
HAL Id: hal-04370995
https://hal.science/hal-04370995

Submitted on 4 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing Neurodynamic Approach with
Physics-Informed Neural Networks for Solving
Non-Smooth Convex Optimization Problems

Dawen Wu, Abdel Lisser

To cite this version:
Dawen Wu, Abdel Lisser. Enhancing Neurodynamic Approach with Physics-Informed Neural Net-
works for Solving Non-Smooth Convex Optimization Problems. Neural Networks, 2023, 168, pp.419-
430. �10.1016/j.neunet.2023.08.014�. �hal-04370995�

https://hal.science/hal-04370995
https://hal.archives-ouvertes.fr

Enhancing Neurodynamic Approach with Physics-Informed Neural Networks

for Solving Non-Smooth Convex Optimization Problems

Dawen Wua (dawen.wu@centralesupelec.fr), Abdel Lissera (abdel.lisser@l2s.centralesupelec.fr)

a Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette,

France

Corresponding Author:

Dawen Wu

Address: Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190,

Gif-sur-Yvette, France

Tel: (+33) 750798387

Email: dawen.wu@centralesupelec.fr

Enhancing Neurodynamic Approach with Physics-Informed Neural
Networks for Solving Non-Smooth Convex Optimization Problems

Dawen Wua,∗, Abdel Lissera

aUniversité Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France

Abstract

This paper proposes a deep learning approach for solving non-smooth convex optimization problems

(NCOPs), which have broad applications in computer science, engineering, and physics. Our approach

combines neurodynamic optimization with physics-informed neural networks (PINNs) to provide an efficient

and accurate solution. We first use neurodynamic optimization to formulate an initial value problem (IVP)

that involves a system of ordinary differential equations for the NCOP. We then introduce a modified PINN as

an approximate state solution to the IVP. Finally, we develop a dedicated algorithm to train the model to solve

the IVP and minimize the NCOP objective simultaneously. Unlike existing numerical integration methods,

a key advantage of our approach is that it does not require the computation of a series of intermediate states

to produce a prediction of the NCOP. Our experimental results show that this computational feature results

in fewer iterations being required to produce more accurate prediction solutions. Furthermore, our approach

is effective in finding feasible solutions that satisfy the NCOP constraint.

Keywords: Non-smooth convex optimization problem, Neurodynamic optimization, Physics-informed

neural network, Numerical integration method, Ordinary differential equation

1. Introduction1

Non-smooth convex optimization problems (NCOPs) are an important class of optimization problems2

that arise in various real-world applications. While traditional optimization methods have been successful in3

solving many smooth convex optimization problems, they are not well-suited to handle the nonsmoothness4

of the objective functions in NCOPs. This has led to the development of alternative approaches, such as5

neurodynamic optimization.6

Neurodynamic optimization is a promising approach for solving NCOPs (Qin & Xue, 2014). It involves7

the implementation of a circuit-based neurodynamic model to solve the optimization problem in real time.8

This approach has many potential applications, such as in resource allocation (Jia et al., 2021), feature9

selection (Wang et al., 2023), and coordination of multi-manipulator systems (Hou et al., 2010).10

The use of neurodynamic optimization to solve NCOPs typically involves three steps. First, a first-order11

∗Corresponding author
Email address: dawen.wu@centralesupelec.fr, abdel.lisser@l2s.centralesupelec.fr (Abdel Lisser)

Preprint submitted to Neural networks January 4, 2024

ordinary differential equation (ODE) system is used to model the NCOP. The ODE system must be shown12

to have a globally convergent property, meaning that the state solution of the system converges to the13

optimal solution of the NCOP as time approaches infinity, regardless of the starting point. Second, classical14

numerical integration methods such as Runge-Kutta methods or backward differentiation formulas are used15

to numerically obtain the state solution of the ODE system (Burden et al., 2015). Third, the state at the end16

of a given time range, called the end state, is taken as to be the predicted solution of the NCOP. However,17

this approach has a drawback. That is, the numerical integration method has to compute all the intermediate18

states, from the initial state to the end state, to solve the optimization problem, which makes it inefficient.19

To overcome this limitation, we propose a novel approach that combines neurodynamic optimization20

with physics-informed neural networks to provide an efficient and accurate solution. Unlike the traditional21

numerical integration method, our improved approach can directly predict the entire state solution, including22

the end state. This approach allows for efficient and accurate optimization of NCOPs without requiring the23

computation of all intermediate states.24

Here we want to clarify the difference between our work and Neural ODEs. (Chen et al., 2018). Neural25

ODEs are a class of neural networks that interpret transformations within the model as a continuous process26

and use ODEs to characterize this process. Training such a model involves solving an ODE using numerical27

integration methods, and recent research bypasses the use of numerical integration methods to improve28

computational efficiency (Biloš et al., 2021). However, it is important to emphasize that the primary goal of29

a neural ODE is not to solve a particular ODE per se, but rather to address traditional supervised learning30

challenges, such as time series modeling. In our case, the task at hand is to solve an ODE system derived31

from an NCOP. In this context, the neural network acts as a surrogate model that is specifically trained to32

approximate the solution of the ODE system.33

1.1. Related Works34

Neuraodynamic Optimization. Neurodynamic optimization is a class of methods that model con-35

strained optimization problems using ODE systems. This approach was first introduced by Hopfield & Tank36

(1985) to solve the traveling salesman problem. Since then, neurodynamic optimization has been applied to37

a wide range of optimization problems, including linear and quadratic programming problems (Xia & Wang,38

2000), general convex programming problems (Kennedy & Chua, 1988; Xia et al., 2008), biconvex optimiza-39

tion problems (Che & Wang, 2018), global optimization problems (Che & Wang, 2019), and pseudoconvex40

problems (Guo et al., 2011; Bian et al., 2018; Liu et al., 2022). These methods typically use the Lyapunov41

stability theorem to prove that the constructed ODE system has a global convergence property, which means42

that any state solution of the ODE system converges to an optimal solution of the target problem.43

Physics-Informed Neural Networks (PINNs). Another line of research included in our work is the44

use of deep learning to solve differential equations. As a representative approach, PINNs (Raissi et al., 2019)45

are a class of neural networks that integrate physical laws described by PDEs and boundary conditions into46

the training losses. Thus, the neural network is trained to become the solution of the PDE. PINNs have a47

2

wide range of successful applications, such as identifying material properties (Shukla et al., 2021a), optimizing48

sensor locations (Jagtap et al., 2022b), and investigating complex fluid dynamics, including supersonic and49

high-speed flows (Jagtap et al., 2022a; Mao et al., 2020). To facilitate the use and application of PINNs,50

several software packages have been developed and are available to the scientific community (Lu et al., 2021;51

Chen et al., 2020).52

Numerous methods and theoretical explorations have been introduced to improve the computational53

performance of PINNs. From the theoretical side, research has been conducted to understand the error54

estimates associated with PINNs. Mishra & Molinaro (2022) investigates the generalization error of PINNs55

in approximating a class of inverse problems (Mishra & Molinaro, 2022), and De Ryck et al. (2022) provides56

error estimates for the PINN approximation of the Navier-Stokes equations. On the methodological side, a57

prominent strategy is the development of domain decomposition methods, which divide the problem domain58

into several subdomains, each of which is addressed by a separate PINN. This approach creates interconnected59

PINN solutions that allow independent treatment of each subdomain while preserving the interconnections60

across the partitioned domains (Jagtap et al., 2020c; Shukla et al., 2021b; Hu et al., 2022a; Penwarden et al.,61

2023; Hu et al., 2022b). To further improve the performance of PINNs, adaptive activation functions have62

been investigated, which add learnable parameters to the activation function (Jagtap et al., 2020b,a, 2022b;63

Jagtap & Karniadakis, 2023). These innovations in PINNs are reshaping the landscape of solution methods64

for solving complex scientific and engineering problems.65

1.2. Contributions66

Our paper presents several key contributions:67

• We propose a novel approach for solving NCOPs that enhances neurodynamic optimization with PINNs,68

avoiding the use of numerical integration methods.69

• We improve the PINN to adapt to the NCOP by incorporating the initial condition into the neural70

network and using only one neural network to predict all system states.71

• We design a specialized training algorithm that leverages the structure of NCOPs to optimize the72

performance of our proposed approach. The neural network is trained to simultaneously satisfy the73

