
HAL Id: hal-04371001
https://hal.science/hal-04371001v1

Preprint submitted on 3 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Solution of Nonlinear Projection Equations in a
Multi-Task Learning Framework

Dawen Wu, Abdel Lisser

To cite this version:
Dawen Wu, Abdel Lisser. Parallel Solution of Nonlinear Projection Equations in a Multi-Task Learning
Framework. 2024. �hal-04371001�

https://hal.science/hal-04371001v1
https://hal.archives-ouvertes.fr

PREPRINT SUBMIT TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2023 1

Parallel Solution of Nonlinear Projection Equations
in a Multi-Task Learning Framework

Dawen Wu and Abdel Lisser

Abstract—Nonlinear projection equations (NPEs) provide a
unified framework for addressing various constrained nonlinear
optimization and engineering problems. However, when it comes
to solving multiple NPEs, traditional numerical integration meth-
ods are not efficient enough. This is because traditional methods
solve each NPE iteratively and independently. In this paper, we
propose a novel approach based on Multi-Task Learning (MTL)
for solving multiple NPEs. The solution procedure is outlined
as follows. First, we model each NPE as a system of ordinary
differential equations (ODEs) using neurodynamic optimization.
Second, for each ODE system, we use a Physics-Informed Neural
Network (PINN) as the solution. Third, we use a multi-branch
MTL framework, where each branch corresponds to a PINN
model. This allows us to solve multiple NPEs in parallel by
training a single neural network model. Experimental results
show that our approach has superior computational performance,
especially when the number of NPEs to be solved is large.

Index Terms—Nonlinear projection equations, Multi-task
learning, Ordinary differential equations, Physics-informed neu-
ral networks, Error analysis

I. INTRODUCTION

A nonlinear projection equation (NPE) consists of a non-
linear mapping function and a feasible set, and the objective
is to find the fixed point of the NPE problem. As reported
in the literature [1], [2], NPEs provide a unified framework
for modeling a variety of nonlinear optimization problems,
including complementarity problems, variational inequalities,
and equilibrium point problems. Such problems have nu-
merous real-world applications in fields such as economics,
engineering, and computer science.

Typically, NPEs are addressed through neurodynamic opti-
mization, which models the problem as a system of ordinary
differential equations (ODEs) [3]–[5]. The constructed ODE
system must exhibit the global convergence property, ensuring
that the state solution of the system converges to the NPE
solution as the time variable approaches infinity, irrespective
of the initial point. Consequently, the NPE problem is trans-
formed into solving the state solution of the ODE system.
However, this ODE system is often highly nonlinear and lacks
analytical solutions. As a result, numerical integration methods
such as Runge-Kutta (RK) methods or backward differential
formulation are frequently employed to solve for the state
solution [6].

Motivation. Traditional methods for solving NPEs typi-
cally rely on neurodynamic approaches using numerical in-
tegration. While feasible, these methods are computationally

The authors are with Université Paris-Saclay, CNRS, CentraleSupélec,
Laboratoire des Signaux et Systèmes, 3 rue Joliot Curie, 91190
Gif-sur-Yvette, France (e-mail: dawen.wu@centralesupelec.fr;
abdel.lisser@l2s.centralesupelec.fr).

inefficient for handling large or multiple instances of NPE
problems. This inefficiency is particularly pronounced in appli-
cations such as energy markets and traffic management, where
it is often necessary to solve multiple nonlinear optimization
problems. It is worth noting that many of these nonlinear
optimization problems can be reformulated as NPE problems
[1]. For example, pricing and demand management in elec-
tricity markets can be formulated as many NPE problems, and
solving them iteratively is time-consuming [7]. To overcome
these challenges, we propose a Multi-Task Learning (MTL)
framework. This framework solves these interrelated NPE
problems in parallel, significantly reducing computational cost.

A. Related works

Neurodynamic optimization. Over the past few decades,
a variety of neurodynamic models have been developed to ad-
dress diverse constrained optimization problems, encompass-
ing linear and quadratic programming [8], [9], general convex
programming [10]–[12], biconvex optimization [13], pseudo-
convex optimization problems [14], time-varying optimiza-
tion problems [15]–[17]. Specialized applications have also
been explored, such as supervised feature selection through
fractional programming [18], task assignment in multivehicle
systems [19], and mitigated TDOA localization [20]. In partic-
ular, a projection neurodynamic model for solving NPEs was
introduced and demonstrated global convergence to the exact
solution under mild conditions [3]. This model also exhibited
both asymptotic and exponential stability without requiring
a smooth nonlinear mapping. To enhance performance, a bi-
projection neurodynamic model was devised to efficiently
solve quadratic optimization problems [4]. Moreover, a col-
laborative approach combining the projection neurodynamic
model with particle swarm optimization was introduced for
global optimization problems [5].

Physics-informed neural networks. Another research
direction explored in this paper concerns the application of
deep learning for solving differential equations. This concept
was initially introduced in the 1990s, where neural networks
were trained to minimize a loss function that incorporated
both boundary conditions and differential equations [21].
Subsequent research demonstrated that network architecture
could be specifically designed to satisfy boundary conditions
[22], [23]. With the rise of deep learning, this approach has
regained interest for solving high-dimensional nonlinear partial
differential equations [24], [25]. A significant contribution
to this field is the development of physics-informed neural
networks (PINNs) [26], which integrate physical laws and data
errors into the loss function. The flexible network structure and

PREPRINT SUBMIT TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2023 2

efficient training algorithms of PINNs have led to numerous
successes across a wide range of computational problems in
physics and engineering [27]. This expanding body of work
is propelled by a collocation strategy that adapts PINNs to
exploit the structural properties of the target problem. Con-
sequently, several variations of PINNs have been developed
to address distinct problem scenarios [28], [29] and enhance
computational performance [30]–[33]. To facilitate the use
of deep learning for solving differential equations, several
packages have been developed [34], [35].

Multi-task learning. Multi-task learning (MTL) is a
machine learning approach that simultaneously optimizes mul-
tiple related tasks, improving generalization and performance
by sharing information and leveraging commonalities among
tasks [36]. MTL algorithms primarily focus on training a sin-
gle model capable of solving various tasks, and this approach
has been applied to diverse fields such as reinforcement learn-
ing, computer vision, natural language processing, and robotics
[37]–[43]. Addressing the challenging learning problems in
MTL involves various strategies. Architectural solutions in-
clude employing multiple modules or paths, attention-based
architectures, or decomposing the problem into local problems
corresponding to individual tasks, which are easier to learn
[44]–[47]. These local models are then integrated into a single
multi-task policy using diverse distillation techniques [48].

B. Contributions

The main contributions of this paper are as follows:
• We present an MTL framework designed to solve mul-

tiple NPE problems simultaneously, in contrast to tradi-
tional numerical methods that treat each NPE problem
individually. The proposed MTL framework consists of
two parts, the shared layers and the task-specific layers.
The shared layers are responsible for processing the com-
mon features across multiple NPE problems, while the
task-specific layers are designed to handle each individual
NPE.

• We conduct an error analysis for the proposed neural
network approach. Our study shows that the total error in
our method consists of three components: Neurodynamic
Error, Generalization Error, and Optimization Error. We
investigate the factors that influence these errors, includ-
ing the time range, the network architecture, and the
model training. Finally, we show that even a single-layer
neural network is capable of converging to the optimal
solution of the NPE.

• We apply the proposed MTL framework to a variety
of NPE scenarios. Experimental results show that our
MTL framework exhibits significant computational per-
formance benefits, especially when a large number of
instances need to be solved or when the required solution
accuracy is relatively lax. In particular, when solving
for 100 NPE instances with a target error reduction
down to 1, our MTL framework is 3 times faster than
traditional numerical methods. Moreover, we observe
that the computational time for our MTL framework
grows more slowly than that of traditional numerical

methods as the number of instances to solve increases.
These experimental results validate the efficiency of the
proposed MTL framework.

C. Outline

The remainder of this paper is organized as follows. Section
II provides the necessary background, including an introduc-
tion to the NPE problem and how a neurodynamic optimiza-
tion approach models it. Section III reformulates an NPE
problem into a neural network training problem using PINNs,
accompanied by an error analysis. Section IV introduces the
proposed MTL framework and demonstrates its ability to solve
multiple NPE problems in parallel. Section V presents ex-
perimental results and compares them with various numerical
solvers. Finally, Section VI summarizes the key findings of
this paper and outlines directions for future research.

