
HAL Id: hal-04370992
https://hal.science/hal-04370992

Submitted on 3 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A deep learning approach for solving linear
programming problems

Dawen Wu, Abdel Lisser

To cite this version:
Dawen Wu, Abdel Lisser. A deep learning approach for solving linear programming problems. Neu-
rocomputing, 2023, 520, pp.15-24. �10.1016/j.neucom.2022.11.053�. �hal-04370992�

https://hal.science/hal-04370992
https://hal.archives-ouvertes.fr

A deep learning approach for solving linear programming problems

Dawen Wua (dawen.wu@centralesupelec.fr), Abdel Lissera (abdel.lisser@l2s.centralesupelec.fr)

a Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette,

France

Corresponding Author:

Dawen Wu

Address: Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190,

Gif-sur-Yvette, France

Tel: (+33) 750798387

Email: dawen.wu@centralesupelec.fr

A deep learning approach for solving linear programming problems

Dawen Wua,∗, Abdel Lissera

aUniversité Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France

Abstract

Finding the optimal solution to a linear programming (LP) problem is a long-standing computational problem

in Operations Research. This paper proposes a deep learning approach in the form of feed-forward neural

networks to solve the LP problem. The latter is first modeled by an ordinary differential equations (ODE)

system, the state solution of which globally converges to the optimal solution of the LP problem. A neural

network model is constructed as an approximate state solution to the ODE system, such that the neural

network model contains the prediction of the LP problem. Furthermore, we extend the capability of the

neural network by taking the parameter of LP problems as an input variable so that one neural network

can solve multiple LP instances in a one-shot manner. Finally, we validate the proposed method through a

collection of specific LP examples and show concretely how the proposed method solves the example.

Keywords: Linear programming, ODE systems, Neural networks, Deep learning

1. Introduction

Linear programs are a class of optimization problems where the goal is to minimize a linear objective

subject to linear constraints. They play an important role in operations research and have a wide range of

real-world applications, such as transportation scheduling, manufacturing planning, and resource allocation.

We consider the LP problem of the following general form
min
x

DTx

s.t.

Ax− b ≤ 0,

(1)

where A ∈ Rm×n,b ∈ Rm and D ∈ Rn are problem data. x ∈ Rn and u ∈ Rm are decision variables and dual5

variables, respectively. n and m represent the number of decision variables and the number of constraints,

respectively.

This paper proposes a deep learning approach to solve LP problems, which composes of two parts. 1) The

path followed by the decision and dual variables of an LP problem toward the optimal solution is modeled

∗Corresponding author
Email address: dawen.wu@centralesupelec.fr, abdel.lisser@l2s.centralesupelec.fr (Abdel Lisser)

Preprint submitted to Neuralcomputing January 3, 2024

by an ODE system. 2) A feed-forward neural network is used as an approximate state solution to the ODE10

system.

1.1. Literature review

The LP problems have many applications in areas such as economics, engineering, and computer science

(Dantzig, 1963; Gass, 2003). The simplex and interior-point methods are two classical and still widely used

solution methods, that have been well developed and extensively studied in the last decades (Karmarkar,15

1984; Nocedal & Wright, 2006; Gondzio, 2012). Academic or commercial software implement these two

methods for user convenience, such as Cvxpy, Matlab, and Gurobi (Diamond & Boyd, 2016; Matlab, 2017;

Gurobi Optimization, LLC, 2021).

The connection between ODE systems and optimization problems was first studied by Hopfield & Tank

(1985), where the LP problem is modeled by the Hopfield network. Since then, ODE systems approaches20

have been applied to various optimization problems, including quadratic programming (Xia, 1996; Effati

& Nazemi, 2006), linear complementarity problems (Li-Zhi & Hou-Duo, 1999; Xia & Wang, 2000), second-

order cone programming(Ko et al., 2011; Nazemi & Sabeghi, 2020), nonlinear projection equations (Xia &

Feng, 2007) and stochastic game problems (Wu & Lisser, 2022). These articles mentioned above use an

ODE system to model the optimization problem, and then the optimal solution is obtained by solving the25

ODE system. These ODE systems are shown to have global convergence properties, i.e., the state solutions

converge to the optimal solution as the time variable goes to infinity.

The numerical integration methods for solving ODE systems can be divided into two categories: explicit

and implicit methods (Teschl, 2012). The explicit method determines the later state based on the current

state, e.g., RK45, RK23 (Dormand & Prince, 1980; Bogacki & Shampine, 1989). The implicit method30

integrate the ODE system by solving equations involving the current and later states, e.g., Radau and BDF

(Wanner & Hairer, 1996; Shampine & Reichelt, 1997). Software has been develop to implement these methods

(Virtanen et al., 2020; Rackauckas & Nie, 2017).

Dissanayake & Phan-Thien (1994) first uses a neural network to approximate the solution of differential

equations, where the loss function contains two terms satisfying the initial/boundary condition and satisfying35

the differential equation. Lagaris et al. (1998) develop a trail solution method that can ensure initial conditions

always be satisfied. Flamant et al. (2020) takes the parameter of ODE system models as an input variable to

the neural network, such that a neural network can be the solution of multiple differential equations, namely

solution bundles. The universal approximation theorem is foundational for this line of research, which states

that a neural network can approximate any continuous function to arbitrary accuracy (Cybenko, 1989; Hornik40

et al., 1989). Python packages are developed to implement these methods (Lu et al., 2021; Chen et al., 2020).