ODE system and minimize the NCOP objective function.74

• Our experimental results demonstrate several advantages of our approach over classical numerical inte-75

gration methods and vanilla PINNs. Our approach requires fewer iterations to produce more accurate76

predicted solutions, and it finds a feasible solution to the problem more quickly.77

1.3. Outline78

The remaining sections are organized as follows: Section 2 provides the necessary background for un-79

derstanding the paper, including an introduction to the NCOP and the neurodynamic optimization used to80

3

model it. In Section 3, we present our proposed neural network for solving the NCOP. Section 4 details the81

design of the loss function and the training algorithm for the neural network. Section 5 presents the results82

of our experiments on solving the NCOP using the proposed approach, and compares our approach with the83

existing methods. Finally, Section 6 summarizes the main results of the paper and outlines possible directions84

for future research.85

2. Neurodynamic Approach for Modelling NCOP86

Section 2.1 introduces the NCOP, which is the goal of this paper. In Section 2.2, we show how to model87

the NCOP using a neurodynamic approach. In Section 2.3, we introduce the PINN method for solving PDEs.88

2.1. NCOP89

We consider the following optimization problem:

min
x

f(x)

s.t.

g(x) ≤ 0

Ax = b,

(1)

where x = (x1, x2, . . . , xn)
T ∈ Rn is the decision variables, and f : Rn → R is the objective function.90

g(x) = (g1(x), g2(x), . . . , gm(x))T : Rn → Rm represents the inequality constraints, and u = (u1, u2, . . . , um)91

represents the dual variables of the inequality constraints. Ax = b represents the equality constraints with92

A ∈ Rk×n and b ∈ Rk. n, m, and k denote the number of decision variables, inequality constraints, and93

equality constraints, respectively.94

In this paper, we consider the case where f(x) and g(x) are convex but not necessarily smooth, and A is95

of full row rank. We denote x∗ and u∗ as the optimal primal and dual solutions, respectively.96

Definition 1 (Subgradient and subdifferential). A vector l ∈ Rn is a subgradient of f : Rn → R at x ∈ dom f

if the following holds

f(z) ≥ f(x) + lT (z − x), ∀z ∈ dom f. (2)

The set of all subgradients of f at x is called the subdifferential of f at x and is denoted by ∂f(x).97

2.2. Neurodynamic Approach98

Now, let x : R → Rn and u : R → Rm be some time dependent functions. The aim of a neurodynamic

approach is to construct a first-order ODE system to govern x(t) and u(t), such that they will settle down to

the optimal primal and dual solutions of the NCOP (1). In this paper, the two-layer neurodynamic approach

4

in Qin & Xue (2014) is adopted, where the ODE system is described as follows:

dx

dt
∈ − (I − U)

[
∂f(x) + ∂g(x)T (U + g(x))+

]
−AT ρ(Ax− b),

du

dt
=
1

2

(
−U + (U + g(x))+

)
,

(3)

where U = AT
(
AAT

)−1
A, I ∈ Rn×n is the identity matrix, ρ(s) = (ρ̃ (s1) , ρ̃ (s2) , . . . , ρ̃ (sk))

T
, and for

i = 1, 2, . . . , k,

ρ̃ (si) =

1 if si > 0,

[−1, 1] if si = 0,

−1 if si < 0.

(4)

To simplify the discussion, we denote y(t) = (x(t)T , u(t)T)T and define:

Φ(y) =

 −(I − U)
[
∂f(x) + ∂g(x)T (U + g(x))+

]
−AT ρ(Ax− b)

1
2 (−U + (U + g(x))+)

 . (5)

Thus, the ODE system (3) can be written as dy
dt ∈ Φ(y).99

Definition 2 (State solution). Consider an ODE system dy
dt ∈ Φ(y), where Φ : Rn → Rn. Given (t0 ∈100

R, y0 ∈ Rn), a vector value function y : R → Rn is called a state solution, if it satisfies the ODE system101

dy
dt ∈ Φ(y) and the initial condition y(t0) = y0.102

In particular, we call y(t) the state at time t. Given a time interval [t0, T], we call y(T) the end state on103

that time interval.104

Theorem 1 (Qin & Xue (2014)). Consider a NCOP (1) and its derived ODE system (3). Given any initial

condition y(t0) = y0, the state solution y(t) of the ODE system converges to an optimal solution y∗ as time

t approaches infinity, i.e.

lim
t→∞

y(t) = y∗, (6)

where y∗ = (x∗T , u∗T)T , x∗ and u∗ are the optimal primal and dual solutions to the NCOP.105

In particular, if the NCOP contains only one optimal solution x∗, then the ODE system is called globally106

asymptotically stable at y∗.107

Initial Value Problem (IVP) Construction. In practice, in order to use the neurodynamic approach108

to solve the NCOP, we need to construct an IVP consisting of three components: 1) the ODE system (3), 2)109

an initial condition y(t0) = y0, and 3) a time range t ∈ [t0, T]. y(t) for t ∈ [t0, T] represents the state solution110

of this IVP problem over the time range [t0, T], where the end state, y(T), is considered to be the predicted111

solution to the NCOP. According to Theorem 1, the larger the time range [t0, T], the closer y(T) is to the112

optimal solution y∗ of the NCOP.113

5

2.3. Physics-Informed Neural Networks (PINNs)114

In this subsection, we introduce the powerful framework of PINNs for solving PDEs. For clarity and to115

make this subsection self-contained, please note that the mathematical notations used in this subsection are116

independent of those used in other sections. The mathematical notations should be interpreted only in the117

context of this subsection.118

A typical PDE problem can be expressed in the following general form:

Dx(u;λ) = f(x), x ∈ Ω ⊂ Rd

Bk(u) = gk(x), x ∈ ∂Ω ⊂ Rd, for k = 1, 2, . . . , nb,
(7)

where Dx(·) is the differential operator, and u : Ω∪ ∂Ω→ R is the solution to be found. λ denotes the PDE119

parameters. Bk(·) denotes to the boundary conditions, which can be of the Dirichlet, Neumann, or mixed120

type. For problems involving temporal dynamics, time t is considered as part of x, and the initial conditions121

can be treated as a unique type of boundary condition.122

Let {x(i)
b , u

(i)
b }

Nb
i=1 and {x(i)

d }
Nd
i=1 be the sets of randomly selected training points and residual points,123

respectively. These points are usually drawn from an unknown distribution. Let uΘ be a surrogate function124

based on a neural network with model parameters Θ. The goal of the PINN approach is to learn a surrogate125

function uΘ to approximate the solution u for a given PDE.126

The loss function for PINNs can be expressed as:

L(Θ) = Wb MSEb

(
Θ; {x(i)

b , u
(i)
b }

Nb
i=1

)
+Wd MSEd

(
Θ; {x(i)

d }
Nd
i=1

)
, (8)

whereWb andWd represent the weights for the data and residual losses, respectively. MSEb

(
Θ; {x(i)

b , u
(i)
b }

Nb
i=1

)
+

and MSEd

(
Θ; {x(i)

d }
Nd
i=1

)
are given by:

MSEb

(
Θ; {x(i)

b , u
(i)
b }

Nb
i=1

)
=

1

Nb

Nb∑
i=1

∣∣∣u(i) − uΘ

(
x(i)
u

)∣∣∣2 ,
MSEd

(
Θ; {x(i)

d }
Nd
i=1

)
=

1

Nd

Nd∑
i=1

∣∣∣Dx(uΘ(x
(i)
d);λ)− f(x

(i)
d)

∣∣∣2 , (9)

where MSEb measures the data mismatch term, which enforces the boundary conditions as constraints.127

MSEd evaluates the PDE residual at a finite set of collocation points. The neural network parameters Θ are128

determined by minimizing the loss function in (8).129

A distinct advantage of PINNs is their ability to integrate both experimental and synthetic training data130

into the loss function. One of the central mechanisms facilitating this integration is the computation of the131

PDE residual using automatic differentiation (Baydin et al., 2018), which provides an efficient and accurate132

evaluation of the PDE operator. Thus, PINNs transform the task of solving a PDE into an optimization133

problem, where the global minimum of the loss function signifies the solution to the PDE. This capability134

6

positions PINNs as a grid-free method, alleviating the often cumbersome process of mesh generation.135

Remark 1. The ODE system (3) under consideration is a particular case of the PDE problem (7). The key136

differences are as follows:137

• The solution of the ODE system is a function with only one input, while the PDE solution is a function138

with multiple inputs.139

• The ODE system involves multiple differential equations, each corresponding to a state dynamic, whereas140

the PDE typically involves only a single equation with multiple variables.141

Mathematically, PINNs typically aim to find a solution u : Rd → R, where d is the number of variables.142

In contrast, the solution sought in the ODE system is u : R → Rn, where n is the number of differential143

equations in the system.144

3. Modified PINN Model145

NN as solution of ODE system
NN provides
prediction to NCOP

When

Fully connected network

When

Fully connected network

Figure 1: Neural network solution for the ODE system and the NCOP. Left: When t ∈ [t0, T], the model ŷ(t;w) itself
is considered to be an approximate state solution of the ODE system. Right: When t = T , the model returns the prediction,
(x̂, û) = ŷ(t = T ;w), where x̂ and û represent the primal and dual predictions for the NCOP, respectively.

