 2, df = 1, p-value = 0.1573; Table 2). The
growth performance of stocks off Northwest Africa, Iberian Peninsula, Bay of Biscay, and
the Mediterranean Sea did not differ significantly (Kruskal–Wallis; chi-squared = 7.7877,
df = 4, p-value = 0.09967). The growth parameters (L∞, K and ϕ′) of S. pilchardus were
higher off northwest Africa compared with the Iberian Peninsula, the Bay of Biscay, and the
Mediterranean Sea (Figure 5). Asymptotic length (L∞) was also higher in the present study
compared with those found off Morocco (ANOVA: p < 0.05; Table 2). Sardina pilchardus
inhabiting the ocean off northwest Africa were characterized by longer lifespans (tmax),
higher maximum lengths (Lmax), and longer asymptotic lengths (L∞) compared with those
inhabiting the Iberian Peninsula, the Bay of Biscay, and the Mediterranean Sea (Kruskal–
Wallis; chi-squared = 5.901, df = 4, p-value = 0.2067; Table 2).
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4. Discussion

This work has a major disadvantage to consider. Indeed, the study of the biological
parameters of the sardine, which is a species shared with neighboring countries, cannot
be isolated and any exploitation may occur outside the maritime borders of Senegal [3,52].
Several large individuals were found in the waters off northern Senegal (21 to 31 cm).
Fréon and Stéquert [13] suggested that such individuals occur when living conditions are
more favorable in the northern Senegal (temperature, food availability). Of note, because
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these fish are planktivorous, variation in the intensity of upwelling directly affects the
distribution and abundance of phytoplankton [75]. In turn, phytoplankton condition the
dynamics of primary consumers, including zooplankton [76] and small pelagic fish [1].

The biological parameters of small pelagic fishes are expected to differ with habitat,
environment factors, and overfishing [3,4,6]. The current study showed that the asymptotic
length (L∞) of S. pilchardus was 30.5 cm maximum at six years, and that this value differed
significantly to other countries in northwest Africa (Table 2). In particular, L∞ was much
larger compared with previous results obtained in the same study area (northwest Africa,
i.e., Morocco). However, interpretation of S. pilchardus growth is influenced by the seasonal
variation knowing that seasonal differences in growth were reported [3,52]. Moreover,
for fish migratory species, such as S. pilchardus, the input data in growth studies is often
biased (some elements could be missing because the entire cohort is not present in the
sampling area). The difference in L∞ reported was also reflected in the maximum length of
S. pilchardus observed in Senegal (31.1 cm in the present study), which was higher compared
with Morocco (Table 2). This difference could be explained by the existence of different
stocks or meta populations. Genetic differences for S. pilchardus was reported along the
Moroccan coast (Comm Pers Malika Chlaida, INRH), and Fréon and Stéquert [13] recorded
two subspecies. Based on meristic studies, Silva [77] also showed that sardines in the
southern Iberian Peninsula and Morocco were distinct to sardines in the rest of the west-
ern Mediterranean Sea. Genetic studies carried out by Atarhouch et al. [78] also showed
differences between the population of Pasajes (Bay of Biscay in the northern Atlantic), the
Mediterranean Sea, and the Moroccan coast (Atlantic Ocean). However, the differences
reported in growth parameters may be related to the types of data used (e.g., length fre-
quency, otolith). All datasets require representative length frequency information, covering
the full length range of the species [79–81]. The use of a limited length range may lead to a
bias in the estimation of growth parameters. However, this approach of length frequency is
more suitable for young, fast-growing fish where length patterns for each age group are
easily distinguished. The suitability for length frequency analysis depends on the structure
of the data. Whereas, the results obtained from the otolith studies are known to provide
uncertainties with respect to aging errors. Indeed, the growth medium can have a consider-
able impact on the formation of the false ring and thus on the results [82,83]. Environmental
factors, such as sea water temperature, can affect fish growth. Hammers et al. [83] indicated
that measurement errors may be related to difficulty in locating the exact center of the scale
focus or core of the otolith and in identifying the margin of the annuli or the location where
faster growth has resumed [83].