With the rapid growth of computing power and data, there has been a large amount of research on neural

networks (Goodfellow et al., 2016). Neural networks have a large number of applications in computer vision,

natural language processing, data mining, and other fields (Voulodimos et al., 2018; Deng & Liu, 2018; Liu

et al., 2017). Most training methods for neural networks are based on gradient descent, and many variants45

2

have been proposed to speed up training or to improve the generalization ability (Kingma & Ba, 2017; Nair &

Hinton, 2010). Extreme learning machine is a new paradigm for training neural networks that do not involve

any gradient-based iterative process (Huang et al., 2006; Zhang et al., 2020; Xiao et al., 2017). This method

can apply to a wide range of deep learning tasks. One of our contributions is to link the LP problem to deep

learning (DL) so that the LP problem can benefit from a wide range of research in the DL community, e.g.,50

the extreme learning machine. In addition, our paper is expected to inspire new solution method to problems

beyond optimization, e.g., optimal control problems (Zhang et al., 2021), or to be an integral part of existing

methods (Djordjevic et al., 2022; Zhuang et al., 2022).

1.2. Contributions

The contributions of this paper are threefold and summarized as follows.55

• We propose a deep learning approach to solve LP problems. The proposed approach uses neurodynamic

optimization to model the LP problem by an ODE system. A neural network model is then trained to

be an approximate state solution of the ODE system. In this way, the LP problem can be solved only

by deep learning, involving neither optimization methods, e.g., simplex or interior point methods, nor

numerical integration methods, e.g., RK45.60

• We increase the model capacity by treating the parameter of LP problems as an input variable to the

neural network. The neural network then becomes the solution to multiple LP instances. A novel

algorithm is proposed to train such a neural network. Once trained, the model is able to solve multiple

LP instances in a one-shot manner without any iterative process.

• In the experimental Section, we concretely show how to solve a specific LP instance by the proposed65

method. We explicitly present the LP instance, the corresponding ODE system, and the neural network

model. We compare our proposed approach with the RK45 and convex solvers..

1.3. Organization

The remaining sections are organized as follows. Section 2 describes how to model an LP problem by an

ODE system, and demonstrate the effectiveness of the ODE system from theoretical point of view. Section70

3 sketches the case of using one neural network to solve one LP problem. Section 4 shows the case of using

one neural network to solve multiple LP problems. Section 5 presents experimental results and discussions.

Section 6 summarizes this paper and gives future directions.

2. Preliminaries

2.1. Karush-Kuhn-Tucker conditions75

We consider the LP problem as presented in (1). The corresponding Lagrangian is

L(x,u) = DTx+ uT (Ax− b) (2)

3

The corresponding Karush-Kuhn-Tucker (KKT) conditions are

D+ATu = 0,

uT (Ax− b) = 0,

Ax− b ≤ 0,

u ≥ 0.

(3)

For the LP problem, the KKT conditions are necessary and sufficient for optimality, i.e., the optimal solution

x∗ of the LP problem (1) can be obtained by finding a solution (x∗,u∗) of the KKT condition (3).

2.2. ODE system for modeling LP

Let x(t) : R → Rn and u(t) : R → Rm be functions with respect to the time variable t, and y(t) =

(xT (t),uT (t))T . The following ODE system models the LP problem (1) via the KKT conditions (3).

dy

dt
= Φ(y) =

 dx
dt

du
dt

 =

− (
D+AT (u+Ax− b)+

)
(u+Ax− b)+ − u

 . (4)

The initial value problem (IVP) is developed by composing of the ODE system (4), an initial condition

y(t0) = y0 and a time range [0, T], i.e.,

dy

dt
=

− (
D+AT (u+Ax− b)+

)
(u+Ax− b)+ − u

 , y(t0) = y0, t ∈ [0, T] (5)

y(t), t ∈ [0, T] is called the state solution of the initial value problem (5) if it satisfies both the ODE system

and the initial condition. y∗ is called an equilibrium point of the ODE system (4) if it satisfies Φ(y∗) = 0.80

The following theorems and definition show how the ODE system (4) solves the LP problem (1).

Theorem 1 (Nazemi & Omidi (2013)). y∗ = (x∗,u∗)T is an equilibrium point of the ODE system (4) if and

only if it is a satisfied point of the KKT conditions (3).

Definition 1. Let y(t) be a solution of the ODE system dy
dt = Φ(y). Then the ODE system is said to be

globally convergent to the solution set Θ∗ = {y∗ | y∗ = (x∗,u∗) solves (3)} if any state solution with an

arbitrary initial point satisfies

lim
t→∞

dist (y(t),Θ∗) = 0,

where dist (y,Θ∗) = infy∗∈Θ∗ ∥y − y∗∥ and ∥ · ∥ denotes the l2-norm.

Theorem 2 (Nazemi & Omidi (2013)). The ODE system (4) is globally convergent to the solution set85

Θ∗ = {y∗ | y∗ = (x∗,u∗) solves (3)}.

According to Theorem 1, the optimal solution to the LP problem is equivalent to the equilibrium points

of the corresponding ODE system. According to Theorem 2, for any given initial point, the state solution of

4

the ODE system will always converge to an optimal solution of the LP problem as the time t goes to infinity,

i.e., limt→∞ y(t) = y∗. We refer the reader to (Nazemi & Omidi, 2013; Nazemi & Tahmasbi, 2013; Xia &90

Wang, 2000) for the proof of the theorems and other details.