Model Description. We propose a modified PINN model to solve the NCOP. Our model can be

expressed by the following equation:

ŷ(t;w) = y0 +
(
1− e−(t−t0)

)
N(t;w), t ∈ [t0, T], (10)

7

where N(t;w) is a fully connected neural network with trainable parameters w. y0 is a given initial point for146

the ODE system. [t0, T] is a given time range. The auxiliary function
(
1− e−(t−t0)

)
ensures that the neural147

network always satisfies the initial condition ŷ(t = t0;w) = y0 regardless of w.148

Improvements to PINN. The proposed model (10) can be seen as a modified version of the PINN149

to adapt to the considered problem. In particular, we make three improvements. First, we use the Lagaris150

method to handle the initial conditions of the ODE system (Lagaris et al., 1998). Second, we use only one151

neural network to handle all the differential equations of the entire ODE system, whereas, in the original152

method, each neural network handles only one differential equation of the system. Finally, we use the153

exponential form for the auxiliary function, which has been shown to improve convergence, as demonstrated154

in previous studies (Mattheakis et al., 2020). Our experiments confirm this improvement in convergence,155

which is likely due to the reduced influence of the neural network as time progresses further from the initial156

time.157

Approximate State Solution to the ODE. As shown in Figure 1 (Left), the proposed model (10)

itself is an approximate state solution of the ODE system (3) on the time range [t0, T], i.e,

ŷ(t;w) ≈ y(t), t ∈ [t0, T], (11)

where y(t) is the true state solution of the ODE system. While the input time t of the model ŷ(t;w) can be158

take any real number, we specifically use ŷ(t;w) as the solution of the ODE over the time range [t0, T]. As159

a result, we restrict the input of ŷ(t;w) to the time range t ∈ [t0, T].160

Predicted Solution to the NCOP. The end state of the proposed model, i.e., ŷ(t = T ;w), is used

as the predicted solution to the NCOP (1), as shown in Figure 1 (Right). The following equation shows how

ŷ(t = T ;w) approximates the optimal solution y∗:

ŷ(t = T ;w) ≈ y(T) ≈ y∗. (12)

Here, ŷ(t = T ;w) ≈ y(T) indicates that the end state of our model approximates the true end state, and161

y(T) ≈ y∗ comes from Theorem 1, indicating that the true end state is the predicted solution of the NCOP.162

4. Model training163

4.1. Training Objective164

Loss Function. We define the loss function of the proposed model (10) as follows:

L(t, w) =
∥∥∥∥∂ŷ(t;w)∂t

− Φ(ŷ(t;w))

∥∥∥∥ , (13)

where Φ(·) refers to the ODE system (3), which corresponds to the NCOP to be solved. ∥·∥ is the Euclidean165

norm. Φ(ŷ(t;w)) is the expected derivative according to the ODE system. ∂ŷ(t;w)
∂t is the actual derivative166

8

of the model, which can be computed using automatic differentiation tools such as PyTorch or JAX (Paszke167

et al., 2019; Bradbury et al., 2018). L(t, w) represents the difference between the two at time t and with168

network parameters w.169

Embedding the NCOP into the Loss Function. The NCOP is integrated into the loss computation170

process through the ODE system rather than as a component of the neural network. A neural network is171

created as an empty framework without a specific goal to solve a particular NCOP. Instead, by reformulating172

the NCOP as an ODE system and embedding it into the loss function, the neural network is trained toward173

solving the NCOP.174

Objective Function. The goal of training the proposed model is to minimize the following objective

function:

J(w) =

∫ T

t0

L(t, w)dt, (14)

which is the integral of the loss function over the time range [t0, T]. The loss value L(t, w) represents the175

error of the model at time t, while the objective function J(w) represents the total error of the model over176

the time range [t0, T].177

Batch Loss. However, the objective function J(w) is computationally intractable to compute due to

its integral part. Therefore, in practice, we train the model by minimizing the following batch loss:

L(T, w) = 1

|T|
∑
t∈T
L(t, w), (15)

where T is a set of randomly sampled time points from the interval [t0, T], and |T| denotes the size of this set.178

In this way, we can approximate the integral in the objective function J(w) by a sum of loss values over the179

set of sampled times. By minimizing the batch loss, we can effectively train the model to solve the NCOP.180

4.2. Algorithm Design181

Objective value under Constraints (OuC) Metric. We introduce an evaluation metric called OuC

to measure how well a predicted solution, xpred, solves the NCOP:

OuC(xpred) =

f(xpred) if xpred ∈ Ω,

+∞ otherwise ,

(16)

where Ω is the feasible set defined as Ω = {x|x ≤ g(x), Ax = b}. The OuC metric evaluates a predicted182

solution by setting OuC to positive infinity or a very large real number when the predicted solution is not183

feasible, and to the objective value when it is feasible.184

Projection Mapping onto Equality Constraints. To increase the likelihood of OuC(xpred) being a

real value instead of infinite, we employ the following projection function to map xpred to the set of equality

constraints,

Peq(xpred) = xpred −AT
(
AAT

)−1
(Axpred − b). (17)

9

Figure 2: I and Q denote the feasible set of inequality constraints and equality constraints, respectively. Ω = I ∩Q denotes the
general feasible set of the problem. Peq is a projection function that maps xpred onto Q.

By definition, the evaluation metric OuC(xpred) attains a real value only when xpred lies within the feasible185

set Ω. As illustrated in Figure 2, there are two circumstances when Peq aids in projecting xpred onto the186

feasible set:187

• xpred satisfies the inequality constraints but fails to meet the equality constraints, i.e., xpred ∈ I −Q.188

• xpred does not satisfy both the inequality and equality constraints, i.e., xpred /∈ I ∪ Q.189

In both of the above scenarios, Peq has a reasonable chance of mapping xpred onto the feasible set Ω, resulting190

in the value of OuC being a real number rather than infinite.191

Algorithm 1: Deep learning solver for convex optimization problems

Input : A COP; A time range [t0, T]; An initial condition (t0, y0)
Output: Predicted primal and dual solutions x̂best and ûbest.

1 Function Main:
2 ODE system Φ(·)← the COP
3 Construct a NN model ŷ(t;w).
4 (x̂best, ûbest)← ŷ(t = T ;w)
5 ϵbest = Evaluate(x̂best)
6 while iter ≤ max iter do
7 T ∼ U(t0, T) ; ▷ Sample a batch of times, T.
8 L(T, w) ; ▷ Forward propagation.

9 w = w −∇wL(T, w) ; ▷ Update w through backward propagation.

10 (x̂curr, ûcurr) = ŷ(t = T ;w) ; ▷ Extract the predicted solution from the model.

11 x̂curr = Peq(x̂curr) ; ▷ Project x̂curr onto equality constraints.

12 OuCcurr = OuC(x̂curr) ; ▷ Calculate the OuC value of x̂curr.
13 if OuCcurr < OuCbest then
14 OuCbest = OuCcurr ; ▷ Update the best OuC value.

15 (x̂best, ûbest) = (x̂curr, ûcurr) ; ▷ Update the best prediction.