II. NEURODYNAMIC APPROACH FOR MODELLING NPE

A. NPE

Definition 1 (Nonlinear projection equation). Consider a
nonlinear mapping G : Rd → Rd and a feasible set Ω ⊂ Rd.
The projection function PΩ : Rd → Ω maps a vector z ∈ Rd

onto Ω, such that:

PΩ(z) = argmin
x∈Ω

∥z − x∥, (1)

where ∥ · ∥ denotes the Euclidean norm.
The NPE problem, denoted by NPE(Ω, G), is to find a

vector x∗ ∈ Ω satisfying:

PΩ(x
∗ −G(x∗)) = x∗. (2)

Definition 2 (Nonlinear complementarity problem). Consider
a nonlinear mapping G : Rd → Rd. The nonlinear comple-
mentarity problem, denoted by NCP (G), is to find a vector
x∗ ∈ Rd satisfying:

G(x∗) ≥ 0, x∗ ≥ 0, G(x∗)Tx∗ = 0. (3)

Definition 3 (Variational inequality). Consider a nonlinear
mapping G : Rd → Rd and a feasible set Ω ⊂ Rd. The
variational inequality problem, denoted by V I(Ω, G), is to
find a vector x∗ ∈ Ω satisfying:

(x− x∗)T G (x∗) ≥ 0, x ∈ Ω. (4)

Proposition 1 ([1]). Let Ω ⊂ Rd be a nonempty closed
convex set. Then x∗ solves the problem NCP (G) if and only
if x∗ solves NPE(Rn

+, G), where Rd
+ = {x ∈ Rd|x ≥ 0}

represents the set of non-negative real vectors.

Proposition 2 ([1]). Let Ω ⊂ Rd be a nonempty closed convex
set. Then x∗ solves the problem V I(Ω, G) if and only if x∗

solves NPE(Ω, G).

According to the literature [1], NPEs can be viewed as a
unified framework for many nonlinear optimization problems.
For example, the Karush-Kuhn-Tucker (KKT) conditions for

PREPRINT SUBMIT TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2023 3

linear and quadratic programming problems can be represented
as linear complementarity problems, and the KKT conditions
for convex constraint nonlinear optimization problems can be
transformed into nonlinear complementarity problems [49].
Both are recast as NPEs according to Proposition 1. Many
Nash equilibria in game theory can be represented by varia-
tional inequalities [50], [51], which are then reformulated as
an NPE via Proposition 2.

B. Neurodynamic Approach

Assumption 1.
• The function G(·) is locally Lipschitz continuous.
• The feasible set Ω is a box-constrained set, defined as

Ω = {x = (x1, x2, . . . , xn) ∈ Rn | li ≤ xi ≤ hi},
where li and hi denote the lower and upper bounds of xi
respectively. In this case, the projection function in Eq. (1)
is reduced to PΩ(x) =

(
P 1
Ω(x1), P

2
Ω(x2), . . . , P

d
Ω(xd)

)T
,

where P i
Ω(xi), i ∈ {1, 2, . . . , d} is defined as:

P i
Ω(xi) =

li if xi < li,

xi if li ≤ xi ≤ hi,
hi if xi > hi.

(5)

Consider a time-dependent function y : R → Rn, where
y(t) denotes the state at time t. The objective of neurodynamic
optimization is to design a first-order ODE system to govern
y(·). In this paper, we utilize the projection neurodynamic
model proposed by [3] to model the NPE, wherein the ODE
system is defined as follows:

dy

dt
= −G (PΩ(y)) + PΩ(y)− y. (6)

To simplify the discussion, we define:

Φ(y) = −G (PΩ(y)) + PΩ(y)− y. (7)

Hence, the ODE system (6) can be expressed as dy
dt = Φ(y).

Definition 4 (State solution). Given an ODE system dy
dt =

Φ(y), where Φ : Rd → Rd and an initial condition (t0 ∈
R, y0 ∈ Rd), a vector-valued function y : R→ Rd is deemed
the state solution if it satisfies the ODE system dy

dt = Φ(y) and
the initial condition y(t0) = y0. Given a time range [t0, T],
y(T) is denoted as the end state of the interval.

Theorem 1 ([3]). Consider an NPE problem, NPE(Ω, G),
and let Assumption 1 hold. For any initial condition, (t0, y0),
the state solution of the ODE system (6) converges to the
optimal solution of NPE(Ω, G) as time t approaches infinity,
i.e,

lim
t→∞

y(t) = x∗, (8)

where x∗ is an optimal solution of NPE(Ω, G).
In particular, if NPE(Ω, G) contains only one optimal

solution x∗, then the ODE system is globally asymptotically
stable at x∗.

Initial value problem (IVP) construction. In practice, to
solve the ODE system of Eq. (6) requires the construction of
an IVP, which consists of the following three:

• The ODE system, which is given in Eq. (6).
• An initial condition (t0, y0), which is user-specified and

represents the starting point of the state solution.
• A time range [t0, T], which is user-specified and repre-

sents the domain of the state solution to be solved.
After constructing the IVP, y(t), t ∈ [t0, T] represents the
state solution over the time range of [t0, T]. According to
Theorem 1, the end state, y(T), serves as a predicted solution
to the NPE, i.e., y(T) ≈ x∗. The state solution is typically
determined by a numerical method, such as the Runge-Kutta
method. In the next section, we show how to use the neural
network to solve the IVP, thus avoiding the use of numerical
methods.

III. REFORMULATION OF AN NPE AS A NEURAL
NETWORK LEARNING PROBLEM

In this section, we illustrate the process of reformulating an
NPE problem as a neural network training problem. Section
III-A presents a modified PINN and shows how it solves for
both the ODE system and the NPE. Section III-B presents the
loss and objective functions used to train the neural network.
Section III-C examines the error composition of the proposed
method and discusses its convergence properties.

A. PINN Model

Model description. We use the following PINN model to
solve the NPE problem,

ŷ(t;w) = y0 +
(
1− e−(t−t0)

)
N(t;w), t ∈ [t0, T], (9)

where N(t;w) denotes a fully connected neural network with
trainable parameters w. The given time range is [t0, T]. The
auxiliary function

(
1− e−(t−t0)

)
ensures that the neural net-

work always satisfies the initial condition ŷ(t = t0;w) = y0,
irrespective of the model parameters w. Fig. 1(A) describes
the PINN model.

Construction technique. The designed PINN model, as
described by Eq. (9), employs the construction technique
proposed by Lagaris et al. [22]. This technique aims to
modify the output of the neural network N(t;w) so that it
inherently satisfies initial or boundary conditions, independent
of the values of the trainable parameters w. This construction
technique has also been used in other PINN studies [28], [52],
[53]. In our work, we adapt this technique to the specific
requirements of our problem setting, which considers only the
initial conditions (t0, y0).

Approximate state solution to the ODE system. As
shown in Fig. 1 (B), the proposed model itself approximates
the state solution to the ODE system (6) over the time range
[t0, T], that is,

ŷ(t;w) ≈ y(t), t ∈ [t0, T], (10)

where y(·) represents the true state solution of the ODE
system. Although the input time t of the model ŷ(t;w) can
be any real number, we only regard ŷ(t;w) as the solution of
the ODE within the time range [t0, T]. Thus, we constrain the
input to t ∈ [t0, T].

PREPRINT SUBMIT TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2023 4

(A) (B)

Fig. 1: (A): The PINN model, where [N1, N2, . . . , Nn] is the output of the neural network, and [ŷ1, ŷ2, . . . , ŷn] is the output
of the model. (B): The PINN model as an approximate state solution to the ODE system, where the end state marked with
red stars is the prediction to the NPE.

Predicted solution to the NPE. The end state of the
proposed model, denoted by ŷ(t = T ;w), serves as the
predicted solution to the NPE (2), as illustrated in Fig. 1
(B). The following equation demonstrates how ŷ(t = T ;w)
approximates the optimal solution x∗:

ŷ(t = T ;w) ≈ y(T) ≈ x∗, (11)

where ŷ(t = T ;w) ≈ y(T) indicates that the end state of
our model approximates the true end state, and y(T) ≈ y∗

is derived from Theorem 1, indicating that y(T) resolves the
NPE.

B. Training Objective

Loss function. The loss function for the proposed neural
network is defined as:

L(t, w) =
∥∥∥∥∂ŷ(t;w)∂t

− Φ(ŷ(t;w))

∥∥∥∥ , (12)

where Φ(·) refers to the ODE system (6), which corresponds
to the NPE to be solved. Φ(ŷ(t;w)) represents the expected
derivative according to the ODE system. ∂ŷ(t;w)

∂t denotes the
actual derivative of the model, which can be computed using
automatic differentiation tools such as PyTorch or JAX [54],
[55]. L(t, w) expresses the difference between the two at time
t and with network parameters w.