3. One neural network for solving one LP problem

Before using the neural network, the ODE system requires two parameters to form an IVP, i.e., the initial

point y0 and the time range [0, T]. Thanks to the global convergence property of the ODE system, the initial

point can be simply fixed to zero without loss of convergence, i.e.,

y(0) = 0. (6)

Let the neural network model be defined as

ŷ (t;w) = (1− e−t)NN (t;w) , t ∈ [0, T], (7)

where NN represents a fully-connected neural network with weights w. The multiplier (1 − e−t) is used to

guarantee the initial condition ŷ(0;w) = 0 must be satisfied regardless of weights w. The multiplier greatly

affects the region around t = 0 and gradually converges to 1 as time goes on. The neural network model

ŷ (t;w) is act as an approximate state solution to the IVP. The endpoint of the model (7),

ŷ (T ;w) = (1− e−T)NN (T ;w) , (8)

represents an approximate solution to the KKT conditions.

Figure 1 shows the workflow of solving an LP problem by the neural network model. Consider solving95

LP problem (1), and the solution procedure can be summarised as follows. 1) The KKT conditions (3) of

the LP problem are derived; The objective becomes finding a feasible point to the KKT conditions. 2) The

ODE system (4) is built to model the KKT conditions; By considering the initial point (6) and a time range

[0, T], the ODE system forms an initial value problem. 3) The model ŷ (t;w) as defined in (7) is used as an

approximate state solution to this initial value problem; The endpoint ŷ (T ;w) is an approximate solution100

to the KKT conditions.

Since the initial condition ŷ(0;w) = 0 is always satisfied thanks to the multiplier construction, The

training objective is to make ŷ(t;w) satisfying the corresponding ODE system by adjusting model’s weights

w. Thus, the loss function is defined as

E(w) =
1

|T|
∑
ti∈T

ℓ

(
∂ŷ (ti;w)

∂ti
,Φ(ŷ (ti;w))

)
, (9)

5

Linear programming ODE system Neural network

An LP problem The ODE system Approximate state solution

Approximate solution to
the KKT conditionsThe initial condition

The time range

The KKT conditions

Figure 1: The connection between the LP problem, ODE system and neural network.

where Φ refers to the ODE system associated with the LP problem to be solved. T ⊂ R+ refers to a set of

collocation times to be trained, where each collocation time ti is sampled by a uniform distribution over the

interval [0, T]. ∂ŷ(ti;w)
∂ti

∈ Rn+m represents the partial derivative of ŷ with respect to ti. Φ(ŷ (tj ;w)) ∈ Rn+m

represents the partial derivative expected to be according to the ODE system. ℓ(·, ·) is an error metric used105

to measure the difference between these two vectors.

Algorithm 1: Solving an LP problem by one neural network

Require: A time range [0, T]
Input : An LP problem
Output : Solution to the LP problem

1 Function Main:
2 Derive the ODE system Φ of the LP problem.
3 Construct a neural network model ŷ (t;w) = (1− e−t)NN (t;w).
4 while True do
5 T ∼ U(0, T) Uniformly sample a batch of t from the interval [0, T]
6 Forward propagation: Compute E(w) based on T
7 Backward propagation: Train the model weight w by ∇E(w)
8 Stopping criteria check.

9 end

10 end

Algorithm 1 shows the training of the neural network model to solve an LP problem. The algorithm

requires a time range [0, T], which determines the input space of the model. The LP problem in hand should

determine the choice of T , e.g., a larger T for a complex problem. In each training round, the neural network

trains on a batch of time T, which would is by the end of the iteration.110

6

Figure 2: The neural network model that receives t and θ as input. t refers to the time variable. θ refers to the
parameter of an LP problem, and w refers to the weights of the neural network.

The training algorithm is unsupervised since there is no pre-given fixed training dataset. Instead, the

ODE system is given as an instruction to guide the neural network model. Since each round of training uses

fresh data, there is no over-fitting to a particular training data set. Training can go on forever to constantly

optimize the neural network’s weights w. However, it is realistic to set a stopping criteria to break the loop

when the training is deemed good enough. Some possible stopping criteria could be: stop when the number115

of iterations exceeds a maximum; stop when the loss function or other metrics fall below a certain threshold.

After the training, the neural network model ŷ (t;w) is expected to be well approximate the true state

solutiong y(t) on interval [0, T]. Furthermore, the endpoint ŷ(T ;w) = (x̂, û) is expected to solve the KKT

conditions, where x̂ is the final prediction to the LP problem.

4. One neural network for solving multiple LP problems120

Section 3 presents the case of using one neural network model to solve one LP problem. This section

demonstrates how to solve multiple LP problems using a single neural network model, significantly increasing

computational efficiency.

Let the neural network model for solving multiple LP problems be defined as

ŷ (t;θ;w) = (1− e−t)NN (t,θ;w) , (10)

where NN (t,θ;w) is a nerual network that receive the parameter θ of an LP problem as input, as shown in

Figure 2. The parameter θ represents the problem data, such as D, A, b in (1) or a combination of them,125

and each different θ represents a different LP problem. The model ŷ (t,θ;w) receive different LP problem

7

with a parameter θ as input and predict their solutions. As in (7), the initial point is fixed to y(0) = 0, and

(1− e−t) ensures the initial conditions are satisfied. When considering only one LP problem, the parameter

θ is a constant and can be removed, and the model (10) degraded to (7).