16 end
17 return (x̂best, ûbest)

18 end

Pipeline. Algorithm 1 summarizes how to use our proposed method to solve the NCOP. First, we need192

to specify an initial condition y(t0) = y0 and a time range [t0, T] to construct the IVP. Then, we instantiate193

the proposed model (10), which serves as an approximate state solution for this IVP. The model is trained194

by performing gradient descent on the batch loss (15) to improve the approximation. Note that our solver is195

completely based on the deep learning infrastructure and does not require any standard optimization solver196

or numerical integration solver.197

10

Optimal Result Retention (ORR) Mechanism. A key to Algorithm 1 is that we use an ORR198

mechanism based on the OuC metric (16). Specifically, at each iteration, the algorithm compares the OuC199

value at the current iteration, denoted as OuCcurr, with the best OuC value found so far, denoted as OuCbest.200

(x̂curr, ûcurr) and (x̂best, ûbest) represent the current prediction and the best prediction found so far, respec-201

tively. If OuCcurr is less than OuCbest, it means that the model found a better prediction in this iteration. The202

algorithm updates OuCbest to equal OuCcurr and stores the best prediction as (x̂best, ûbest) = (x̂curr, ûcurr).203

This mechanism ensures that the best prediction obtained by the model is maintained throughout the training204

process, improving the overall performance of the algorithm.205

Neural Network Solution Procedure. Our approach employs gradient descent on the batch loss (15)206

to improve the neural network prediction at each iteration. Assume that the maximum number of training207

iterations is M . The evolution of the neural network is represented by ŷ(t;w1), ŷ(t;w2), . . . , ŷ(t;wM), where208

wi and ŷ(t;wi) denote the network parameters and the approximate state solution at the i-th iteration,209

respectively. The predicted end states are ŷ(t = T ;w1), ŷ(t = T ;w2), . . . , ŷ(t = T ;wM), where ŷ(t = T ;wi)210

represents the prediction to the NCOP at the i-th iteration.211

5. Experiments212

Neural Network Setup. To implement our proposed model and the ODE system, we used PyTorch213

1.12.1 with CUDA 11.2 (Paszke et al., 2019) and JAX 0.4.1 (Bradbury et al., 2018). Our neural network214

architecture consisted of a single layer fully connected network with 100 neurons and a Tanh activation215

function. For training, we used the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.001, and216

a batch size of 128.217

Evaluation metrics. We used two metrics to measure the performance of the model: 1) The OuC218

metric, as defined in equation (16). 2) Computational time, which measures the time required to achieve a219

desired accuracy.220

5.1. Comparisons with Numerical Integration Methods221

In this subsection, we compare our proposed method with six classical numerical integration methods:222

Runge-Kutta 45 (RK45), Runge-Kutta 23 (RK23), Dormand-Prince 853 (DOP853), Backward Differentiation223

Formula (BDF), Radau, and LSODA. All of these methods are available in the Scipy library (Virtanen et al.,224

2020). The RK45, RK23, and DOP853 are explicit Runge-Kutta methods, while the BDF and Radau are225

implicit methods. LSODA is an adaptive method that automatically switches between explicit and implicit226

methods depending on the stiffness of the ODE system.227

11

Example 1: We aim to solve the following NCOP:

min
x

f(x) = 10(x1 + x2)
2 + (x1 − 2)2 + 20|x3 − 3|+ ex3

s.t.

g(x) = (x1 + 3)2 + x2 − 36 ≤ 0

h(x) = 2x1 + 3x2 + 5x3 − 7 = 0.

(18)

The feasible set of this problem is convex, and the objective function is convex but non-smooth due to its228

inclusion of absolute values.229

Construction of IVPs. We model the problem (18) by the ODE system (3) and set the time range230

as [t0, T] = [0, 10]. We choose three initial points to study, namely [0, 0, 0, 0], [1, 0,−2, 3], and [−1, 1,−1, 1],231

which result in three IVPs. Based on these three initial points, we construct each of the three proposed232

neural networks (10) as approximate state solutions to the IVPs.233

NN 1 with
IP: [0, 0, 0, 0]

Primal prediction

Dual prediction

Iteration = 0 Iteration = 10 Iteration = 20

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

y1(t;w)

y2(t;w)

y3(t;w)

y4(t;w)

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

y1(t;w)

y2(t;w)

y3(t;w)

y4(t;w)

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

y1(t;w)

y2(t;w)

y3(t;w)

y4(t;w)

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

Iter: 0
Prediction: [0.18, 0.19, 1.22 , 0. 00]
OuC: 43.66

Iter: 10
Prediction: [2.95, -3.52, 2.33, 0.00]
OuC: 27.39

Iter: 20
Prediction: [3.24, -3.42, 2.16, 1.22]
OuC: 27.39

Iter: 20
Prediction: [2.88, -2.96, 2.03, 2.33]
OuC: 27.41

Iter: 0
Prediction: [1.67, 1.08, 0.08, 1.94]
OuC: 135.25

Iter: 10
Prediction: [1.20, -1.33, 1.72, 0.00]
OuC: 32.06

Iter: 20
Prediction: [2.85, -3.05, 2.09, 2.27]
OuC: 27.43

Iter: 0
Prediction: [-1.29, 2.22, 0.58, 1.32]
OuC: 69.64

Iter: 10
Prediction: [2.13, -2.77, 2.21, 0.00]
OuC: 28.94

NN 2 with
IP: [1, 0, -2, 3]

NN 3 with
IP: [-1, 1, -1, 1]

Figure 3: Neural network solutions to problem (18). The three neural networks are initialized with three different initial points
(IPs). Each row shows a neural network as a function at selected training iterations.

Neural Network Solution. Figure 3 shows the solution process of our approach. Each horizontal

row represents the evolution of a neural network trained by Algorithm 1. Each sub-figure shows ŷ(t;w)

12

for t ∈ [0, 10], which represents the approximate state solution of the IVP at a given training iteration.

Here, we must emphasize that ŷ(t;w) is implemented by one neural network with four output units, and

ŷ(t;w) = (ŷ1(t;w), ŷ2(t;w), ŷ3(t;w), ŷ4(t;w)). In particular, the end state has

ŷ(t = 10;w) =

ŷ1(t = 10;w), ŷ2(t = 10;w), ŷ3(t = 10;w)︸ ︷︷ ︸
=x̂

, ŷ4(t = 10;w)︸ ︷︷ ︸
=û

 , (19)

where x̂ and û represent the predicted primal and dual solutions, respectively, of the problem (18).234

Evolution of the Predictions. As discussed in Section 4.2, the end state prediction ŷ(t = 10;w) is235

improved by training on the entire approximate state solution. At training iteration 0, the approximate state236

solution is far from the true state solution, resulting in a high OuC value of the endpoint prediction. After237

20 training iterations, the approximate state solution gets closer to the true state solution, and the endpoint238

prediction improves significantly. Notably, as these networks are constructed with different initial conditions,239

they have varying initial OuC values. Nonetheless, our proposed algorithm ensures that all networks converge240

to a prediction with an OuC value of less than 28 after 20 training iterations.241

Our RK45 RK23 DOP853 BDF Radau LSODA

IP=[0, 0, 0, 0] IP=[1, 0, -2, 3] IP=[-1, 1, -1, 1]

0 5 10 15 20
Iteration

30

40

50

O
u
C

Our
RK45
RK23
DOP853
BDF
Radau
LSODA

0 5 10 15 20
Iteration

25

50

75

100

125

150

O
u
C

Our
RK45
RK23
DOP853
BDF
Radau
LSODA

0 5 10 15 20
Iteration

30

40

50

60

70

80

O
u
C

Our
RK45
RK23
DOP853
BDF
Radau
LSODA

Figure 4: Comparison of our proposed method with the numerical integration methods on the OuC metric. The OuC metric is
defined in Equation (16).