Incorporating the NPE into the loss function. First, the
NPE is reformulated as an ODE system using neurodynamic
optimization. This ODE system is then integrated into the loss
computation process. Initially, a neural network is a versatile
framework without a specific aim to solve a particular NPE.
By incorporating the reformulated NPE as an ODE system
into the loss function, the neural network is trained to solve
both the ODE system and the NPE.

Objective function. Assuming a fixed neural network
architecture, the objective function is defined as:

J(w) =

∫ T

t0

∥∥∥∥∂ŷ(t;w)∂t
− Φ(ŷ(t;w))

∥∥∥∥dt, (13)

which is the integral of the loss function over the time range
[t0, T]. The loss value L(t, w) represents the error of the model

at time t, while the objective function J(w) represents the total
error of the model over the time range [t0, T].

Batch loss. However, the objective function J(w) is com-
putationally intractable due to its integral component. Hence,
in practice, the model is trained by minimizing the following
batch loss:

L(T, w) = 1

|T|
∑
t∈T
L(t, w), (14)

where T is a set of randomly sampled times from the interval
[t0, T], and |T| denotes the size of the set. In this manner, the
integral in the objective function J(w) can be approximated
by a sum of loss values over the set of sampled times. By
minimizing the batch loss, the model can be effectively trained
to solve the NPE.

C. Error Analysis

Introduction. In this subsection, we analyze the predic-
tion error of the PINN solution, denoted by ŷ(T ;w), as given
in Eq. (11). We discuss the various components that contribute
to this error. We then examine how the choice of network
architecture and time range [t0, T], two important hyperparam-
eters, affect the error composition. Finally, we show that there
exists a neural network that can accurately solve the target
NPE problem, supported by universal approximation theorems
of neural networks and the global convergence theorem of
neurodynamic optimization.

Notations Setup. Fig. 2-(A) illustrates the error decom-
position for the PINN solution to an NPE problem. The
mathematical notations used in the figure are explained below:

• H denotes a network architecture, represented by a set of
neural networks with the same architecture. For example,
for an architecture with a single hidden layer consisting
of 100 neurons, H contains all the neural networks under
that particular architecture.

• x∗ is the optimal solution for the NPE being solved.
• y(T) represents the end state of the true state solution

over the time range [t0, T].
• ŷ(T ;w) is the practical PINN solution obtained, for

example, after 1000 training iterations.

PREPRINT SUBMIT TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2023 5

Optimization error Neurodynamic errorGeneralization error

Optimization error

(A)

(B)

Fig. 2: (A) Error decomposition showcasing optimization, generalization, and neurodynamic errors. (B) The extreme case of
infinitely large network architecture and time range.

• ŷ(T ;w∗) is the best achievable solution within the archi-
tecture H, where w∗ is the minimizer of the objective
function (13).

Error Decomposition. We define the total error between
the predicted and the optimal solution as

ℓtotal = |ŷ(T ;w)− x∗|. (15)

As shown in Fig. 2-(A), the total error ℓtotal consists of the
following three components:

ℓtotal = ℓoe + ℓge + ℓne. (16)

Below, we explain each of the error components.
• Optimization Error is defined as ℓoe = |ŷ(T ;w) −
ŷ(T ;w∗)|. The optimization error captures the discrep-
ancy between the actual PINN solution and the optimal
solution achievable under the same neural network archi-
tecture H. This error is due to the inherent limitations
of the training process in reaching a global optimum,
often settling for a local one instead. This type of error
is ubiquitous in various deep learning tasks and has been
the subject of extensive research [56], [57].

• Generalization Error is given by ℓge = ∥ŷ(T ;w∗) −
y(T)∥. The generalization error is due to the represen-
tational capacity of the chosen network architecture H.
For example, consider a single-layer network with 100
neurons. Even if the global optimum w∗ is reached, there
remains an unavoidable gap to y(T).

• Neurodynamic Error is denoted by ℓne = ∥y(T) − x∗∥.
This error is independent of the neural network and is due
solely to the limited size of the chosen time range [t0, T].
According to Theorem 1, as T approaches infinity, y(T)
converges to the optimal solution, i.e., limT→∞ y(T) =
x∗. In practice, however, one can only choose a finitely
large [t0, T], which leads to this error.

Network Architecture and Time Range. As described
above, the two hyperparameters, the network architecture
H and the time range [t0, T], play a critical role in the

composition of the error. The implications of the choice of
these hyperparameters are discussed below:

• The choice of the network architecture H affects the
generalization error. As the complexity of the network
architecture increases, characterized by an increase in the
number of hidden layers and neurons, the upper bound on
the representational capability of the network increases,
thereby reducing the generalization error. However, a
more complex architecture poses training challenges and
increases the difficulty of minimizing the optimization
error.

• The choice of the time range [t0, T] affects the neuro-
dynamic error. For a fixed network architecture H, a
larger time range tends to reduce the neurodynamic error,
while potentially increasing the generalization error. The
reduction of the neurodynamic error is due to the con-
vergence properties outlined in Theorem 1. Conversely,
the increased generalization error arises because a more
complex network is required to accurately represent the
true state solution y(t) for t ∈ [t0, T].

Towards Zero ℓge and ℓne As shown in Fig. 2-(B), in
an extreme scenario, where the network architecture tends
towards infinite complexity and the time range [t0, T] becomes
infinitely large, both the generalization error ℓge and the
neurodynamic error ℓne converge to zero. This focuses the
objective solely on minimizing the optimization error, i.e.,
ℓtotal = ℓoe. In this context, the NPE problem transforms
into a conventional neural network training task, similar to
various deep learning challenges. Advanced research in neural
network training can thus be leveraged to better address the
NPE problem. Despite the theoretical appeal, training a neural
network under these conditions introduces inherent challenges.
In particular, although ℓge and ℓne tend to zero, ℓoe will
inevitably increase, complicating the optimization task.

Next, we demonstrate that within a single-layer fully con-
nected network architecture, there exists a neural network
that makes ŷ(T ;w) the optimal solution to the NPE problem.
First, we give a formal definition of the network architecture

PREPRINT SUBMIT TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2023 6

under consideration, followed by a proposition establishing its
existence, and finally, we conclude with some remarks.

Definition 5. Consider a neural network that takes inputs over
the interval [t0, T] and contains a single hidden layer with
k hidden units, d output units. We denote such a network
architecture as C(k)(ψ), where ψ specifies the activation
function of the hidden units. For a network with an arbitrary
number of hidden units, the architecture is defined as:

C(ψ) =

∞⋃
k=1

C(k)(ψ). (17)

Assumption 2. The activation function of (17) is non-
constant, bounded, and continuous.

Proposition 3. Consider an NPE problem denoted as
NPE(Ω, G), and x∗ is the optimal solution to this problem.
Let Assumptions 1 and 2 hold. Consider any initial condition
(t0, y0) for the ODE system (6). Then, there exists a neural
network N ∈ C(ψ) such that ŷ(T ;W) is arbitrarily close to
x∗ as T tends to infinity. Formally,

lim
T→∞

ŷ(T ;w) = x∗. (18)

Remark 1. The choice of the activation function significantly
impacts the neural network’s ability to globally approximate
the optimal solution. As stated in Lemma 2, the activation
function must be non-constant, bounded, and continuous.
Consequently, the widely used rectified linear unit (ReLU)
activation function is unsuitable due to its unbounded nature.
Instead, the hyperbolic tangent (tanh) activation function is
a more appropriate choice, as it fulfills all the three require-
ments.

Remark 2. Proposition 3 establishes the existence of a single-
layer neural network that allows the PINN model (9) to
provide an optimal solution to the target NPE problem. This
existence result is jointly derived from the global conver-
gence theorem in neurodynamic optimization and the universal
approximation theorem for neural networks. Specifically, the
global convergence theorem ensures that the state solution y(t)
converges to the optimal solution as time t tends to infinity.
Subsequently, the universal approximation theorem guarantees
that there exists a neural network capable of approximating
the corresponding y(t).

IV. MULTI-TASK LEARNING FOR MULTIPLE NPES

In this section, we introduce the multi-task learning (MTL)
framework employed in our study, which allows us to address
multiple NPE instances using a single neural network, thereby
eliminating the need for repeated individual solutions. In Sec-
tion IV-A, we present the MTL framework, the loss function,
and the training objective. In Section IV-B, we present the
training procedure of the MTL model.

