
HAL Id: hal-04370990
https://hal.science/hal-04370990

Submitted on 3 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MG-CNN: A Deep CNN To Predict Saddle Points Of
Matrix Games

Dawen Wu, Abdel Lisser

To cite this version:
Dawen Wu, Abdel Lisser. MG-CNN: A Deep CNN To Predict Saddle Points Of Matrix Games. Neural
Networks, 2022, 156, pp.49-57. �10.1016/j.neunet.2022.09.014�. �hal-04370990�

https://hal.science/hal-04370990
https://hal.archives-ouvertes.fr

MG-CNN: A Deep CNN To Predict Saddle Points Of Matrix Games

Dawen Wua (dawen.wu@centralesupelec.fr), Abdel Lissera (abdel.lisser@l2s.centralesupelec.fr)

a Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette,

France

Corresponding Author:

Dawen Wu

Address: Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190,

Gif-sur-Yvette, France

Tel: (+33) 750798387

Email: dawen.wu@centralesupelec.fr

MG-CNN: A Deep CNN To Predict Saddle Points Of Matrix Games

Dawen Wua,∗, Abdel Lissera

aUniversité Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France

Abstract

Finding the saddle point of a matrix game is a classical problem that arises in various fields, e.g., economics,

computer science, and engineering. The standard problem-solving methods consist of formulating the prob-

lem as a linear program (LP). However, this approach seems to be inappropriate, especially when multiple

instances need to be solved. In this paper, we propose a Convolutional Neural Network based approach,

which is able to predict both the strategy profile (x, y) and the optimal value v of the game. We call this

approach Matrix Game-Conventional Neural Network or MG-CNN for short. Thanks to a global pooling

technique, MG-CNN can solve matrix games with different shapes. We propose a specialized algorithm to

train MG-CNN, which includes both data generation and model training. Our numerical experiments show

that MG-CNN outperforms standard LP solvers in terms of computational CPU time and provides a high

quality prediction.

Keywords: Convolutional neural network, Saddle point, Matrix game

1. Introduction

Game theory is a theoretical framework to study conflict and cooperation among rational agents in a

strategic setting. The assumption behind game theory is that agents choose actions that maximize their

own payoffs (Fudenberg & Tirole, 1991). In this paper, we call matrix game the two-player zero-sum game

problem with the following characteristics. Firstly, the players’ action sets are discrete and finite. Secondly,5

for a given choice of actions, the payoff for both players adds up to zero. Matrix games model many real-world

problems to help decision-makers make the right decisions in a competitive environment (Dixit & Pindyck,

2012; Simmons, 1998; Vega-Redondo, 2003; Singh, 1999). There are also studies on the situation where games

contain random variables (Cheng et al., 2016; Singh & Lisser, 2019; Wu & Lisser, 2022a).

The saddle point or Nash equilibrium is the most common way to define the solution concept of a non-10

cooperative game. These solutions describe a situation where no player can improve his payoff by unilaterally

changing his strategy. A saddle point refers to the solution of a two-player zero-sum game. von Neumann

(1928) proved the minimax theorem, which states that there exists a saddle point for any finite two-person

zero-sum game. A Nash equilibrium refers to the solution of a n-player game. Nash (1950) proved that there

∗Corresponding author
Email address: dawen.wu@centralesupelec.fr, abdel.lisser@l2s.centralesupelec.fr (Abdel Lisser)

Preprint submitted to Neural networks January 3, 2024

always exists an equilibrium for any finite n-player games called Nash equilibrium.15

With the rapid growth of available data and computing power, deep learning in the form of deep neural

networks is used in many areas, such as image processing (Krizhevsky et al., 2017; Goodfellow et al., 2016),

natural language processing (Devlin et al., 2018), recommender system(Zhang et al., 2019), see also (Silver

et al., 2016; Jumper et al., 2021) for additional application examples. Convolutional neural networks (CNNs)

are deep neural networks that are frequently used in computer vision (LeCun & Bengio, 1995; Courville20

et al., 2016). A CNN uses a shared weight convolutional kernel that slides along the input feature maps. The

architecture of a neural network model is crucial for the performance enhancement, and there are specialized

network structures for various situations (Krizhevsky et al., 2017; He et al., 2016; Huang et al., 2017; Tan &

Le, 2019; Alzubaidi et al., 2021; Khan et al., 2020; Xu & Zhang, 2022). PyTorch is an open-source library for

building neural network models provided by CUDA support to speed up processing by harnessing the power25

of GPUs (Paszke et al., 2019).