OuC Performance. Figure 4 presents a comparative analysis of the OuC drop rates for our proposed242

method and six traditional numerical integration methods over three different initial points. The following243

observations can be made:244

• Our method outperforms traditional numerical integration methods in terms of OuC reduction, as245

evidenced by the lower OuC values achieved in fewer iterations. For example, for the initial point (IP)246

[0, 0, 0, 0], our method reduces OuC from 43.66 to 28 in just five iterations, whereas the best-performing247

numerical integration methods, namely RK45, DOP853, and Radau, require 20 iterations to achieve248

comparable results. Similar results are observed for the other two initial points.249

• The speed of convergence varies for different initial points, with our method showing greater robustness250

to different initial settings compared to numerical integration methods. While most numerical integra-251

tion methods converge faster for the IP [1, 0,−2, 3] and slower for [0, 0, 0, 0], our method converges at252

13

approximately the same rate for both.253

• The starting OuC values differ for various initial points, with the IP [1, 0,−2, 3] having the highest254

starting OuC value of around 135, and [0, 0, 0, 0] having the lowest starting OuC of approximately255

43. However, the results demonstrate that the OuC values do not significantly affect the speed of256

convergence.257

Why Our Approach has Better OuC than RK45. It is important to emphasize that our approach258

has no advantage over classical numerical integrators such as RK45 when it comes to solving for the full259

solution on the IVP, i.e. the function y. As shown in Figure 4, our method outperforms these numerical260

integrators in the OuC metric because our approach focuses on improving the end point ŷ(t = T ;w), rather261

than the entirety of the function ŷ. It is also worth noting that the OuC performance metric only considers262

the endpoint ŷ(t = T ;w), not the entire function ŷ. The methodology we propose, described in sections 3263

and 4, is deliberately designed with this specific goal in mind.264

Our RK45 RK23DOP853 BDF RadauLSODA

Solver

0

10

20

30

40

C
PU

 t
im

e
 (

s)

Our RK45 RK23DOP853 BDF RadauLSODA

Solver

0

10

20

30

40

C
PU

 t
im

e
 (

s)

Our RK45 RK23DOP853 BDF RadauLSODA

Solver

0

10

20

30

40

C
PU

 t
im

e
 (

s)

IP=[0, 0, 0, 0] IP=[1, 0, -2, 3] IP=[-1, 1, -1, 1]

Figure 5: Comparison of our method with the numerical integration methods in terms of computational efficiency. Time is
measured in seconds.

Computational Time Performance. Figure 5 shows the time needed by different solution methods265

to obtain an acceptable solution (i.e., OuC ≤ 28) to Problem (18). Our proposed method outperforms all266

considered numerical integration methods in terms of computational efficiency. The most efficient numerical267

integration method, BDF, still requires 10 times more computational time than our method to obtain a268

satisfactory solution. Moreover, the computational time of our method is less affected by different IP settings,269

requiring about 1.78 seconds for all three initial points. In contrast, some numerical integration methods,270

such as Radau and LSODA, show significant variations in computation time at different initial points.271

5.2. Comparisons with PINN272

In this subsection, we perform an ablation study comparing the proposed method with PINN (Raissi273

et al., 2019) and Lagaris method (Lagaris et al., 1998) to validate the effectiveness of our method.274

14

Example 2:

min
x

f(x) = |2.3x1 + x3 − 3.5|+ |x2 + 2x3 − 1.8|+ |1.3x1 + x2 + x3 + 3|

s.t.

g(x) = x2
1 − x2 + x3 + 3 ≤ 0

h1(x) = x1 + x2 + x3 = 0,

h2(x) = 2x2 + x3 = 0.

(20)

We aim to solve the NCOP (20). The problem has a convex feasible set and a convex but non-smooth275

objective function due to its inclusion of absolute values.276

Construction of IVPs. We model problem (20) as an ODE system (3) and set the time range as277

[t0, T] = [0, 10]. To construct three IVPs, we choose three initial points, namely [1,−1, 0, 3], [2, 3,−2, 1], and278

[2,−2, 1,−2]. Based on these initial points, we instantiate three proposed neural networks (10) as approximate279

state solutions.280

Experimental Setup. We compare our proposed approach with two methods: vanilla PINN and PINN281

with Lagaris construction method (PINN+Lagaris). Our approach can be regarded as the PINN+Lagaris282

method enhanced by the ORR mechanism (PINN+Lagaris+ORR). The hyperparameters and training details283

are the same as those in Section 5.1.284

0 200 400 600 800 1000
Iteration

12

14

16

18

O
u
C

PINN
PINN+Lagaris
PINN+Lagaris+ES (Our)

0 200 400 600 800 1000
Iteration

12

14

16

18

O
u
C

PINN
PINN+Lagaris
PINN+Lagaris+ES (Our)

0 200 400 600 800 1000
Iteration

12

14

16

18

O
u
C

PINN
PINN+Lagaris
PINN+Lagaris+ES (Our)

IP: [1, -1, 0, 3] IP: [2, 3, -2, 1] IP: [2, -2, 1, -2]

Figure 6: Comparison of our proposed method with PINN and the PINN+Lagaris method on the OuC metric. The experiment
is conducted on Problem (20)

Table 1 shows the performance of the three methods over the first one hundred iterations, while Figure 6285

shows their convergence behavior over the first one thousand iterations. The results reveal the following key286

observations:287

• Our proposed approach yields an excellent predicted solution within the first 20 training iterations,288

consistent with the results presented in Section 5.1. In contrast, even after 1000 iterations, neither the289

PINN nor the PINN+Lagaris methods achieves a predicted solution that compares favorably to that290

of our approach.291

• Our method has a higher probability of obtaining feasible solutions. As shown in Table 1, the PINN292

15

Initial point: [1, -1, 0, 3]

Iteration
PINN PINN+Lagaris PINN+Lagaris+EC

Predicted solution OuC Predicted solution OuC Predicted solution OuC

0 [-0.64 1.36 -0.71 0.47] inf [-1.00 1.00 -0.00 3.09] inf [-1.00 1.00 -0.00 3.09] inf
5 [-0.40 1.60 -1.19 1.10] inf [-1.42 0.58 0.84 7.02] inf [0.05 2.05 -2.09 4.85] 12.44
10 [-0.31 1.69 -1.37 2.17] inf [0.16 2.16 -2.31 9.50] 12.77 [-0.18 1.82 -1.64 9.25] 11.76
20 [0.81 2.81 -3.63 3.53] 14.74 [1.43 3.43 -4.86 6.63] 16.60 [-0.18 1.82 -1.64 9.25] 11.76
40 [0.72 2.72 -3.44 5.03] 14.45 [0.29 2.29 -2.58 1.91] 13.17 [-0.18 1.82 -1.64 9.25] 11.76
60 [0.74 2.74 -3.48 4.80] 14.52 [1.12 3.12 -4.25 2.18] 15.67 [-0.18 1.82 -1.64 9.25] 11.76
80 [0.84 2.84 -3.68 4.35] 14.82 [0.45 2.45 -2.90 1.48] 13.65 [-0.18 1.82 -1.64 9.25] 11.76
100 [0.82 2.82 -3.64 3.96] 14.76 [0.19 2.19 -2.39 0.72] 12.88 [-0.18 1.82 -1.64 9.25] 11.76

Initial point: [2, 3, -2, 1]

Iteration
PINN PINN+Lagaris PINN+Lagaris+EC

Predicted solution OuC Predicted solution OuC Predicted solution OuC

0 [-1.00 1.00 0.00 0.00] inf [0.41 2.41 -2.82 0.23] 13.54 [0.41 2.41 -2.82 0.23] 13.54
5 [-1.07 0.93 0.13 0.64] inf [-0.77 1.23 -0.46 1.52] inf [-0.29 1.71 -1.41 1.77] 11.42
10 [-1.42 0.58 0.85 2.04] inf [0.04 2.04 -2.08 1.39] 12.42 [-0.29 1.71 -1.41 1.77] 11.42
20 [-1.44 0.56 0.87 4.04] inf [0.85 2.85 -3.69 2.26] 14.84 [-0.29 1.71 -1.41 1.77] 11.42
40 [0.89 2.89 -3.77 3.24] 14.96 [0.26 2.26 -2.53 1.21] 13.09 [-0.29 1.71 -1.41 1.77] 11.42
60 [0.56 2.56 -3.11 1.69] 13.97 [-0.29 1.71 -1.43 0.25] 11.44 [-0.29 1.71 -1.41 1.77] 11.42
80 [0.44 2.44 -2.88 1.79] 13.63 [-0.62 1.38 -0.75 0.71] inf [-0.30 1.70 -1.40 1.19] 11.40
100 [0.01 2.01 -2.02 1.05] 12.33 [-0.09 1.91 -1.83 0.88] 12.04 [-0.30 1.70 -1.40 1.19] 11.40

Initial point: [2, -2, 1, -2]