A. Multi-Task Learning Framework

MTL framework description. We employ an MTL frame-
work based on the model in (9) that facilitates the simultaneous
training of a single model for solving multiple NPEs. As
shown in Fig. 3, the model comprises two parts: shared layers
and task-specific layers. The shared layers learn common
features among NPEs, promoting knowledge transfer across
different NPEs and improving generalization capabilities. The
task-specific layers generate task-specific predictions for each
NPE.

Model input and output. The MTL model can be expressed
by the following equation:

MTL(t;w) =
(
ŷ(1)(t;w), ŷ(2)(t;w), . . . , ŷ(n)(t;w)

)
. (19)

The model takes an input of t ∈ [t0, T]. It is essential to note
that the MTL model requires the same time range [t0, T] for
all NPEs, as they share the input. The model has n outputs,
each of which corresponds to an NPE to be solved. The MTL
solutions for the multiple NPEs can be directly generalized
from Section III. Specifically, each output, ŷ(i) for t ∈ [t0, T],
is the approximated state solution for the i-th ODE system,
which in turn is derived from the i-th NPE. When choosing
the time to t = T , the output ŷ(i)(t = T ;w) is the prediction
for the i-th NPE. For each NPE, we can provide a distinct
initial condition (t

(i)
0 , y

(i)
0).

MTL loss. We now define the loss function for the MTL
model consisting of n NPEs. The MTL loss function is given
by:

LMTL(t, w) =
1

n

n∑
i=1

∥∥∥∥∂ŷ(i)(t;w)∂t
− Φ(i)(ŷ(i)(t;w))

∥∥∥∥ , (20)

where Φ(i)(·) represents the ODE system derived from the
i-th NPE. The MTL loss in (20) essentially extends the loss
function (12) to accommodate multiple NPEs. Similarly, we
formulate the objective function and the batch loss for the
MTL model as follows:

JMTL(w) =
1

n

n∑
i=1

∫ T

t0

∥∥∥∥∂ŷ(i)(t;w)∂t
− Φ(i)(ŷ(i)(t;w))

∥∥∥∥dt,
(21)

LMTL(T, w) =
1

|T|
∑
t∈T
LMTL(t, w). (22)

The MTL loss function allows the model to learn from
multiple NPEs simultaneously, thereby enhancing its overall
performance and generalization capabilities. It is important to
note that in the loss functions (20), (21), and (22), we assume
that the weights assigned to each NPE are equal. In practice,
one has the flexibility to assign weights as needed.

Shared information between tasks. The shared layers
of the MTL framework output a hidden feature vector in their
final layer. This hidden feature vector serves as a representa-
tion of the shared information between multiple NPE tasks.
However, due to the black-box nature of neural networks,
it is challenging to interpret or explain the specific meaning
encapsulated by this hidden feature vector. This is analogous to
the difficulty of interpreting a single feature vector or feature

PREPRINT SUBMIT TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2023 7

Input Shared layers Task-specific layers

MTL Framework Loss Computation

NPE 1

M.S.E.

NPE n

M.S.E.

Fig. 3: MTL model for solving multiple NPEs. This figure illustrates the process of solving n NPEs using the MTL framework.
For each NPE indexed by i = 1, 2, . . . , n, (t(i)0 , y

(i)
0), ŷ(i), and Φ(·)(i) represent the initial condition, the approximate state

solution, and the corresponding ODE system, respectively. M.S.E. stands for mean square error.

map in any neural network, as its semantics are generally not
readily understandable.

B. Training Procedure

NPE error. To assess the effectiveness of a prediction
xpred in solving the NPE (2), we introduce a performance
metric called the NPE error. This metric is defined as follows:

NE(xpred) = ∥PΩ(xpred −G(xpred))− xpred∥∞ . (23)

The NPE error quantifies the deviation of the prediction xpred
from the true solution of the NPE, providing an accurate
assessment of how well the model has learned to solve the
given problem. By minimizing the NPE error during training,
we ensure that the model’s predictions closely adhere to the
properties of the NPE and improve its overall performance.

Pipeline. Algorithm 1 outlines the process for utilizing
the proposed MTL framework to tackle multiple NPEs con-
currently. Let I = {1, 2, . . . , n} denote the index set for
the NPEs. First, a time range [t0, T] and a set of initial
conditions {(t(i)0 , y

(i)
0)}i∈I must be given to formulate the

IVPs. Then, the MTL model is initialized with n task-specific
heads, where each head ŷ(i)(t;w) corresponds to the initial
condition (t

(i)
0 , y

(i)
0). The model is fine-tuned by applying

gradient descent to the loss function (22) to improve the
approximation. Notably, our solver relies exclusively on deep
learning infrastructure, eliminating the need for traditional
optimization or numerical integration solvers.

Best Prediction w.r.t NPE error. An important feature
of Algorithm 1 is that it uses the NPE error (23) as a metric
to evaluate how well the prediction solves the NPE problem.
At each iteration, the algorithm calculates the NPE error
for the current iteration, denoted as NE(i)

curr, and compares
it to the smallest NPE error encountered so far, denoted as
NE(i)

best. The terms x(i)curr and x
(i)
best represent the prediction at

the current iteration and the best prediction encountered so
far, respectively. If NE(i)

curr is less than NE(i)
best, it indicates

that the model has identified a better prediction during this
iteration. As a result, the algorithm updates NE(i)

best to equal

NE(i)
curr and retains the best prediction as x(i)best = x

(i)
curr. Such

a mechanism ensures that the optimal prediction obtained
by the model is maintained throughout the training process,
ultimately improving the overall performance of the algorithm.
Algorithm 1 presents the for-loop iteration over the index set I ,
which in practice can easily be replaced by a parallel approach
using Numpy to enhance computational efficiency.

V. EXPERIMENTS

Experimental Setup. We use PyTorch 1.12.1 [54] to
implement the proposed MTL framework and JAX 0.4.1
[55] to implement the ODE system. Regarding the network
architecture for the MTL framework, the shared layers consist
of three fully connected layers of 50, 100, and 100 neurons, re-
spectively. The task-specific layers contain two fully connected
layers with 100 and 50 neurons, respectively. The activation
function used is tanh. The optimizer used for training is Adam
[58], with a learning rate of 0.001 and a batch size of 128.
All three subsections use t0 = 0 and y0 = 0 as the initial
condition. Sections V-A and V-C choose [0, 10] as the time
range, while Section V-B considers different choices of time
ranges. The numerical solvers used for comparison are Runge-
Kutta 45 (RK45), Runge-Kutta 23 (RK23), Dormand-Prince
853 (DOP853), Backward Differentiation Formula (BDF),
Radau, and LSODA. All of these methods are available in
the Scipy library [59].

Evaluation Metrics. We evaluate the performance of the
MTL framework using the following three metrics.

• NPE Error: As defined in Eq. (23), this metric measures
how well a prediction solves the NPE problem.

• Mean Square Error (MSE) Loss: This metric measures
how well a predicted state solution solves the ODE
system.

• Computation Time: This metric measures the computa-
tional efficiency.

PREPRINT SUBMIT TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2023 8

Algorithm 1 Training of the MTL model to solve multiple NPEs
Input: A time range: [t0, T];

n number of NPEs: {NPE(Ω(1), G(1)), NPE(Ω(2), G(2)), . . . , NPE(Ω(n), G(n))};
n number of initial conditions: {(t(1)0 , y

(1)
0), (t

(2)
0 , y

(2)
0), . . . , (t

(n)
0 , y

(n)
0)}.

Output: Predictions for the NPEs, denoted by {x(1)best, x
(2)
best, . . . , x

(n)
best}.

1: function NPES SOLVER
2: Derive ODE systems, {Φ(1)(·),Φ(2)(·), . . . ,Φ(n)(·)}, corresponding to the given NPEs using (6).
3: Instantiate the MTL model based on the given initial conditions.
4: Initialize {NE(1)

best,NE(2)
best, . . . ,NE(n)

best}, where NE(i)
best = NE(ŷ(i)(t = T ;w)).

5: while iteration ≤ maximum iteration do
6: Sample T ∼ U(t0, T) ▷ U(t0, T) is the uniform distribution with interval [t0, T]
7: Compute the MTL batch loss: LMTL(T, w) ▷ Forward propagation
8: Update weights: w ← ∇wLMTL(T, w) ▷ Backward propagation
9: for i = 1, 2, . . . , n do

10: Obtain the prediction from the i-th head of the MTL model: x(i)curr = ŷ(i)(t = T ;w)

11: Project x(i)curr onto the feasible set Ω using (1): x(i)curr = PΩ(x
(i)
curr)

12: NE(i)
curr = NE(x(i)curr) ▷ Calculate the NPE error of x(i)curr by (23).