The loss function of (10) is defined as

E(w) =
1

|Θ| ∗ |T|
∑
θj∈Θ

∑
ti∈T

ℓ

(
∂ŷ (ti,θj ;w)

∂ti
,Φj(ŷ (ti,θj ;w))

)
, (11)

where Θ refers to the set of parameters θ, and each θj ∈ Θ relate to an ODE system Φj . For a specific θj ,130

∂ŷ(ti,θj ;w)
∂tj

∈ Rn+m and Φj(ŷ (ti,θj ;w)) ∈ Rn+m represent the partial derivative of ŷ with respect to ti and

the derivative from the ODE system Φj , respectively.

Algorithm 2: Solving multiple LP problems by one neural network

Require: A time range: [0, T]
A probability distribution P for generating θ.

1 Function Main:
2 while True do
3 Θ ∼ P Generate a set of θ according to the given probability distribution P
4 T ∼ U(0, T) Uniformly sample a batch of t from the interval [0, T]
5 Forward propagation: Compute E(w) based on the Θ and T
6 Backward propagation: Update w by ∇E(w)
7 Stopping criteria check.

8 end

9 end

Algorithm 2 shows the training of the neural network model involving multiple LP problems. The algo-

rithm aims at reducing the loss function (11). At each training iteration, a batch of data Θ and T is sampled

to train the model, where Θ is sampled from the given probability distribution P, and T is sampled from the135

given time range [0, T].

After trainings, the model ŷ (t,θ;w) is expected to be able to solve LP problems with parameter θ coming

from the distribution P. Consider a LP problem with parameter θ; The model’s final prediction to this LP

problem is ŷ(T,θ;w).

5. Numerical results140

Section 5.1 gives the experimental setup, including the environment, hyperparameters, and evaluation

metrics. Section 5.2 shows the case of solving a specific LP instance, as introduced in Section 3 whilst

Section 5.3 shows the case of solving multiple LP instances, as introduced in Section 4.

5.1. Experimental setup

The experiments are conducted on the Google Colab Pro+ platform, which provides 51GB RAM, eight145

Intel Xeon 2.2GHz CPUs, and one Nvidia Tesla P100 16GB GPU. The neural network model is built by

Pytorch 1.9.1 and CUDA 10.2.

8

The hyperparameters used for training the neural network are as follows

• The optimizer is Adam with a learning rate of 0.001.

• The loss function ℓ(·, ·) is the mean square error.150

• The batch size is 128, and the maximum number of iterations is 500000.

We compare the proposed approach to the ODE solver and the convex solvers. For the ODE solver, we

select the RK45 method implemented by Scipy (Dormand & Prince, 1980; Virtanen et al., 2020). For the

convex solvers, we select the ECOS, OSQP, and Gurobi provided by CVXPY (Domahidi et al., 2013; Stellato

et al., 2020; Gurobi Optimization, LLC, 2021; Diamond & Boyd, 2016).155

We use the following mean square error (MSE) metric to measure the prediction accuracy, defined by

MSE =
1

B

B∑
i=1

(fi(x
∗
i)− fi(x̂i))

2, (12)

where B refers to the number of instances in a test batch. Consider the i-th instance in the test batch. x∗
i

refers to an optimal solution, and fi(x
∗
i) refers to the true objective value obtained by the LP solver. xi refers

to a prediction, and fi(xi) refers to the predicted objective value. The evaluation indicator measure on the

objective value fi(x̂i) rather than on the predicted point x̂i, because the true objective value is unique fi(x
∗
i),

whereas there may be multiple optimal solutions x∗
i . We also provide the mean objective value (MOV) to

roughly describe a test batch, defined as

MOV =
1

B

B∑
i=1

fi(xi). (13)

5.2. Case 1: Solving one LP problem

Consider the following specific LP problem

min
x

−9.54x1 − 8.16x2 − 4.26x3 − 11.43x4

s.t.

3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 ≤ 7.81.

(14)

9

According to (4), the corresponding ODE system for this LP problem is

dy

dt
= Φ(y) =

dx
dt

du
dt

 =



−
(
−9.54 + 3.18T (u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − 7.81)+

)
−
(
−8.16 + 2.72T (u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − 7.81)+

)
−
(
−4.26 + 1.42T (u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − 7.81)+

)
−
(
−11.43 + 3.81T (u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − 7.81)+

)
(u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − 7.81)+ − u


, (15)

where u is the dual variable.

By choosing the initial point to be all-zero and the time range to be [0, 10], the ODE system forms the

initial value problem as follows

dy

dt
=



−
(
−9.54 + 3.18T (u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − 7.81)+

)
−
(
−8.16 + 2.72T (u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − 7.81)+

)
−
(
−4.26 + 1.42T (u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − 7.81)+

)
−
(
−11.43 + 3.81T (u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − 7.81)+

)
(u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − 7.81)+ − u


, y(0) =



0

0

0

0

0


, t ∈ [0, 10].

(16)

Layers Input Size Output Size Activation function
Fully connected 1 100 Tanh
Fully connected 100 5

Table 1: A two-layer neural network to solve the LP problem (14). The input is t ∈ [0, 10], and the second layer of the
neural network has no activation function.

We construct a model ŷ (t;w) as defined in (7) to solve this initial value problem and the LP problem,160

where Table 1 shows the structure of the neural network. As shown in Figure 3a, the loss value decreases

from an initial value of 60 to less than 0.1, implying that the model is trained to satisfy the ODE system

conditions(15). Figure 3b shows the true state solution obtained by the numerical integration method RK45,

and Figure 3c shows the approximate state solution , i.e., the model ŷ(t;w) after training. The approximate

state solution ŷ(t;w) is almost identical to the true state solution y(t), which validates the effectiveness of165

the training.