Iteration
PINN PINN+Lagaris PINN+Lagaris+EC

Predicted solution OuC Predicted solution OuC Predicted solution OuC

0 [-0.65 1.35 -0.7 0.] inf [-1.05 0.95 0.1 0.] inf [-1.05 0.95 0.1 0.] inf
5 [-0.68 1.32 -0.65 0.44] inf [-2.78 -0.78 3.56 1.67] inf [-0.10 1.90 -1.80 6.38] 12.01
10 [-1.53 0.47 1.05 2.08] inf [-1.21 0.79 0.41 5.23] inf [-0.10 1.90 -1.80 6.38] 12.01
20 [-1.66 0.34 1.32 5.54] inf [2.03 4.03 -6.06 9.] 18.39 [-0.23 1.77 -1.54 6.37] 11.62
40 [0.42 2.42 -2.84 6.84] 13.56 [0.53 2.53 -3.05 3.46] 13.88 [-0.23 1.77 -1.54 6.37] 11.62
60 [1.24 3.24 -4.47 6.27] 16.01 [0.67 2.67 -3.34 5.02] 14.31 [-0.23 1.77 -1.54 6.37] 11.62
80 [1.3 3.3 -4.6 5.42] 16.2 [0.63 2.63 -3.25 3.59] 14.18 [-0.23 1.77 -1.54 6.37] 11.62
100 [1.27 3.27 -4.54 4.92] 16.11 [0.59 2.59 -3.19 3.69] 14.08 [-0.23 1.77 -1.54 6.37] 11.62

Table 1: Comparison of PINN, PINN+Lagaris, and PINN+Lagaris+EC (Our approach) for three different initial points with
predicted solutions and corresponding OuC values. inf indicates that the predicted solution is not in the feasible set.

16

method returns ’inf’ 11 times for the three IP configurations, while the Lagaris method reduces this293

occurrence to 7. In contrast, our method returns ’inf’ only twice, both times in the first round, indicating294

that it can reach a feasible solution more quickly.295

• Neither the PINN method nor the PINN+Lagaris method maintains an optimal solution during the296

optimization process. As shown in Table 1, the PINN method and the PINN+Lagaris method achieve297

good OuC values of 12.33 and 12.04, respectively, for the IP [2, 3,−2, 1] at the 100th iteration. How-298

ever, neither method maintains this level of performance, and their OuC values increase in subsequent299

iterations.300

• The Lagaris method can improve the performance of vanilla PINN, as shown in Figure 6. However,301

this improvement is not substantial and varies depending on the IP configuration. For example, the302

improvement is significant for the first and third initial points but negligible for the second IP.303

5.3. Hyperparameter Study304

In this subsection, we perform a hyperparameter study on the following NCOP.305

Example 3:

min
x

f(x) = ∥Cx− d∥1

s.t.

g1(x) = x2
1 − x2 + x3 + x5 − x8 − 10 ≤ 0,

g2(x) = |x1− x3 + x4 + x7| − 4.8 ≤ 0,

h(x) = x1 + x3 + x5 + x7 − 1 = 0,

(21)

where ∥·∥1 denotes the L1 norm, and

C =

1 4 2 2 1.3 4 2 1

2.8 2 1.6 3.2 0 2 1 1

1 4 2.3 2 2.5 0 5 1

1 1 1 3.1 2.3 0 0.8 1

 , d =

1.5

−3.8

6.2

7.5

 . (22)

Example 3 involves a nonsmooth objective function and a nonsmooth inequality constraint g2(x).306

To set up the algorithm, we choose the IP as an all-ones vector and the time range as [0, 10]. In the307

following, we discuss the computational performance for different neural network sizes and different learning308

rates.309

Model Size. In Figures 7 (A) and (B), we investigate the computational performance of neural networks310

with various widths and depths, and the optimal result is obtained with a 700-neuron-wide, single-layer311

structure. In (A), with a maximum of 1000 training iterations, networks with fewer neurons (such as 100,312

300, and 500) underperform due to their model capacity, limiting further improvements in OuC even with313

17

0 250 500 750 1000
Iteration

101

O
u
C

100
300
500
700
900

Number of neurons

0 250 500 750 1000
Iteration

101

O
u
C

1 layer
2 layer
3 layer
4 layer

Number of layers

0 250 500 750 1000
Iteration

100

101

O
u
C

= 0.01
= 0.005
= 0.001
= 0.0005
= 0.0001

Learning rate(A) (B) (C)

Figure 7: Hyperparameter study. (A): OuC performance on different numbers of neurons in a single layer neural network with
a learning rate of 0.01. (B): OuC performance of different layers in a multilayer neural network with 500 neurons per layer and
a learning rate of 0.01. (C): OuC performance at different learning rates in a two-layer neural network with 500 neurons per
layer.

more training. Conversely, a network with more neurons (such as 900) shows underperformance, likely due314

to insufficient model training, and its OuC would potentially improve with additional training. In (B),315

a single layer neural network is shown to outperform other configurations. Taken together, these results316

underscore the need to find the most appropriate network structure for a given NCOP problem. An overly317

complex network would require an excessive amount of computing resources for optimization that may not318

be necessary. Conversely, a network that is too simple would not find the appropriate solution, regardless of319

the amount of training. Thus, the size of the neural network should be determined by factors related to the320

NCOP being solved. These include the number of decision variables, the constraints, and the complexity of321

both the objective and constraint functions.322

Learning Rate. Figure 7(C) shows the performance of neural networks trained with different learning323

rates. At iteration 1000, the optimal performance is observed at the learning rate of α = 0.0001. It is324

important to note that if we zoom into the first 100 iterations, a larger learning rate α = 0.001 is more325

effective. This suggests that the choice of learning rate should depend on the actual preferences of the user.326

The advantage of a large learning rate is that it can find a better prediction for the NCOP in a short time,327

while the disadvantage is that it performs poorly in the long run. In contrast, a small learning rate finds328

better solutions in the long run. Overall, the choice of learning rate should be determined by the user’s329

specific requirements for speed and accuracy.330

5.4. L1 Norm Minimization Problem331

Consider the following NCOP problem:332

Example 4:

min
x

f(x) = ∥x∥1

s.t.

gi(x) = x2
10∗(i−1)+1 + x2

10∗(i−1)+2 + · · ·+ x2
10∗(i−1)+10 − 20 ≤ 0, i = 1, 2, . . . , 300

h(x) = Ax− b = 0,

(23)

18

Description
Initial
f(x)

Initial
max

i=1,2,...,300
(gi(x))

Initial
h(x)

Initial
OuC

OuC at
iteration 100

OuC at
iteration 1000

OuC at
iteration 3000

OuC at
iteration 10000

IP1
All-ones vector:
(1, 1, . . . , 1)

3000.0 -10.0 5984. inf 133.92 7.08 6.31 5.81

IP2
All-threes vector:
(3, 3, . . . , 3)

9000.0 70 17984 inf 202 118 25 6.00

IP3
All-negative ones vector:
(−1,−1, . . . ,−1) 3000.0 -10.0 -6016 inf 166.10 8.65 6.23 6.23

IP4
Alternating sequence of 2 and -2:
(2,−2, . . . , 2,−2) 6000.0 20 -16 inf 643 16.62 16.62 16.62

IP5
First half entries are 1 and the rest are 3:
(1, 1, . . . , 3)

5700.0 70 14084 inf 946 380 344 95

Table 2: Description of IPs and their OuC performance at different algorithm iterations. Columns 2 to 6 describe the IPs and
the their initial information, and columns 7 to 10 describe their OuC values at different training iterations.