Generative Adversarial Networks (GANs) is a novel deep learning method, widely used for image gen-

eration and text generation(Goodfellow et al., 2020; Zhou et al., 2019; Dasgupta & Collins, 2019; Tembine,

2020). A GAN contains two neural networks, a generator, and a discriminator. These two neural networks are

trained by competing against each other. We would like to emphasize the relationship and difference between30

this paper and GAN. The latter is a two-person zero-sum game with continuous actions. The generator and

the discriminator are two players whose model parameters are viewed as actions and have opposite payoff

functions. The training purpose for GANs is to find a saddle point (w1,w2) of the two neural networks. Our

paper considers a two-player zero-sum game with finite actions, and our goal is to use a CNN to predict the

saddle point of such a game.35

1.1. Related works

We present here two approaches for solving matrix games, i.e., the LP approach and the WL-CNN

approach (Wu & Lisser, 2022b).

The LP approach. The conventional way to solve a matrix game is to convert it into a linear pro-

gramming (LP) problem. The LP can then be solved by the simplex method (Dantzig, 1963; Bertsimas40

& Tsitsiklis, 1997; Vanderbei, 2014), or interior-point methods(Wright, 1997; Karmarkar, 1984). Here, We

introduce four optimization solvers, i.e., ECOS, GLPK, SCS, and Gurobi. ECOS, embedded conic solver, is

an efficient implementation of an interior-point method for second-order cone programming (Domahidi et al.,

2013) designed for embedded applications. GLPK is a classical solver first released in 2000, which is dedicated

only to LP problems (GLPK, 2012). SCS, splitting conic solver, is based on a first-order method to solve45

convex cone programs, which can scale to large problems and solve many types of convex nonlinear problems

(Brendan et al., 2016). Gurobi is a well-established commercial solver with a large number of applications in

the industry, it is known for its good performances in many benchmarks (Gurobi Optimization, LLC, 2021;

Mittelmann, 2022). These four solvers represent a large part of the state-of-the-art (SOTA) for solving LPs.

2

Optimal value v∗ Strategy profile (x∗, y∗)
MG-CNN CNN model CNN model
WL-CNN CNN model Convex optimization solver
LP Convex optimization solver Convex optimization solver

Table 1: Three approaches to solve a matrix game The saddle point is divided into two components, the optimal value
v∗, and the strategy profile (x∗, y∗). Our MG-CNN approach predicts both the optimal value and strategy profile by a CNN
model. The WL-CNN approach predicts the optimal value by a CNN model and then obtains the strategy profile by calling an
optimization solver. The LP approach solves both the optimal value and strategy profile by an optimization solver.

Their computational performance varies depending on the specific problem instances, experimental environ-50

ment, and parameter choices. Mittelmann (2022) provides a platform for testing the performance of different

optimization solvers (Jared L, Adair, Kristin L, Detry, Richard J, Durfee, Justin D, Jones & A, Martin,

2012). CVXPY is a modeling package for convex optimization problems, which translates the problem into

a standard form and can call sereval optimization solvers (Diamond & Boyd, 2016).

The WL-CNN approach. Wu & Lisser (2022b) proposed a CNN-based method to predict saddle55

points, which we call in this paper WL-CNN. This approach predicts the saddle point in two steps. First, it

uses a CNN model to predict the optimal value v. Then, after getting the prediction v, the related strategy

profile (x, y) is obtained by solving a linear system of inequalities.

The LP approach is time-consuming, especially when solving several instances. Although the WL-CNN

method shows some computational speed advantages, its CNN model can only predict the optimal value.60

It still requires solving an inequalities system to obtain a strategy profile. Unlike WL-CNN, our MG-CNN

model can directly predict both the optimal value and strategy profile. Table 1 summarizes how these three

approaches obtain the saddle point of a matrix game.

1.2. Contributions

The contributions of this paper can be summarized as follows65

• Our proposed MG-CNN outperforms both WL-CNN and LP approaches in terms of computational

speed. For example, when solving one matrix game of size (10, 10), MG-CNN takes only 5.1 ms, while

WL-CNN takes 5.8 ms and LP takes 12.6 ms. When solving multiple instances, the computational

advantage becomes much more significant. MG-CNN solves 1000 instances of size (10, 10) in 73.2 ms,

WL-CNN in 4520 ms, and LP in 18300 ms.70

• Our proposed MG-CNN outperforms WL-CNN in terms of prediction accuracy. For a matrix game

of size (20, 20) and generated by U(0, 100), MG-CNN has a mean absolute percentage error of 1.73%,

lower than 2.83% of WL-CNN. Additionally, MG-CNN is more reliable across a range of probability

distributions and game sizes, whereas WL-CNN fails in many situations.