Approaches x∗ u∗

Convex optimization solver: ECOS [0.7294, 0.6238, 0.3257, 0.8739] 2.9999
Numerical integration method: RK45 [0.7294, 0.6238, 0.3257, 0.8739] 2.9999
Neural network [0.7294, 0.6238, 0.3257, 0.8739] 2.9999

Table 2: Solutions of three different approaches to the LP problem (14)

Table 2 shows the final solutions to the LP problem by the three approaches. The solution from the

numerical integration method is the state solution’s endpoint, i.e., y(10), and the solution of our neural

10

(a)

(b) (c)

Figure 3: (a) The loss values in the first 5000 iterations (b) The true state solution y(t) to the initial value
problem (16) (c) The neural network approximate state solution ŷ(t;w) after training

network method is ŷ(10;w). All three approaches achieve the same optimal solutions.

5.3. Case 2: Solving multiple LP problems170

5.3.1. b as variable

We now use a neural network to solve multiple LP problems. Consider an LP problem with the following

form

min
x

−9.54x1 − 8.16x2 − 4.26x3 − 11.43x4

s.t.

3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 ≤ b,

(17)

where b is a variable within the interval [0, 10]. Every different b ∈ [0, 10] of (17) represents a different LP

problem. The initial value problem corresponding to (17) is

dy

dt
=



−
(
9.54 + 3.18T (u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − b)+

)
−
(
8.16 + 2.72T (u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − b)+

)
−
(
4.26 + 1.42T (u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − b)+

)
−
(
11.43 + 3.81T (u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − b)+

)
(u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − b)+ − u


, y(0) =



0

0

0

0

0


, t ∈ [0, 10]. (18)

11

Layers Input Size Output Size Activation function
Fully connected 2 100 Tanh
Fully connected 100 5

Table 3: A two-layer neural network to solve the LP problem of variable b (17) The input is t ∈ [0, 10] and b ∈ [0, 10]

Figure 4: The loss value versus iteration in the first 10,000 iterations

We construct the neural network model as follows

ŷ(t, b;w) = (1− e−t)NN(t, b;w), (19)

which is able to receive various b ∈ [0, 10] as input, and NN(t, b;w) is a fully connected network as shown in

Table (3). Figure 4 shows the training of this model according to Algorithm 2. After 10,000 iterations, the

loss value drops from 175 to less than 5, and after 500,000 iterations, it gradually converges to 0.01. Figure175

5 shows the solutions of the neural network for three specific instances after the training is completed.

Numbers of
instances

Neural network ODE solver: RK45 Convex solvers

MOV MSE
CPU
time

MOV
CPU
time

MOV
ECOS
CPU
time

OSQP
CPU
time

GUROBI
CPU
time

100 -16.90 0.089 <=0.01 -16.68 3.45 -16.69 0.37 0.61 0.46
300 -14.83 0.099 <=0.01 -14.57 10.34 -14.58 1.10 1.74 1.29
500 -14.52 0.101 <=0.01 -14.27 17.38 -14.28 1.89 2.93 2.25
1000 -15.40 0.095 <=0.01 -15.16 34.50 -15.16 3.74 5.90 4.36
3000 -15.22 0.095 <=0.01 -14.98 104.35 -14.99 10.97 17.45 13.26
5000 -15.39 0.095 <=0.01 -15.15 173.35 -15.16 18.60 29.28 22.13
10000 -15.25 0.095 <=0.01 -15.01 346.25 -15.02 37.28 57.99 44.73

Table 4: Comparison between the neural network model, ODE solver and convex solvers on solving multiple
instances of (17) The metric MOV is defined in (13). The error metric MSE is defined in (12), where the MSE for the ODE
solver and convex solvers are omitted because they provide exact solutions. The CPU time is in seconds, and <= 0.01 means
the CPU times are less than or equal to 0.01 seconds.

Table 4 reports our neural network model’s CPU times and accuracy along with two comparable ap-

12

Figure 5: Three instances of (17) solved by the RK45 method and the neural network
Upper row: True state solutions obtained by the RK45 method
Lower row: Approximate state solutions obtained by the neural network
Left: For solving the LP problem of (17) with b = 8.16, the endpoints are y(t = 10) = [0.76, 0.65, 0.34, 0.91, 3.00], ŷ(t = 10, b =
8.16;w) = [0.79, 0.67, 0.47, 0.91, 3.03]
Middle: For solving the LP problem of (17) with b = 6.72, y(t = 10) = [0.63, 0.53, 0.28, 0.75, 3.00], ŷ(t = 10, b = 6.72;w) =
[0.67, 0.56, 0.36, 0.76, 3.04]
Right: For solving the LP problem of (17) with b = 6.18, y(t = 10) = [0.58, 0.49, 0.26, 0.69, 3.00], ŷ(t = 10, b = 6.18;w) =
[0.64, 0.53, 0.32, 0.71, 3.04]

proaches. As shown in the table, our neural network model significantly outperforms the ODE solver and

convex solvers in terms of computational CPU time. The neural network model takes less than 0.01 seconds

to solve either one or multiple instances. The MOVs that our model produces are close to the MOVs from180

the other two approaches, and the MSEs near 0.1 demonstrate that our model’s predictions are acceptable.

After training, the neural network model can directly give the prediction ŷ(T, b;w) to any LP problem

of b ∈ [0, 10] in constant execute time, whereas an ODE solver must first compute all of the previous states

before providing the final solution. When dealing with multiple instances, the ODE solver and convex solvers

solve them one by one, and the computational time grows linearly with the number of instances. Our neural185

network can solve all these instances in one shot without suffering from this linear growth. The computational

advantage becomes even more significant when the number of instances is large. Additionally, both in the

training and prediction stages, our approach is highly conducive to parallelization.