Within the same fish population, there may be a series of biometric and meristic
characteristics that change according to the environment [1,84–86]. Indeed, the early life
stages and spatial distribution of S. pilchardus in the Mediterranean Sea are strongly linked
to environmental changes. Compared with the waters off northwest Africa, prey availability
and seawater temperature were lower in the Mediterranean Sea [76], which could explain
the difference and lower L∞ found with the Senegalese S. pilchardus.

According to Hattab et al. [87] and Basilone et al. [88,89], environmental changes
may have impacts on the size and fecundity of small pelagic species. These results were
also confirmed by Baldé et al. [4,6] in West Africa. Indeed, growth is strongly influenced
by environmental variations which lead to a decrease or increase in fecundity of small
pelagics in Senegal. Analysis based on the size and shape of fish indicates that sardines in
northern Morocco were distinct to those in southern Morocco [90] which reflect contrasted
environmental conditions. Fréon and Stéquert [13] suggested that the Senegal stock belongs
to the Mauritanian stock, which is separate from Moroccan stocks. This stock difference is
strongly linked to the intensification of upwelling in the Senegal–Mauritanian area [91]. A
low intensity phase of upwelling and global warming in the Senegal–Mauritanian zone
could lead to the northward regression of the southern limit of S. pilchardus stock [92].

A moderate increase in favorable (North East) wind speed enhances plankton produc-
tion in Northwest Africa upwelling ecosystem, which improves the growth performance of
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S. pilchardus [93]. The growth parameters and asymptotic length for this short-lived species
tend to be higher in more productive areas such as the Atlantic Ocean off northwest Africa
compared with the Iberian Peninsula, the Bay of Biscay, or the Mediterranean Sea.

In addition to environmental factors, high rates of fishing mortality alter population
structure and growth rates of many pelagic fishes [4,6,9]. Voulgaridou and Stergiou [9]
showed that a decrease in S. pilchardus body size from 1996 to 2000 corresponded to a
sharp increase in sardine landings from 1992 to 1997 in the Mediterranean Sea (Greece). In
northwest Africa (Senegal), Sardinella aurita and Ethmalosa fimbriata exhibit similar behav-
iors. Baldé et al. [94] and Baldé et al. [3,4] hypothesized that there would be a relationship
between increased in catches and decrease in growth performance for both species. Fishing
generally affects the length structure of fishing stocks (e.g., Baldé et al. [3]). Indeed, there
was an increase in S. pilchardus catches in 1975, 1980, 1984, 1990, 1992, 1996, 2007, 2010,
and 2017 in the northern waters of Senegal (Figure 6). This relationship between growth
and exploitation has also been observed for other sardine species (Sardinops melanostictus;
e.g., ref. [95]). The relationship between fishing mortality and growth performance might
ultimately be the result of the fishing gear selectivity change of fishing practice and adapta-
tion of artisanal fishermen, e.g., refs. [3,94], leading to an evolutionary change in growth
through the continuous removal of larger individuals from populations. However, insuffi-
cient data were available on S. pilchardus, preventing our ability to establish a clear direct
relation of growth parameters (including growth rates) with environmental factors.
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5. Conclusions

This work has provided results to improve scientific advices for sustainable man-
agement of S. pilchardus in the Senegalese waters. Based on their length frequency data,
we hypothesize that the growth performance of S. pilchardus is strongly dependent on
environmental conditions and fishing pressure. Indeed, environmental characteristics
(e.g. thermal preferendum, availability of prey) and the level of fishing pressure exerted on
S. pilchardus could exert a balanced impact on growth parameters and asymptotic length,
and should therefore be considered as phenotypic parameters. At methodological level,
the approach used in this study could contribute to the sustainable management of various
small pelagic species that inhabit the sub-region and over, in a context of data poor fisheries.
The results of this study encourage for more collaborative work at sub-regional level on
S. pilchardus to improve management purposes, especially in the context of climate change
and over exploitation.
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