13: if NE(i)
curr < NE(i)

best then
14: NE(i)

best = NE(i)
curr ▷ Update NE(i)

best.
15: x

(i)
best = x

(i)
curr ▷ Update the best prediction.

16: end if
17: end for
18: end while
19: return {x(1)best, x

(2)
best, . . . , x

(n)
best}

20: end function

A. Solving Multiple NPEs with the Proposed MTL Framework

Problem Definition. Consider the following NPE prob-
lem,

PΩ(x
∗ −Gr(x∗)) = x∗, (24)

where r = [a, b, c, d] ∈ R4,

Gr(x) =

3x1 − a

x1+1 + 5x2 − 13

1.2x1 + bx2
cx3 + 8x4

1x3 + 2x4 − 4
x4+2 − d

 ,
Ω = {x ∈ R4 | 1 ≤ x1 ≤ 100,−3 ≤ x2 ≤ 100,

−10 ≤ x3 ≤ 100, 1 ≤ x4 ≤ 100},
(25)

and PΩ(·) is defined in (5). r is the problem data, and selecting
distinct values of r yields different NPE instances.

Problem Set Construction. We create a problem
set by uniformly sampling r from the interval
[1, 10]4. The set of the multiple NPEs is denoted as
{NPE(Gr1 ,Ω), NPE(Gr2 ,Ω), . . . , NPE(Grn ,Ω)}, where
n is the number of instances. These NPE instances share
the same feasible region Ω and a majority of the nonlinear
function Gr(·), distinguished only by the problem parameter
r. Traditional numerical methods solve this set of instances
individually, treating each instance as an independent problem.
In contrast, our proposed MTL framework solves all these
NPE instances simultaneously in a parallel manner.

Training of the MTL Framework. Fig. 4 shows the
training of different numbers of NPE instances using our
proposed MTL framework. Specifically, Fig. 4(A) displays
the loss values, indicating the solution accuracy to the ODE

systems, while Fig. 4(B) shows the NPE error, indicating
the solution accuracy to the NPE instances. With only 1000
iterations, all MSE losses converge from about 150 to less than
1, and all NPE errors converge from about 13 to less than 1.
Notably, the significant reduction in MSE loss occurs primarily
between the 100th and 1000th iteration, while the reduction in
NPE error occurs between the 10th and 100th iteration. The
asynchronous decrease of these two metrics suggests that the
NPE error can be reduced even if the MSE loss is not reduced
or even increased. These results benefit from the use of the
evlautation metric (23) in Algorithm 1.

Performance of the MTL Framework. Fig. 5 demon-
strates the computational efficiency of the MTL framework
compared to traditional numerical solvers. Here, the number of
NPE instances is fixed at 100. Experimental results show that
our MTL framework outperforms the numerical solvers across
various target accuracies. In particular, when the required
target accuracy is relaxed, such as requiring an NPE error of 1,
the computational efficiency advantage of the MTL framework
is significant, at least 3 times faster than RK45 (the best-
performing numerical solver in this case). When the required
target accuracy is stringent, such as requiring an NPE error of
0.05, the computational efficiency of the MTL framework still
leads over various numerical solvers.

B. Application to Hopfield Network

The goal of this subsection is to apply the proposed MTL
framework for solving equilibrium points in a Hopfield net-
work. This subsection also serves as a hyperparameter study to

PREPRINT SUBMIT TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2023 9

Average MSE loss Average NPE error

101 102 103

Iteration

0

5

10

N
PE

 e
rr

o
r

n=1
n=5
n=10
n=15
n=20

101 102 103

Iteration

0

50

100

150

200
M

.S
.E

.
lo

ss
n=1
n=5
n=10
n=15
n=20

(A) (B)

Fig. 4: Training of the MTL framework. n denotes the number of NPE instances to be solved. (A) Average MSE loss versus
training iteration. (B) Average NPE error versus training iteration.

MTL RK45 RK23 DOP853 Radau BDF LSODA
0

100

200

300

400

500

To
ta

l
T
im

e
(s

)

n=100, epsilon=1

MTL RK45 RK23 DOP853 Radau BDF LSODA
0

100

200

300

400

500

To
ta

l
T
im

e
(s

)

n=100, epsilon=0.5

n=100, epsilon=0.1

MTL RK45 RK23 DOP853 Radau BDF LSODA
0

100

200

300

400

500

To
ta

l
T
im

e
(s

)

n=100, epsilon=0.05

MTL RK45 RK23 DOP853 Radau BDF LSODA
0

100

200

300

400

500

To
ta

l
T
im

e
(s

)

Fig. 5: Comparison of computation time between the MTL framework and numerical solvers. Computation time is measured
in seconds. Each subplot shows the total times required to achieve a specific accuracy for 100 NPE instances using a particular
solver.

investigate the performance of the framework under different
time ranges.

Problem Definition. Consider the following Hopfield net-
work:

dx

dt
= −x+ TPΩ(x) + q, (26)

where T ∈ R10×10 is defined as

T =

3 3 . . . 3
3 3 . . . 3
...

...
. . .

...
3 3 . . . 3
−3 −3 . . . −3

 . (27)

The feasible set Ω is defined as

Ω = {x ∈ R10 | −1 ≤ x ≤ 1}. (28)

Our goal is to find x∗ such that dx
dt = 0. The equilibrium point

computation of the Hopfield network has wide applications in
various types of combination optimization problems [60]–[62].

Problem Set Construction. We construct a set of in-
stances by selecting several different q ∈ R10 in Eq. (26).
Specifically, we uniformly sample 50 different q from the
interval [−1, 1]10 to create a problem set. Next, we use the
proposed MTL framework to solve these 50 instances in
parallel.

Training of the MTL Framework. Fig. 6 shows the
training of the MTL framework to solve these 50 instances,
with the time range set to [0, 10]. Unlike Fig. 4, which shows
average results, Fig. 6 explicitly shows the results for each
instance. We observe that the initial NPE errors vary between
instances, ranging from 2 to 18. At the 600th training iteration,
the NPE errors for all instances fall below 0.3. At the 1500th

PREPRINT SUBMIT TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2023 10

600 800 1000 1200 1400
Iteration

0.0

0.1

0.2

0.3

N
PE

 e
rr

or

0 100 200 300 400 500 600
Iteration

0

5

10

15

N
PE

 e
rr

or
Iteration 0~600 Iteration 600~1500(A) (B)

Fig. 6: NPE error versus training iteration for the 50 instances of Eq. (26). (A): the NPE errors from iteration 0 to 600. (B):
the NPE errors from iteration 600 to 1500.

Iteration 0~750

0 200 400 600
Iteration

0

2

4

6

8

N
PE

 e
rr

or

[0, 5]
[0, 10]
[0, 15]
[0, 20]

Iteration 750~1500

800 1000 1200 1400
Iteration

0.025

0.050

0.075

0.100

N
PE

 e
rr

or

[0, 5]
[0, 10]
[0, 15]
[0, 20]

(A) (B)

Fig. 7: Comparison of average NPE errors over different time ranges. (A): the average NPE errors from iteration 0 to 750.
(B): the average NPE errors from iteration 750 to 1500.

training iteration, the NPE errors are further reduced to below
0.05. These experimental results demonstrate the effectiveness
of our MTL framework in solving the equilibrium points for
these 50 instances.

Selection of Time Range. As shown in Fig. 7, the choice
of the time range significantly influences the convergence
speed of the MTL framework. There is no a universally opti-
mal choice for the time range. Instead, it should be determined
based on the training resources allocated. For example, in Fig.
7, the time range [0, 5] gives the best results for 750 iterations,
whereas [0, 10] gives the best results for 1500 iterations. Here
are some guidelines on how to choose an appropriate time
range based on the number of training iterations:

• If computational resources are limited and a quick result
is desired, choose a smaller time range, such as [0, 5].

• If computational resources are sufficient, a larger time
range should be chosen, as this will result in reduced
neurodynamic errors, consistent with the discussion in
Section III-C.

• In most scenarios, the choice of time range should be
customized to align with the available computational
resources. For example, we find that the time range [0, 10]
works best for 1500 training iterations.

C. Application to Variational Inequality

The goal of this subsection is to apply the proposed MTL
framework for solving variational inequalities. This subsection
also compares the proposed MTL framework with various
iterative methods.

Problem Definition. Consider the following variational
inequality:

(x− x∗)T Gr (x∗) ≥ 0, x ∈ Ω. (29)

Gr(x) is parameterized by r = [a, b, c, d] ∈ R4, and

Gr(x) =

2x1e

x2
1+(x2−1)2 + x1 − x2 − x3 + a

2(x2 − 1)ex
2
1+(x2−1)2 − x1 + 2x2 + 2x3 + b

−1√
x1+x2+3∗x3+x4

+ x1 + x2 + x3 + x4 + c

x3 + 2x4 − 4
x4+2 + d

 .