13

5.3.2. D as variable

Consider an LP problem with the following form

min
x

DTx

s.t.

3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 ≤ 7.81,

(20)

where D = [D1, D2, D3, D4]
T ∈ R4 is generated by a random number from the uniform distribution U(0, 10)

multiplied by the vector [3.18, 2.72, 1.43, 3.81]T . Every different D represents a different LP problem. The

corresponding initial value problem is

dy

dt
=



−
(
−D1 + 3.18T (u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − 7.81)+

)
−
(
−D2 + 2.72T (u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − 7.81)+

)
−
(
−D3 + 1.42T (u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − 7.81)+

)
−
(
−D4 + 3.81T (u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − 7.81)+

)
(u+ 3.18x1 + 2.72x2 + 1.42x3 + 3.81x4 − 7.81)+ − u


, y(0) =



0

0

0

0

0


, t ∈ [0, 10].

(21)

Layers Input Size Output Size Activation function
Fully connected 5 100 Tanh
Fully connected 100 5

Table 5: A two-layer neural network to solve the LP problem of variable D (20) The input is t ∈ [0, 10] and D ∈ R4

Figure 6: The loss value versus iteration in the first 10,000 iterations

We construct the neural network model for resolving this case as follows

ŷ(t,D;w) = (1− e−t)NN(t,D;w), (22)

14

which is able to receive various D as input, and NN(t,D;w) is a fully connect network as shown in Table190

(5). Figure 6 shows the training of this model according to Algorithm 2. After 10,000 iterations, the loss

value decreases from 600 to less than 10.

Figure 7: Three instances of (20) solved by the RK45 method and the neural network
Upper row: True state solutions obtained by the RK45 method
Lower row: Approximate state solutions obtained by the neural network
Left: For solving the LP problem of (20) with D = [−29.99,−25.66,−13.39,−35.94], the endpoints are y(t = 10) =
[0.73, 0.62, 0.33, 0.87, 9.43], ŷ(t = 10,D;w) = [0.66, 0.64, 0.29, 0.84, 9.41]
Middle: For solving the LP problem of (20) with D = [−3.87,−3.31,−1.73,−4.63], the endpoints are y(t = 10) =
[0.73, 0.62, 0.33, 0.87, 1.22], ŷ(t = 10,D;w) = [0.75, 0.62, 0.32, 0.86, 1.09].
Right: For solving the LP problem of (20) with D = [−24.65,−21.09,−11.01,−29.54], the endpoints are y(t = 10) =
[0.73, 0.62, 0.33, 0.87, 7.75], ŷ(t = 10,D;w) = [0.70, 0.63, 0.31, 0.84, 7.66]

Numbers of
linear programs

Neural network ODE solver Convex solvers
Mean
values

Times MSEs
Mean
values

Times
Mean
values

ECOS
Times

OSQP
Times

GUROBI
Times

100 -37.95 <=0.01 0.17 -37.75 3.64 -37.75 0.38 0.61 0.45
300 -38.84 <=0.01 0.17 -38.65 11.13 -38.66 1.12 1.81 1.39
500 -39.10 <=0.01 0.20 -38.89 18.64 -38.90 1.92 3.02 2.29
1000 -39.94 <=0.01 0.20 -39.72 37.39 -39.73 3.81 6.16 4.51
3000 -38.95 <=0.01 0.20 -38.74 111.60 -38.75 11.73 18.01 13.70
5000 -39.32 <=0.01 0.20 -39.10 185.89 -39.11 19.13 30.11 22.63
10000 -39.67 <=0.01 0.20 -39.44 370.22 -39.45 38.33 60.13 45.44

Table 6: Comparison between the neural network model, ODE solver and convex solvers on solving multiple
instances of (20) The metric MOV is defined in (13). The error metric MSE is defined in (12), where the MSE for the ODE
solver and LP solvers are omitted because they provide exact solutions. The CPU time is in seconds, and <= 0.01 means the
CPU times are less than or equal to 0.01 seconds.

Compared to the case of b as a variable, D being a variable is more challenging because of the higher

dimensional of the input space. Figure 7 shows three specific examples solved by our neural network model

and the RK45 method. Table 6 presents the results on much more instances in terms of accuracy and195

15

computational time. Together, the figure and the table show how our neural network approach effectively

and efficiently handles the situation where D is a variable.

6. Conclusion

In this paper, we present a deep learning approach in the form of feed-forward neural networks to solve LP

problems. We show how a neural network can be used to solve a single LP problem and multiple LP problems,200

respectively. We demonstrate the effectiveness of the proposed method through specific LP examples. This

paper is a beginning of a series of future works. We relate the most basic optimization problem, linear

programming, to the machine learning (ML) community so that a large number of cutting-edge research

from ML can directly benefit the linear programming study, such as parallel computing and GPU computing.

Since the neural network only gives approximate solutions, to improve the predicted accuracy, we can205

develop more sophisticated network architecture and training algorithms that take advantage of the problem

structure. Another line of future direction could be extending the proposed approach to other optimization

or operations research problems, such as quadratic or second-order conic programming.

16

Bibliography

Bogacki, P., & Shampine, L. F. (1989). A 3 (2) pair of runge-kutta formulas. Applied Mathematics Letters,210

2 , 321–325.

Chen, F., Sondak, D., Protopapas, P., Mattheakis, M., Liu, S., Agarwal, D., & Giovanni, M. D. (2020).