The remaining of this paper is organized as follows. Section 2 sketches the minimum knowledge to75

understand the problem, including the matrix game and the LP formulation. Section 3 presents our proposed

3

MG-CNN approach. Section 4 gives the comparative experimental results among the three approaches.

Section 5 discusses the pros and cons of MG-CNN. Section 6 summarizes the whole paper and gives future

directions.

1.3. Notations80

Table 2 presents the notations list of this paper.

Notation Definition

n ∈ N The number of actions for player 1.
m ∈ N The number of actions for player 2.
A ∈ Rn×m A matrix game represented by the payoff matrix of player 1.
(x∗, y∗), x∗ ∈ Rn, y∗ ∈ Rm The strategy profile of the saddle point.
v∗ ∈ R The optimal value of the saddle point.
MG-CNN(A;w) The MG-CNN model with parameters w.
(x, y), x ∈ Rn, y ∈ Rm The strategy profile prediction from the MG-CNN model.
v ∈ R The optimal value prediction from the MG-CNN model.
L(A;w) The loss function of the MG-CNN model.
P The probability distribution used to generate A.
min E

A∼P
[L(A;w)] The objective function of the MG-CNN model.

Table 2: Notations

2. Preliminaries

2.1. Matrix game

We denote the two players in a matrix game as players 1 and 2, respectively. Players 1 and 2 have n

and m discrete actions, respectively. The action sets of the two players can be written as X = {1, . . . , n},85

Y = {1, . . . ,m}, respectively. When the row player selects action i ∈ X , the column player selects action

j ∈ Y, the payoff for the players 1 and 2 are aij and −aij , respectively. Thus, player 1’s payoff can be

represented by the matrix A (1), while player 2’s payoff can be represented by the matrix −A.

Throughout this paper, a matrix game is represented by the payoff matrix A, where

A =

a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
...

...

an1 an2 . . . anm

 . (1)

We denote x and y as mixed strategies for players 1 and 2, respectively. A mixed strategy is a discrete

probability distribution over the player’s action set. The vectors x and y should be within probability90

simplices, i.e., x ∈ {x ∈ Rn : eTnx = 1, x ≥ 0}, y ∈ {y ∈ Rm : eTmy = 1, y ≥ 0}, where ek = [1, . . . , 1]T ∈ Rk.

4

Theorem 1 (von Neumann (1928)). Let X ⊂ Rn and Y ⊂ Rm be compact convex sets. If f : X × Y → R

is a continuous function that is concave-convex.

Then, the following holds

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y). (2)

The saddle point existence of a matrix game is guaranteed by Theorem 1. The optimal strategy profile

of a matrix game A is defined as follows,

(x∗, y∗) = argmax
x

(
argmin

y
xTAy

)
, (3)

and the corresponding optimal value is

v∗ = max
x

(
min
y

xTAy

)
. (4)

2.2. LP to solve Matrix game

The saddle point of a matrix game A can be obtained by solving the primal-dual LP pair (5)-(6),

(P) max v

s.t. ATx ≥ vem

en
Tx = 1, x ≥ 0,

(5)

(D) min v

s.t. Ay ≤ ven

em
T y = 1, y ≥ 0.

(6)

The primal LP (5) has decision variable (x, v) ∈ Rn+1, one equality constraint and m inequality constraints.95

The dual LP (6) has decision variable (y, v) ∈ Rm+1, one equality constraint and n inequality constraints.

The optimal solutions for these two LP problems are (x∗, v∗) and (y∗, v∗), where (x∗, y∗) is the desired

optimal strategy profile, and v∗ is the desired optimal value. For the construction and related details, we

refer the reader to Dantzig (1963).

3. MG-CNN100

3.1. MG-CNN model

The MG-CNN model can be represented by the following mathematical expressions

MG-CNN(A;w) = (x, y), (7)

5

Input CNN Output Loss

LP Solver

Matrix game Convolutional layer

Batch normalization

Relu

Softmax
Predicted strategy profile

Predicted optimal value

Matrix-vector product

Loss function

MG-CNN approach solution route

LP approach solution route

Loss computation

Featrue maps

Depth-wise
pooling

Width-wise
pooling

Depth-wise
pooling

Length-wise
pooling

Global Pooling for Global Pooling for

(a)

(b)

(c)