(30)
Ω is defined as

Ω = {x ∈ R4 | x ≥ 0}. (31)

By Proposition 2, Eq. (29) is reformulated as an NPE problem.
Problem Set Construction. We construct a problem set

by choosing different vectors r in Eq. (29), and each r
corresponds to a particular instance. Specifically, we sample r
with a uniform distribution over the interval [−10, 10]4. In the
following, we apply our proposed MTL framework to solve
the problem set with different numbers of instances.

PREPRINT SUBMIT TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2023 11

20 40 60 80 100
Number of Instances

25

50

75

100

125

To
ta

l T
im

e
s

(s
)

MTL
NN
RK45
BDF
LSODA

20 40 60 80 100
Number of Instances

0

50

100

150

To
ta

l T
im

e
s

(s
)

MTL
NN
RK45
BDF
LSODA

20 40 60 80 100
Number of Instances

50

100

150

200

250

300

To
ta

l T
im

e
s

(s
)

MTL
NN
RK45
BDF
LSODA

20 40 60 80 100
Number of Instances

0

50

100

150

200

250

To
ta

l T
im

e
s

(s
)

MTL
NN
RK45
BDF
LSODA

NPE error=1 NPE error=0.5

NPE error=0.1 NPE error=0.05

Fig. 8: Efficiency comparison of various solvers over different NPE error thresholds. The y-axis indicates the total computation
time in seconds, while the x-axis indicates the number of instances.

Description of Fig. 8. Fig. 8 shows the total computation
time required by different solvers to solve a varying number
of instances and at different target accuracies. In the figure,

• ’MTL’ denotes the MTL framework proposed in this
paper.

• ’NN’ refers to solving multiple NPE problems iteratively
and individually using the PINN model (9), where one
PINN model corresponds to one instance.

• ’RK45’ and ’BDF’ are explicit and implicit numerical
solvers, respectively.

• ’LSODA’ is a numerical solver that flexibly switches
between the above two solvers.

Note that only the proposed MTL framework is a parallel
solution algorithm, the other four methods are iterative.

Comparative Efficiency Analysis of Solvers. Based on
the analysis of our experimental results, we draw the following
conclusions:

• For all NPE error thresholds, the computational time of
our proposed MTL framework increases as the number
of instances increases. However, its growth rate is signif-
icantly slower than that of other solvers, indicating that
MTL is more efficient when dealing with large numbers
of instances.

• While the NN method performs comparably to the MTL
framework with fewer instances, its computation time in-
creases more rapidly as the number of instances increases,
suggesting that it is less adept at handling large instance
sets than MTL.

• Conventional numerical solvers, RK45, BDF, and

LSODA, show relatively consistent performance over dif-
ferent NPE error thresholds. However, their computation
times are higher than those of the MTL and NN solvers.
In particular, LSODA performs relatively better than the
other two numerical methods for this problem.

• As the NPE error threshold decreases, i.e. as the solu-
tion accuracy requirement becomes more stringent, the
computation time increases for all solvers. This indicates
that higher accuracy requirements place greater demands
on computational resources. In this scenario, our MTL
solver continues to maintain a leading position.

VI. CONCLUSION

In this paper, we have proposed a novel methodology for
solving NPEs. The proposed approach employs three impor-
tant tools: (1) neurodynamic optimization for modeling NPEs
as ODE systems, (2) PINNs for solving the ODE systems,
and (3) MTL framework for integrating multiple PINNs. In
addition, we have conducted a comprehensive error analysis
on the proposed method. Experimental results show that our
approach is efficient and accurate, outperforming traditional
numerical integration methods. The proposed method holds
great promise for efficiently addressing various constrained
nonlinear optimization problems.

Below we suggest some future directions for our work:
• Investigate advanced network architectures or training

methods from the field of PINNs to further improve the
performance of the proposed approach.

• Investigate advanced MTL frameworks to improve or
understand the shared knowledge across multiple NPEs.

PREPRINT SUBMIT TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2023 12

• Adapt the proposed approach to solve other types of
nonlinear optimization problems by collaborating with
various neurodynamic techniques.

A. APPENDIX

In this Appendix, we provide a proof for Proposition 3. The
structure of the appendix is organized as follows: A.1 and A.2
contain two lemmas concerning the universal approximation
theorem for neural networks. Subsequently, in A.3, we employ
these two lemmas to furnish the proof for Proposition 3.

The following metric is used to measure the closeness
between two functions.

Definition 6. f : [t0, T] → Rd and g : [t0, T] → Rd are two
functions. The closeness between the two functions is defined
as follows

ρ(f, g) = sup
t∈[t0,T]

∥f(t)− g(t)∥∞ , (32)

where ∥·∥∞ is the infinity norm.

A.1 Lemma 1 and its proof

Lemma 1. Let y : [t0, T]→ Rd be a continuous function, and
choose a non-constant, bounded, and continuous activation
function ψ(·). Then, for any ϵ > 0, there exists a neural
network N ∈ C(ψ) such that

ρ(y,N) < ϵ. (33)

Proof. Let C([t0, T],Rn) be the space of all continuous
functions from the interval [t0, T] to Rn, equipped with the
metric ρ defined in (32).

Define the closure of C(ψ), denoted as Ĉ, as the set of all
functions that can be uniformly approximated by functions
from C(ψ) with arbitrary precision. In other words, if h ∈ Ĉ,
then for any ϵ > 0, there exists a neural network N ∈ C(ψ)
such that ρ(h,N) < ϵ.

Since ψ(·) is non-constant, bounded, and continuous, Ĉ
contains non-constant functions and is closed under addition
and scalar multiplication. Furthermore, Ĉ separates points. By
the Stone-Weierstrass theorem, Ĉ is dense in C([t0, T],Rn).

Now, fix y ∈ C([t0, T],Rn) and ϵ > 0. Since Ĉ is dense
in C([t0, T],Rn), there exists a function h ∈ Ĉ such that
ρ(h, y) < ϵ/2.

Since h ∈ Ĉ, there exists a neural network N ∈ C(ψ) that
approximates h within an arbitrary degree of accuracy. Choose
a neural network N such that ρ(h,N) < ϵ/2. Therefore, we
have: ρ(N, y) ≤ ρ(y, h) + ρ(h,N) < ϵ/2 + ϵ/2 = ϵ

This completes the proof, showing that a feedforward neural
network with one hidden layer and a finite number of neurons
can approximate the continuous function y with an error less
than ϵ under the closeness metric ρ(·, ·).

A.2 Lemma 2 and its proof

Lemma 2. Let y : [t0, T]→ Rd be a continuous function and
choose a non-constant, bounded, and continuous activation

function ψ(·). Then, for any ϵ > 0, there exists a neural
network N ∈ C(ψ) such that

ρ(y, ŷ) < ϵ, (34)

where ŷ : [t0, T]→ Rn is the PINN model in Eq. (9).

Proof. First, we construct a function z(t) = y(t) − y0 to be
approximated.

By Lemma 1, there exists a neural network N ′ ∈ C(ψ) that
approximates z with an arbitrary degree of accuracy. That is,
for any ϵ > 0, there exists N ′ ∈ C(ψ) such that

ρ(z,N ′) <
ϵ

2
. (35)

Now, let’s define a new function N(t;w) = N ′(t;w)

(1−e−(t−t0))
.

Note that since N ′ is a neural network with activation function
ψ, it follows that N is also a neural network with activation
function ψ, and thus N ∈ C(ψ).

We construct the neural network-based function ŷ(t;w) =
y0 +

(
1− e−(t−t0)

)
N(t;w). Now we need to show that

ρ(y, ŷ) < ϵ.
We have:

ρ(y, ŷ) = ρ(y, y0 +
(
1− e−(t−t0)

)
N)

= ρ(y0 + z, y0 +N ′)

= ρ(z,N ′)

<
ϵ

2
< ϵ.

(36)

This completes the proof, showing that there exists a PINN
model ŷ(t;w) which approximates the continuous function y
with arbitrarily small ϵ under the closeness metric ρ(·, ·).