Neurodiffeq: A python package for solving differential equations with neural networks. Journal of Open

Source Software, 5 , 1931. URL: https://doi.org/10.21105/joss.01931. doi:10.21105/joss.01931.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Sig-215

nals and Systems, 2 , 303–314. URL: https://doi.org/10.1007/BF02551274. doi:10.1007/BF02551274.

Dantzig, G. B. (1963). Linear programming and extensions, .

Deng, L., & Liu, Y. (2018). Deep learning in natural language processing . Springer.

Diamond, S., & Boyd, S. (2016). CVXPY: A Python-embedded modeling language for convex optimization.

Journal of Machine Learning Research, 17 , 1–5.220

Dissanayake, M. W. M. G., & Phan-Thien, N. (1994). Neural-network-based ap-

proximations for solving partial differential equations. Communications in Numer-

ical Methods in Engineering , 10 , 195–201. URL: https://onlinelibrary.wiley.

com/doi/abs/10.1002/cnm.1640100303. doi:https://doi.org/10.1002/cnm.1640100303.

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.1640100303.225

Djordjevic, V., Stojanovic, V., Tao, H., Song, X., He, S., & Gao, W. (2022). Data-driven control of hydraulic

servo actuator based on adaptive dynamic programming. Discrete and Continuous Dynamical Systems-S ,

15 , 1633.

Domahidi, A., Chu, E., & Boyd, S. (2013). Ecos: An socp solver for embedded systems. In 2013 European

Control Conference (ECC) (pp. 3071–3076). IEEE.230

Dormand, J. R., & Prince, P. J. (1980). A family of embedded runge-kutta formulae. Journal of computational

and applied mathematics, 6 , 19–26.

Effati, S., & Nazemi, A. (2006). Neural network models and its application for solving linear and

quadratic programming problems. Applied Mathematics and Computation, 172 , 305–331. URL: https://

www.sciencedirect.com/science/article/pii/S0096300305002055. doi:https://doi.org/10.1016/235

j.amc.2005.02.005.

Flamant, C., Protopapas, P., & Sondak, D. (2020). Solving differential equations using neural network

solution bundles. arXiv:2006.14372.

Gass, S. I. (2003). Linear programming: methods and applications. Courier Corporation.

17

https://doi.org/10.21105/joss.01931
http://dx.doi.org/10.21105/joss.01931
https://doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303
http://dx.doi.org/https://doi.org/10.1002/cnm.1640100303
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.1640100303
https://www.sciencedirect.com/science/article/pii/S0096300305002055
https://www.sciencedirect.com/science/article/pii/S0096300305002055
https://www.sciencedirect.com/science/article/pii/S0096300305002055
http://dx.doi.org/https://doi.org/10.1016/j.amc.2005.02.005
http://dx.doi.org/https://doi.org/10.1016/j.amc.2005.02.005
http://dx.doi.org/https://doi.org/10.1016/j.amc.2005.02.005
http://arxiv.org/abs/2006.14372

Gondzio, J. (2012). Interior point methods 25 years later. European Journal of Operational Research, 218 ,240

587–601.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning . MIT Press. http://www.

deeplearningbook.org.

Gurobi Optimization, LLC (2021). Gurobi Optimizer Reference Manual. URL: https://www.gurobi.com.

Hopfield, J. J., & Tank, D. W. (1985). “neural” computation of decisions in optimization problems. Biological245

cybernetics, 52 , 141–152.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approxi-

mators. Neural Networks, 2 , 359–366. URL: https://www.sciencedirect.com/science/article/pii/

0893608089900208. doi:https://doi.org/10.1016/0893-6080(89)90020-8.

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: theory and applications.250

Neurocomputing , 70 , 489–501.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. In Proceedings of the

sixteenth annual ACM symposium on Theory of computing (pp. 302–311).

Kingma, D. P., & Ba, J. (2017). Adam: A method for stochastic optimization. arXiv:1412.6980.

Ko, C.-H., Chen, J.-S., & Yang, C.-Y. (2011). Recurrent neural networks for solving second-order cone255

programs. Neurocomputing , 74 , 3646–3653. URL: https://www.sciencedirect.com/science/article/

pii/S0925231211004176. doi:https://doi.org/10.1016/j.neucom.2011.07.009.

Lagaris, I., Likas, A., & Fotiadis, D. (1998). Artificial neural networks for solving ordinary and partial

differential equations. IEEE Transactions on Neural Networks, 9 , 987–1000. doi:10.1109/72.712178.

Li-Zhi, L., & Hou-Duo, Q. (1999). A neural network for the linear complementarity problem. Mathemati-260

cal and Computer Modelling , 29 , 9–18. URL: https://www.sciencedirect.com/science/article/pii/

S0895717799000266. doi:https://doi.org/10.1016/S0895-7177(99)00026-6.

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep neural network

architectures and their applications. Neurocomputing , 234 , 11–26.

Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2021). Deepxde: A deep learning library for solv-265

ing differential equations. SIAM Review , 63 , 208–228. URL: http://dx.doi.org/10.1137/19M1274067.

doi:10.1137/19m1274067.

Matlab (2017). MATLAB version 9.3.0.713579 (R2017b). Natick, Massachusetts: The MathWorks Inc.