(A) (B)

(C) (D)

Iterations: 0~100 Iterations: 100~1000

Iterations: 1000~3000 Iterations: 3000~10000

Feasible solution found

0 20 40 60 80 100
Iteration

1000

2000

O
u
C

IP1
IP2
IP3
IP4
IP5

4000 6000 8000 10000
Iteration

0

100

200

300

O
u
C

1000 1500 2000 2500 3000
Iteration

0

100

200

300

O
u
C

200 400 600 800 1000
Iteration

0

250

500

750

O
u
C

Figure 8: OuC performance with various IP configurations. The detailed descriptions for the five IPs are given in Table 2. In
(A), the red circle indicates the first time a feasible solution is found. (A), (B), (C), and (D) show the results of the algorithm
iterations 0∼100, 100∼1000, 1000∼3000, and 3000∼10000, respectively.

where x ∈ R3000, A ∈ R1×3000, with the first half entries of A being 1 and the rest 3, and b = 16.333

IPs Description. We examine five different IPs, which are listed in Table 2. The IPs are used to334

configure Algorithm 1 to solve problem (23). As shown in the table, all the five IPs have large initial335

objective values, with IP2, IP4, and IP5 failing to satisfy the inequality constraint, i.e., max
i=1,2,...,300

(gi(x)) ≥ 0,336

and all IPs failing to meet the equality constraint, i.e., h(x) ̸= 0. These observations indicate that the IPs337

initially do not solve Example 4 well and are far from the optimal solution.338

Based on the five IPs, the OuC values at different algorithm iterations are shown in Table 2 and Figure339

8. We observe that:340

• As shown in Figure 8-(A), our algorithm quickly finds a feasible solution that satisfies both the inequality341

and equality constraints. Moreover, once the first feasible solution is found, the subsequent solutions342

given by the algorithm are all within the feasible set.343

19

• The final solutions given by the algorithm are acceptable. After going through the entire solution344

process, the OuC values associated with the IPs decrease significantly. For IP1, the OuC decreases345

from 3000 to 5.81 (100%→ 0.2%), and similar results can be found for other IPs. Given the fact that346

problem (23) has a known lower bound 0 for the objective value. This indicates that the final solutions347

produced by the proposed algorithm are already very close to the optimal solution.348

• The OuC decreasing speed or convergence rate varies under different IP configuration. The convergence349

rate and final result of IP1∼IP4 are significantly better than those of IP5. This may be because350

IP5 is the farthest from the optimal solution, and thus requires a larger time range and more model351

training. Nevertheless, the proposed algorithm still significantly improves the OuC performance of IP5352

(100%→ 1.6%) with the given experimental setup.353

• Most of the decrease in OuC values occurs in the first 1000 iterations. In particular, IP1, IP2, and IP4354

reduce the OuC values to about 10 within only 1000 iterations, which is already very close to the final355

result, demonstrating the efficiency of the algorithm.356

5.5. NCOP Problem Set357

Problem Set Description. We construct a set of NCOPs based on Example 4 (23), where each NCOP

problem takes the following form:

min
x

f(x) = ∥x∥1

s.t.

gi(x) = x2
10∗(i−1)+1 + x2

10∗(i−1)+2 + · · ·+ x2
10∗(i−1)+10 − c(k) ≤ 0, i = 1, 2, . . . , 100

h(x) = A(k)x− b(k) = 0,

(24)

where x ∈ R1000, A(k) ∈ R1000, b(k) ∈ R, and c(k) ∈ R. A(k), b(k), c(k) are sampled from uniform dis-358

tributions U(1, 5), U(10, 20), U(20, 30), respectively. We randomly generate 100 different problem data359

{
(
A(k), b(k), c(k)

)
} to form 100 different NCOPs. These problem datasets {

(
A(k), b(k), c(k)

)
}100k=1 can be ac-360

cessed from the link1. Consistent with previous experimental subsections, we set the time range for all361

NCOPs to [0, 10] and the IP y0 as an all-one vector.362

Figure 9 shows the resolution of these 100 NCOPs using our neural network approach, and Table 3 shows363

the statistical information for these OuC results at different iterations. A clear trend can be seen is that364

all the OuC values decrease as training progresses. Starting from a mean of 372.79, the OuC value drops365

to 24.00 after 1000 iterations (a reduction from 100% to 6.4%). This trend of decreasing OuC values is366

not only observed at the mean, but also consistently observed at the 25%, 50%, 75%, and 90% quantiles.367

Of particular note is the impressive magnitude of this reduction. The significant reduction in OuC values368

1https://drive.google.com/drive/folders/1D_3HP-fBp9tew4IgDroIQtgVb8vU-vGO?usp=drive_link

20

https://drive.google.com/drive/folders/1D_3HP-fBp9tew4IgDroIQtgVb8vU-vGO?usp=drive_link

0 20 40 60 80
Iteration

100

200

300

O
u
C

200 400 600 800
Iteration

50

100

O
u
C

Iteration 0~100 Iteration 100~1000

Figure 9: OuC values of the 100 NCOPs at different training iterations. Left and right show the results of iterations 0∼100 and
100∼1000, respectively.

Iteration Mean STD 25% quantile 50% quantile 75% quantile 90% quantile
0 372.79 3.93 370.11 372.46 375.05 378.15
20 277.87 6.21 274.28 278.69 282.21 284.90
40 130.84 14.12 121.48 130.32 142.55 148.95
60 120.27 9.91 114.34 120.55 126.57 129.90
80 108.60 18.59 102.61 113.15 121.67 127.45
100 89.10 18.81 72.78 88.25 101.73 117.89
300 49.08 9.55 43.14 48.21 53.61 61.63
500 37.23 7.61 32.01 36.37 42.91 46.19
700 30.13 6.95 25.86 29.85 34.31 39.05
999 24.00 6.17 20.73 23.64 27.64 30.35

Table 3: Statistical data of OuC values for 100 NCOPs at different training iterations. The table shows the mean, standard
deviation (STD), and values at the 25%, 50% (median), 75%, and 90% quantiles of the OuC distribution at each iteration.

indicates that our method efficiently navigates the solution space, making steady progress towards optimality.369

This highlights the potential of our approach for tackling a wide variety of NCOPs. In summary, these results370

provide a strong indication of the effectiveness of our proposed method for solving NCOPs, demonstrating371

its robustness and efficiency over a wide range of problem datasets.372

6. Conclusion373

In this study, we present a deep learning-based methodology for solving NCOPs. The proposed method-374

ology is a fruitful fusion of neurodynamic optimization and PINNs. Methodologically, we have extended375

the PINN approach to accommodate neurodynamic optimization. In addition, we have developed a novel376

training algorithm that increases computational efficiency by exploiting the problem structure of NCOPs.377

Experimental results have demonstrated the effectiveness of the proposed method on a number of NCOPs.378

The computational performance can be further improved by tuning the hyperparameters and refining the379

training details.380

In addition, our results have identified several avenues for future research. Specifically, we recommend381

investigating better methods for selecting initial points and time ranges, exploring different network ar-382

chitectures and advanced neurodynamic optimization techniques. Further development in these areas will383

undoubtedly improve the effectiveness and robustness of our approach, making it an important tool for384

21

addressing NCOPs in diverse applications.385

Bibliography386

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic differentiation in387

machine learning: a survey. Journal of machine learning research, 18 .388

Bian, W., Ma, L., Qin, S., & Xue, X. (2018). Neural network for nonsmooth pseudoconvex optimization with389

general convex constraints. Neural Networks, 101 , 1–14.390

Biloš, M., Sommer, J., Rangapuram, S. S., Januschowski, T., & Günnemann, S. (2021). Neural flows: Efficient391

alternative to neural odes. Advances in Neural Information Processing Systems, 34 , 21325–21337.392

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,393

A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: composable transformations of394

Python+NumPy programs. URL: http://github.com/google/jax.395

Burden, R. L., Faires, J. D., & Burden, A. M. (2015). Numerical analysis. Cengage learning.396

Che, H., & Wang, J. (2018). A two-timescale duplex neurodynamic approach to biconvex optimization. IEEE397

Transactions on Neural Networks and Learning Systems, 30 , 2503–2514.398

Che, H., & Wang, J. (2019). A collaborative neurodynamic approach to global and combinatorial optimiza-399

tion. Neural Networks, 114 , 15–27.400

Chen, F., Sondak, D., Protopapas, P., Mattheakis, M., Liu, S., Agarwal, D., & Giovanni, M. D. (2020).401

NeuroDiffEq: A Python package for solving differential equations with neural networks. Journal of Open402

Source Software, 5 , 1931. URL: https://doi.org/10.21105/joss.01931. doi:10.21105/joss.01931.403

Chen, R. T., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. (2018). Neural ordinary differential equa-404

tions. Advances in neural information processing systems, 31 .405

De Ryck, T., Jagtap, A. D., & Mishra, S. (2022). Error estimates for physics informed neural networks406

approximating the navier-stokes equations. arXiv preprint arXiv:2203.09346 , .407

Guo, Z., Liu, Q., & Wang, J. (2011). A one-layer recurrent neural network for pseudoconvex optimization408

subject to linear equality constraints. IEEE Transactions on Neural Networks, 22 , 1892–1900.409