A.3 Proof of Proposition 3

Proposition 3. Consider an NPE problem denoted as
NPE(Ω, G), and x∗ is the optimal solution to this problem.
Let Assumptions 1 and 2 hold. Consider any initial condition
(t0, y0) for the ODE system (6). Then, there exists a neural
network N ∈ C(ψ) such that ŷ(T ;W) is arbitrarily close to
x∗ as T tends to infinity. Formally,

lim
T→∞

ŷ(T ;w) = x∗. (37)

Proof. Consider the ODE system (6) that models
NPE(Ω, G), and let the state solution of the ODE system
be y : [t0,+∞)→ Rd. By Theorem 1, we have

lim
t→∞

y(t) = x∗, (38)

where x∗ is an optimal solution of NPE(Ω, G).
Let ϵ > 0 be an arbitrary positive number representing the

desired accuracy. Consider an increasingly large sequence of
time ranges {[t0, Tn]} with Tn → +∞ as n→∞.

For each interval [t0, Tn], apply Lemma 2 to obtain the
PINN model ŷn(t;wn) that approximates y(t) on the interval
[t0, Tn] with an error less than ϵ, i.e.,

ρ(ŷn, y) < ϵ. (39)

PREPRINT SUBMIT TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2023 13

By the definition of ρ(·, ·) in Eq. (32), at the end state t = Tn,
it holds that

∥ŷn(t = Tn;wn)− y(t = Tn)∥ < ϵ (40)

As n→∞, Tn → +∞. Therefore,

lim
n→∞

ŷn(t = Tn;wn) = lim
t→∞

y(t). (41)

Combining (41) with (38), we conclude that

lim
n→∞

ŷn(t = Tn;wn) = x∗. (42)

REFERENCES

[1] P. T. Harker and J.-S. Pang, “Finite-dimensional variational inequality
and nonlinear complementarity problems: a survey of theory, algorithms
and applications,” Mathematical programming, vol. 48, no. 1-3, pp. 161–
220, 1990.

[2] S. M. Robinson, “Normal maps induced by linear transformations,”
Mathematics of Operations Research, vol. 17, no. 3, pp. 691–714, 1992.

[3] Y. Xia and G. Feng, “A new neural network for solving nonlinear
projection equations,” Neural Networks, vol. 20, no. 5, pp. 577–589,
2007.

[4] Y. Xia and J. Wang, “A Bi-Projection Neural Network for Solving
Constrained Quadratic Optimization Problems,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 27, no. 2, pp. 214–224,
2016.

[5] H. Che and J. Wang, “A collaborative neurodynamic approach to global
and combinatorial optimization,” Neural Networks, vol. 114, pp. 15–27,
2019.

[6] R. L. Burden, J. D. Faires, and A. M. Burden, Numerical analysis.
Cengage learning, 2015.

[7] V. V. Singh and A. Lisser, “Variational inequality formulation for the
games with random payoffs,” Journal of Global Optimization, vol. 72,
pp. 743–760, 2018.

[8] D. Tank and J. Hopfield, “Simple ’neural’ optimization networks: An
a/d converter, signal decision circuit, and a linear programming circuit,”
IEEE Transactions on Circuits and Systems, vol. 33, no. 5, pp. 533–541,
1986.

[9] Q. Liu and J. Wang, “A one-layer recurrent neural network with a discon-
tinuous hard-limiting activation function for quadratic programming,”
IEEE Transactions on Neural Networks, vol. 19, no. 4, pp. 558–570,
2008.

[10] M. P. Kennedy and L. O. Chua, “Neural Networks for Nonlinear
Programming,” IEEE Transactions on Circuits and Systems, vol. 35,
no. 5, pp. 554–562, 1988.

[11] Y. Xia, H. Leung, and J. Wang, “A projection neural network and its
application to constrained optimization problems,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, vol. 49,
no. 4, pp. 447–458, 2002.

[12] Z. Guo, Q. Liu, and J. Wang, “A one-layer recurrent neural network for
pseudoconvex optimization subject to linear equality constraints,” IEEE
Transactions on Neural Networks, vol. 22, no. 12, pp. 1892–1900, 2011.

[13] H. Che and J. Wang, “A two-timescale duplex neurodynamic approach
to biconvex optimization,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, no. 8, pp. 2503–2514, 2018.

[14] N. Liu, J. Wang, and S. Qin, “A one-layer recurrent neural network for
nonsmooth pseudoconvex optimization with quasiconvex inequality and
affine equality constraints,” Neural Networks, vol. 147, pp. 1–9, 2022.

[15] Z. Zhang, T. Chen, M. Wang, and L. Zheng, “An exponential-type anti-
noise varying-gain network for solving disturbed time-varying inversion
systems,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 31, no. 9, pp. 3414–3427, 2020.

[16] Z. Zhang, Y. Lu, L. Zheng, S. Li, Z. Yu, and Y. Li, “A new
varying-parameter convergent-differential neural-network for solving
time-varying convex qp problem constrained by linear-equality,” IEEE
Transactions on Automatic Control, vol. 63, no. 12, pp. 4110–4125,
2018.

[17] Z. Zhang, X. Deng, and L. Zheng, “A review on varying-parameter
convergence differential neural network,” Neurocomputing, vol. 490,
pp. 54–65, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0925231222002983

[18] Y. Wang, X. Li, and J. Wang, “A neurodynamic optimization approach
to supervised feature selection via fractional programming,” Neural
Networks, vol. 136, pp. 194–206, 2021.

[19] J. Wang, J. Wang, and Q.-L. Han, “Multivehicle task assignment based
on collaborative neurodynamic optimization with discrete hopfield net-
works,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 32, no. 12, pp. 5274–5286, 2021.

[20] W. Xiong, C. Schindelhauer, H. C. So, J. Bordoy, A. Gabbrielli, and
J. Liang, “Tdoa-based localization with nlos mitigation via robust model
transformation and neurodynamic optimization,” Signal Processing, vol.
178, p. 107774, 2021.

[21] M. W. M. G. Dissanayake and N. Phan-Thien, “Neural-network-
based approximations for solving partial differential equations,”
Communications in Numerical Methods in Engineering, vol. 10, no. 3,
pp. 195–201, 1994. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/cnm.1640100303

[22] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for
solving ordinary and partial differential equations,” IEEE Transactions
on Neural Networks, vol. 9, no. 5, pp. 987–1000, 1998.

[23] K. S. McFall and J. R. Mahan, “Artificial neural network method for
solution of boundary value problems with exact satisfaction of arbitrary
boundary conditions,” IEEE Transactions on Neural Networks, vol. 20,
no. 8, pp. 1221–1233, 2009.

[24] J. Han, A. Jentzen, and W. E, “Solving high-dimensional partial dif-
ferential equations using deep learning,” Proceedings of the National
Academy of Sciences, vol. 115, no. 34, pp. 8505–8510, 2018.

[25] S. Huang, W. Feng, C. Tang, and J. Lv, “Partial Differential
Equations Meet Deep Neural Networks: A Survey,” arXiv preprint
arXiv:2211.05567, 2022.

[26] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational Physics, vol. 378, pp. 686–707, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0021999118307125

[27] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis, “Physics-
informed neural networks (PINNs) for fluid mechanics: A review,” Acta
Mechanica Sinica, pp. 1–12, 2022.

[28] L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, and S. G.
Johnson, “Physics-Informed Neural Networks with Hard Constraints
for Inverse Design,” SIAM Journal on Scientific Computing, vol. 43,
no. 6, pp. B1105–B1132, 2021. [Online]. Available: https://doi.org/10.
1137/21M1397908

[29] D. Zhang, L. Guo, and G. E. Karniadakis, “Learning in Modal
Space: Solving Time-Dependent Stochastic PDEs Using Physics-
Informed Neural Networks,” SIAM Journal on Scientific Computing,
vol. 42, no. 2, pp. A639–A665, 2020. [Online]. Available: https:
//doi.org/10.1137/19M1260141

[30] Z. Fang, “A high-efficient hybrid physics-informed neural networks
based on convolutional neural network,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 33, no. 10, pp. 5514–5526, 2021.

[31] A. D. Jagtap and G. E. Karniadakis, “Extended Physics-informed Neural
Networks (XPINNs): A Generalized Space-Time Domain Decomposi-
tion based Deep Learning Framework for Nonlinear Partial Differential
Equations.” in AAAI Spring Symposium: MLPS, 2021.

[32] R. Sharma and V. Shankar, “Accelerated Training of Physics In-
formed Neural Networks (PINNs) using Meshless Discretizations,”
arXiv preprint arXiv:2205.09332, 2022.