18

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.gurobi.com
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://arxiv.org/abs/1412.6980
https://www.sciencedirect.com/science/article/pii/S0925231211004176
https://www.sciencedirect.com/science/article/pii/S0925231211004176
https://www.sciencedirect.com/science/article/pii/S0925231211004176
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2011.07.009
http://dx.doi.org/10.1109/72.712178
https://www.sciencedirect.com/science/article/pii/S0895717799000266
https://www.sciencedirect.com/science/article/pii/S0895717799000266
https://www.sciencedirect.com/science/article/pii/S0895717799000266
http://dx.doi.org/https://doi.org/10.1016/S0895-7177(99)00026-6
http://dx.doi.org/10.1137/19M1274067
http://dx.doi.org/10.1137/19m1274067

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceed-

ings of the 27th International Conference on International Conference on Machine Learning ICML’10 (p.270

807–814). Madison, WI, USA: Omnipress.

Nazemi, A., & Omidi, F. (2013). An efficient dynamic model for solving the shortest path problem. Trans-

portation Research Part C: Emerging Technologies, 26 , 1–19. URL: https://www.sciencedirect.com/

science/article/pii/S0968090X12000964. doi:https://doi.org/10.1016/j.trc.2012.07.005.

Nazemi, A., & Sabeghi, A. (2020). A new neural network framework for solving con-275

vex second-order cone constrained variational inequality problems with an application in multi-

finger robot hands. Journal of Experimental & Theoretical Artificial Intelligence, 32 , 181–

203. URL: https://doi.org/10.1080/0952813X.2019.1647559. doi:10.1080/0952813X.2019.1647559.

arXiv:https://doi.org/10.1080/0952813X.2019.1647559.

Nazemi, A., & Tahmasbi, N. (2013). A high performance neural network model for solving chance constrained280

optimization problems. Neurocomputing , 121 , 540–550.

Nocedal, J., & Wright, S. (2006). Numerical optimization. Springer Science & Business Media.

Rackauckas, C., & Nie, Q. (2017). Differentialequations.jl–a performant and feature-rich ecosystem for solving

differential equations in julia. Journal of Open Research Software, 5 .

Shampine, L. F., & Reichelt, M. W. (1997). The matlab ode suite. SIAM journal on scientific computing ,285

18 , 1–22.

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., & Boyd, S. (2020). OSQP: an operator splitting solver

for quadratic programs. Mathematical Programming Computation, 12 , 637–672. URL: https://doi.org/

10.1007/s12532-020-00179-2. doi:10.1007/s12532-020-00179-2.

Teschl, G. (2012). Ordinary differential equations and dynamical systems volume 140. American Mathematical290

Soc.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,

Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J.,

Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore,

E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris,295

C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., & SciPy 1.0 Contributors (2020).

SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17 , 261–272.

doi:10.1038/s41592-019-0686-2.

Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning for computer

vision: A brief review. Computational intelligence and neuroscience, 2018 .300

19

https://www.sciencedirect.com/science/article/pii/S0968090X12000964
https://www.sciencedirect.com/science/article/pii/S0968090X12000964
https://www.sciencedirect.com/science/article/pii/S0968090X12000964
http://dx.doi.org/https://doi.org/10.1016/j.trc.2012.07.005
https://doi.org/10.1080/0952813X.2019.1647559
http://dx.doi.org/10.1080/0952813X.2019.1647559
http://arxiv.org/abs/https://doi.org/10.1080/0952813X.2019.1647559
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
http://dx.doi.org/10.1007/s12532-020-00179-2
http://dx.doi.org/10.1038/s41592-019-0686-2

Wanner, G., & Hairer, E. (1996). Solving ordinary differential equations II volume 375. Springer Berlin

Heidelberg New York.

Wu, D., & Lisser, A. (2022). A dynamical neural network approach for solving stochastic two-player zero-sum

games. Neural Networks, .

Xia, Y. (1996). A new neural network for solving linear and quadratic programming problems. IEEE305

Transactions on Neural Networks, 7 , 1544–1548. doi:10.1109/72.548188.

Xia, Y., & Feng, G. (2007). A new neural network for solving nonlinear projection equations. Neural

Networks, 20 , 577–589.

Xia, Y., & Wang, J. (2000). A recurrent neural network for solving linear projection equations. Neural

Networks, 13 , 337–350.310

Xiao, W., Zhang, J., Li, Y., Zhang, S., & Yang, W. (2017). Class-specific cost regulation extreme learning

machine for imbalanced classification. Neurocomputing , 261 , 70–82.

Zhang, J., Li, Y., Xiao, W., & Zhang, Z. (2020). Non-iterative and fast deep learning: Multilayer extreme

learning machines. Journal of the Franklin Institute, 357 , 8925–8955.

Zhang, X., Wang, H., Stojanovic, V., Cheng, P., He, S., Luan, X., & Liu, F. (2021). Asynchronous fault315

detection for interval type-2 fuzzy nonhomogeneous higher-level markov jump systems with uncertain

transition probabilities. IEEE Transactions on Fuzzy Systems, .

Zhuang, Z., Tao, H., Chen, Y., Stojanovic, V., & Paszke, W. (2022). Iterative learning control for repetitive

tasks with randomly varying trial lengths using successive projection. International Journal of Adaptive

Control and Signal Processing , 36 , 1196–1215.320

20

http://dx.doi.org/10.1109/72.548188

	Introduction
	Literature review
	Contributions
	Organization

	Preliminaries
	Karush-Kuhn-Tucker conditions
	ODE system for modeling LP

	One neural network for solving one LP problem
	One neural network for solving multiple LP problems
	Numerical results
	Experimental setup
	Case 1: Solving one LP problem
	Case 2: Solving multiple LP problems
	b as variable
	D as variable

	Conclusion
	Bibliography