Hopfield, J. J., & Tank, D. W. (1985). “Neural” computation of decisions in optimization problems. Biological410

cybernetics, 52 , 141–152.411

Hou, Z.-G., Cheng, L., Tan, M., & Wang, X. (2010). Distributed adaptive coordinated control of multi-412

manipulator systems using neural networks. Robot intelligence: An advanced knowledge processing ap-413

proach, (pp. 49–69).414

22

http://github.com/google/jax
https://doi.org/10.21105/joss.01931
http://dx.doi.org/10.21105/joss.01931

Hu, Z., Jagtap, A. D., Karniadakis, G. E., & Kawaguchi, K. (2022a). Augmented physics-informed neu-415

ral networks (apinns): A gating network-based soft domain decomposition methodology. arXiv preprint416

arXiv:2211.08939 , .417

Hu, Z., Jagtap, A. D., Karniadakis, G. E., & Kawaguchi, K. (2022b). When do extended physics-informed418

neural networks (xpinns) improve generalization? SIAM Journal on Scientific Computing , 44 , A3158–419

A3182.420

Jagtap, A. D., & Karniadakis, G. E. (2023). How important are activation functions in regression and421

classification? a survey, performance comparison, and future directions. Journal of Machine Learning for422

Modeling and Computing , 4 .423

Jagtap, A. D., Kawaguchi, K., & Em Karniadakis, G. (2020a). Locally adaptive activation functions with424

slope recovery for deep and physics-informed neural networks. Proceedings of the Royal Society A, 476 ,425

20200334.426

Jagtap, A. D., Kawaguchi, K., & Karniadakis, G. E. (2020b). Adaptive activation functions accelerate427

convergence in deep and physics-informed neural networks. Journal of Computational Physics, 404 , 109136.428

Jagtap, A. D., Kharazmi, E., & Karniadakis, G. E. (2020c). Conservative physics-informed neural networks on429

discrete domains for conservation laws: Applications to forward and inverse problems. Computer Methods430

in Applied Mechanics and Engineering , 365 , 113028.431

Jagtap, A. D., Mao, Z., Adams, N., & Karniadakis, G. E. (2022a). Physics-informed neural networks for432

inverse problems in supersonic flows. Journal of Computational Physics, 466 , 111402.433

Jagtap, A. D., Shin, Y., Kawaguchi, K., & Karniadakis, G. E. (2022b). Deep kronecker neural networks: A434

general framework for neural networks with adaptive activation functions. Neurocomputing , 468 , 165–180.435

Jia, W., Liu, N., & Qin, S. (2021). An adaptive continuous-time algorithm for nonsmooth convex resource436

allocation optimization. IEEE Transactions on Automatic Control , 67 , 6038–6044.437

Kennedy, M. P., & Chua, L. O. (1988). Neural Networks for Nonlinear Programming. IEEE Transactions438

on Circuits and Systems, 35 , 554–562. doi:10.1109/31.1783.439

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint440

arXiv:1412.6980 , .441

Lagaris, I. E., Likas, A., & Fotiadis, D. I. (1998). Artificial neural networks for solving ordinary and partial442

differential equations. IEEE Transactions on Neural Networks, 9 , 987–1000. doi:10.1109/72.712178.443

Liu, N., Wang, J., & Qin, S. (2022). A one-layer recurrent neural network for nonsmooth pseudoconvex444

optimization with quasiconvex inequality and affine equality constraints. Neural Networks, 147 , 1–9.445

23

http://dx.doi.org/10.1109/31.1783
http://dx.doi.org/10.1109/72.712178

Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2021). DeepXDE: A Deep Learning Library for Solving446

Differential Equations. SIAM Review , 63 , 208–228. URL: http://dx.doi.org/10.1137/19M1274067.447

doi:10.1137/19m1274067.448

Mao, Z., Jagtap, A. D., & Karniadakis, G. E. (2020). Physics-informed neural networks for high-speed flows.449

Computer Methods in Applied Mechanics and Engineering , 360 , 112789.450

Mattheakis, M., Sondak, D., Dogra, A. S., & Protopapas, P. (2020). Hamiltonian neural networks for solving451

equations of motion. arXiv preprint arXiv:2001.11107 , .452

Mishra, S., & Molinaro, R. (2022). Estimates on the generalization error of physics-informed neural networks453

for approximating a class of inverse problems for pdes. IMA Journal of Numerical Analysis, 42 , 981–1022.454

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,455

N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-456

amkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). PyTorch: An impera-457

tive style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,458

F. d Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural Information Processing Sys-459

tems. Curran Associates, Inc. volume 32. URL: https://proceedings.neurips.cc/paper/2019/file/460

bdbca288fee7f92f2bfa9f7012727740-Paper.pdf. arXiv:1912.01703.461

Penwarden, M., Jagtap, A. D., Zhe, S., Karniadakis, G. E., & Kirby, R. M. (2023). A unified scalable462

framework for causal sweeping strategies for physics-informed neural networks (pinns) and their temporal463

decompositions. arXiv preprint arXiv:2302.14227 , .464

Qin, S., & Xue, X. (2014). A two-layer recurrent neural network for nonsmooth convex optimization problems.465

IEEE transactions on neural networks and learning systems, 26 , 1149–1160.466

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning467

framework for solving forward and inverse problems involving nonlinear partial differential equations. Jour-468

nal of Computational Physics, 378 , 686–707. URL: https://www.sciencedirect.com/science/article/469

pii/S0021999118307125. doi:https://doi.org/10.1016/j.jcp.2018.10.045.470

Shukla, K., Jagtap, A. D., Blackshire, J. L., Sparkman, D., & Karniadakis, G. E. (2021a). A physics-informed471

neural network for quantifying the microstructural properties of polycrystalline nickel using ultrasound472

data: A promising approach for solving inverse problems. IEEE Signal Processing Magazine, 39 , 68–77.473

Shukla, K., Jagtap, A. D., & Karniadakis, G. E. (2021b). Parallel physics-informed neural networks via474

domain decomposition. Journal of Computational Physics, 447 , 110683.475

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,476

Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J.,477

24

http://dx.doi.org/10.1137/19M1274067
http://dx.doi.org/10.1137/19m1274067
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://arxiv.org/abs/1912.01703
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.10.045

Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, , Feng, Y., Moore,478

E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris,479

C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A. P.,480

Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C. N., Fulton, C.,481

Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D. A., Hagen, D. R., Pasechnik, D. V., Olivetti, E.,482

Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A., Ingold, G.-L., Allen,483

G. E., Lee, G. R., Audren, H., Probst, I., Dietrich, J. P., Silterra, J., Webber, J. T., Slavič, J., Nothman,484

J., Buchner, J., Kulick, J., Schönberger, J. L., de Miranda Cardoso, J. V., Reimer, J., Harrington, J.,485

Rodŕıguez, J. L. C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M.,486

Bolingbroke, M., Tartre, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb,487

P. A., Lee, P., McGibbon, R. T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson,488

S., More, S., Pudlik, T. et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in489

Python. Nature Methods, 17 , 261–272. URL: http://www.nature.com/articles/s41592-019-0686-2.490

doi:10.1038/s41592-019-0686-2.491

Wang, Y., Wang, J., & Tao, D. (2023). Neurodynamics-driven supervised feature selection. Pattern Recog-492

nition, 136 , 109254.493

Xia, Y., Feng, G., & Wang, J. (2008). A novel recurrent neural network for solving nonlinear optimization494

problems with inequality constraints. IEEE Transactions on neural networks, 19 , 1340–1353.495

Xia, Y., & Wang, J. (2000). A recurrent neural network for solving linear projection equations. Neural496

Networks, 13 , 337–350.497

25

http://www.nature.com/articles/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2

	Introduction
	Related Works
	Contributions
	Outline

	Neurodynamic Approach for Modelling NCOP
	NCOP
	Neurodynamic Approach
	Physics-Informed Neural Networks (PINNs)

	Modified PINN Model
	Model training
	Training Objective
	Algorithm Design

	Experiments
	Comparisons with Numerical Integration Methods
	Comparisons with PINN
	Hyperparameter Study
	L1 Norm Minimization Problem
	NCOP Problem Set

	Conclusion
	Bibliography