[33] S. Rezaei, A. Harandi, A. Moeineddin, B. X. Xu, and S. Reese, “A
mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: Comparison
with finite element method,” Computer Methods in Applied Mechanics
and Engineering, vol. 401, p. 115616, 2022. [Online]. Available:
https://doi.org/10.1016/j.cma.2022.115616

[34] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, “DeepXDE: A
Deep Learning Library for Solving Differential Equations,” SIAM
Review, vol. 63, no. 1, pp. 208–228, 2021. [Online]. Available:
http://dx.doi.org/10.1137/19M1274067

[35] F. Chen, D. Sondak, P. Protopapas, M. Mattheakis, S. Liu, D. Agarwal,
and M. D. Giovanni, “NeuroDiffEq: A Python package for solving
differential equations with neural networks,” Journal of Open Source
Software, vol. 5, no. 46, p. 1931, 2020. [Online]. Available:
https://doi.org/10.21105/joss.01931

https://www.sciencedirect.com/science/article/pii/S0925231222002983
https://www.sciencedirect.com/science/article/pii/S0925231222002983
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.1137/21M1397908
https://doi.org/10.1137/21M1397908
https://doi.org/10.1137/19M1260141
https://doi.org/10.1137/19M1260141
https://doi.org/10.1016/j.cma.2022.115616
http://dx.doi.org/10.1137/19M1274067
https://doi.org/10.21105/joss.01931

PREPRINT SUBMIT TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2023 14

[36] S. Ruder, “An overview of multi-task learning in deep neural networks,”
arXiv preprint arXiv:1706.05098, 2017.

[37] B. Bakker and T. Heskes, “Task clustering and gating for bayesian
multitask learning,” J. Mach. Learn. Res., vol. 4, no. null, p. 83–99, dec
2003. [Online]. Available: https://doi.org/10.1162/153244304322765658

[38] O. Sener and V. Koltun, “Multi-task learning as multi-objective opti-
mization,” Advances in neural information processing systems, vol. 31,
2018.

[39] M. Crawshaw, “Multi-task learning with deep neural networks: A
survey,” arXiv preprint arXiv:2009.09796, 2020.

[40] S. Sodhani, A. Zhang, and J. Pineau, “Multi-task reinforcement learning
with context-based representations,” in International Conference on
Machine Learning. PMLR, 2021, pp. 9767–9779.

[41] D. Kollias, “Abaw: Valence-arousal estimation, expression recognition,
action unit detection & multi-task learning challenges,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 2328–2336.

[42] Z. Zhang, W. Yu, M. Yu, Z. Guo, and M. Jiang, “A survey of multi-task
learning in natural language processing: Regarding task relatedness and
training methods,” arXiv preprint arXiv:2204.03508, 2022.

[43] M. Mayr, F. Ahmad, K. Chatzilygeroudis, L. Nardi, and V. Krueger,
“Skill-based multi-objective reinforcement learning of industrial robot
tasks with planning and knowledge integration,” in 2022 IEEE Interna-
tional Conference on Robotics and Biomimetics (ROBIO). IEEE, 2022,
pp. 1995–2002.

[44] C. Rosenbaum, T. Klinger, and M. Riemer, “Routing networks: Adaptive
selection of non-linear functions for multi-task learning,” arXiv preprint
arXiv:1711.01239, 2017.

[45] S. Vandenhende, S. Georgoulis, B. De Brabandere, and L. Van Gool,
“Branched multi-task networks: deciding what layers to share,” arXiv
preprint arXiv:1904.02920, 2019.

[46] S. Vandenhende, S. Georgoulis, W. Van Gansbeke, M. Proesmans,
D. Dai, and L. Van Gool, “Multi-task learning for dense prediction
tasks: A survey,” IEEE transactions on pattern analysis and machine
intelligence, vol. 44, no. 7, pp. 3614–3633, 2021.

[47] K.-K. Maninis, I. Radosavovic, and I. Kokkinos, “Attentive single-
tasking of multiple tasks,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 1851–1860.

[48] W. M. Czarnecki, R. Pascanu, S. Osindero, S. Jayakumar, G. Swirszcz,
and M. Jaderberg, “Distilling policy distillation,” in The 22nd interna-
tional conference on artificial intelligence and statistics. PMLR, 2019,
pp. 1331–1340.

[49] S. C. Billups and K. G. Murty, “Complementarity problems,” Journal
of Computational and Applied Mathematics, vol. 124, no. 1-2, pp. 303–
318, 2000.

[50] F. Facchinei, A. Fischer, and V. Piccialli, “On generalized Nash games
and variational inequalities,” Operations Research Letters, vol. 35, no. 2,
pp. 159–164, 2007.

[51] V. V. Singh and A. Lisser, “Variational inequality formulation for
the games with random payoffs,” Journal of Global Optimization,
vol. 72, no. 4, pp. 743–760, 2018. [Online]. Available: https:
//doi.org/10.1007/s10898-018-0664-8

[52] G. Pang, L. Lu, and G. E. Karniadakis, “fpinns: Fractional physics-
informed neural networks,” SIAM Journal on Scientific Computing,
vol. 41, no. 4, pp. A2603–A2626, 2019.

[53] P. L. Lagari, L. H. Tsoukalas, S. Safarkhani, and I. E. Lagaris,
“Systematic construction of neural forms for solving partial differential
equations inside rectangular domains, subject to initial, boundary and
interface conditions,” International Journal on Artificial Intelligence
Tools, vol. 29, no. 05, p. 2050009, 2020.

[54] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran
Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.
cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[55] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas,
S. Wanderman-Milne, and Q. Zhang, “JAX: composable
transformations of Python+NumPy programs,” 2018. [Online].
Available: http://github.com/google/jax

[56] L. Chizat and F. Bach, “On the global convergence of gradient descent
for over-parameterized models using optimal transport,” Advances in
neural information processing systems, vol. 31, 2018.

[57] J. F. Bonnans, K. Liu, N. Oudjane, L. Pfeiffer, and C. Wan, “Large-scale
nonconvex optimization: randomization, gap estimation, and numerical
resolution,” arXiv preprint arXiv:2204.02366, 2022.

[58] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[59] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, A. Vijaykumar, A. P. Bardelli,
A. Rothberg, A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem,
C. N. Woods, C. Fulton, C. Masson, C. Häggström, C. Fitzgerald,
D. A. Nicholson, D. R. Hagen, D. V. Pasechnik, E. Olivetti, E. Martin,
E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G. A. Price,
G.-L. Ingold, G. E. Allen, G. R. Lee, H. Audren, I. Probst, J. P. Dietrich,
J. Silterra, J. T. Webber, J. Slavič, J. Nothman, J. Buchner, J. Kulick,
J. L. Schönberger, J. V. de Miranda Cardoso, J. Reimer, J. Harrington,
J. L. C. Rodrı́guez, J. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma,
M. Newville, M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak,
N. J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, P. A. Brodtkorb,
P. Lee, R. T. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert,
S. Vigna, S. Peterson, S. More, T. Pudlik, T. Oshima, T. J. Pingel, T. P.
Robitaille, T. Spura, T. R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss,
U. Upadhyay, Y. O. Halchenko, and Y. Vázquez-Baeza, “SciPy 1.0:
fundamental algorithms for scientific computing in Python,” Nature
Methods, vol. 17, no. 3, pp. 261–272, mar 2020. [Online]. Available:
http://www.nature.com/articles/s41592-019-0686-2

[60] J. J. Hopfield and D. W. Tank, ““Neural” computation of decisions in
optimization problems,” Biological cybernetics, vol. 52, no. 3, pp. 141–
152, 1985.

[61] W. E. Lillo, D. C. Miller, S. Hui, and S. H. Zak, “Synthesis of brain-
state-in-a-box (bsb) based associative memories,” IEEE transactions on
Neural Networks, vol. 5, no. 5, pp. 730–737, 1994.

[62] J. K. Paik and A. K. Katsaggelos, “Image restoration using a modified
hopfield network,” IEEE Transactions on image processing, vol. 1, no. 1,
pp. 49–63, 1992.

https://doi.org/10.1162/153244304322765658
https://doi.org/10.1007/s10898-018-0664-8
https://doi.org/10.1007/s10898-018-0664-8
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://github.com/google/jax
http://www.nature.com/articles/s41592-019-0686-2

	Introduction
	Related works
	Contributions
	Outline

	Neurodynamic Approach for Modelling NPE
	NPE
	Neurodynamic Approach

	Reformulation of an NPE as a Neural Network Learning Problem
	PINN Model
	Training Objective
	Error Analysis

	Multi-Task Learning for Multiple NPEs
	Multi-Task Learning Framework
	Training Procedure

	Experiments
	Solving Multiple NPEs with the Proposed MTL Framework
	Application to Hopfield Network
	Application to Variational Inequality

	Conclusion
	References