Figure 1: MG-CNN framework (a) The MG-CNN model structure The input of the model is a matrix game A, and
the output is a predicted saddle point (x, y). The predicted optimal value v is computed by v = xTAy. The computation of loss
is based on the predicted optimal value v. (b) The global pooling technique for x and y. Consider a feature map of shape
(c, n,m). The global pooling for x only pools the depth and the width dimension and generates a vector of n-dimensional. The
global pooling for y only pools the depth and the length dimension and generates a vector of m-dimensional. (c) Explanation
of each icon

where A ∈ Rn×m represents a matrix game to be solved, w refers to learnable parameters of the model, (x, y)

refers to a strategy profile prediction, with x ∈ Rn and y ∈ Rm. The corresponding optimal value prediction

is computed by

v = xTAy. (8)

Figure 1-(a) shows how MG-CNN solves a matrix game A where the black lines represent the computation

of (x, y) and v.

MG-CNN model structure As shown in Figure 1-(a), the MG-CNN model has a single-input, double-

output structure. The model is divided into one main part and two subparts. The main part processes the105

input matrix game into common hidden feature maps with multiple channels. The two subparts process

the common feature maps independently and output x and y respectively. The main part is responsible

for extracting the general knowledge of the problem. The subpart is responsible for generating the two

strategies. The subparts end with the softmax activation function to ensure that x and y are discrete

6

probability distributions.110

Fully convolutional layers The MG-CNN model uses only convolutional layers and does not contain

dense connected layers. By appropriately setting the convolutional kernel size, padding, and stride, the

convolutional layers do not change the shape of the input feature map. Other types of operations can be

added, as long as they do not affect the shape of the feature map, e.g., pooling layers, batch normalization,

or residual connections. MG-CNN does not change the shape of all feature maps between input and output.115

Global pooling technique We use a novel pooling technique in order to generate output (x, y) of the

desired shape. This pooling technique pools only two dimensions of 3D feature maps, as shown in Figure

1-(b). For example, consider the 3D feature maps of shape (c, n,m). For generating x of shape (n,), it pools

the channel and width dimensions and keeps the length dimension. For generating y of shape (m,), it pools

the channel and length dimensions and keeps the width dimension. The pooling can be average or maximum120

pooling.

Thanks to the fully convolutional layers and Global pooling technique, the MG-CNN model can accept

matrix games A of varied sizes and output (x, y) with desired shapes. This framework is generic and is not

specific to the matrix game problem. It can be used in numerous situations when the input shape is not

fixed, and a corresponding output shape is needed.125

3.2. MG-CNN training

The loss of the MG-CNN model is defined as

L(A;w) = ℓ(v, v∗). (9)

The optimal value prediction v is computed by (8). ℓ(·, ·) stands for an error function, e.g., mean square

error. The loss function is based on the optimal value instead of the strategy profile for two reasons: 1) v

and v∗ are two scalars, while (x, y) and (x∗, y∗) are two vectors with possibly high dimensions. 2) A matrix

game may have multiple optimal (x∗, y∗) values, whereas the optimal v∗ is unique. Predicting one saddle130

point among many is inefficient. In contrast, it is more reasonable to predict the unique optimal point.

The training objective for the MG-CNN model is defined as

min
w

E
A∼P

[L(A;w)], (10)

where A ∼ P represents that each element of the matrix A follows the probability distribution P .

Training data generation The generation of a training matrix game A is governed by two factors:

game size (n,m) and probability distribution P , which must be specified prior to training. The game size

(n,m) decides the shape of A. The probability distribution P decides how A is sampled. Specifically, each135

element aij of A is sampled by the probability distribution P in an i.i.d way. These two factors govern the

generation of training data and, consequently, the predictive ability of the MG-CNN model. The optimal

7

Algorithm 1: MG-CNN training

Required: Game size (n,m); Probability distribution P ; A LP solver
Result : The MG-CNN model

1 Function Main():
2 Initialize a MG-CNN model.
3 while iter ≤ Max iteration do
4 A ∼ P : sample a matrix game A with shape (n,m) from distribution P
5 (x, y) = CNN(A;w): Predict the saddle point by the MG-CNN model

6 v = xTAy: Compute the optimal value
7 v∗ = LP (A): Obtain v∗ by using the LP solver
8 Forward propagation: Compute the loss L(A;w) = ℓ(v, v∗).
9 Backward propagation: Update w by ∇wL(A;w)

10 end

11 end

value v∗ of A is provided by an LP solver. A training data sample has the form (A, v∗).

Training algorithm The training of MG-CNN is shown in Algorithm 1, which is essentially an opti-

mization process for (10). During each iteration, a training batch is created and trained by the model. The140

training batch will be used only once and discarded immediately after use. The algorithm trains the model

in an unsupervised manner. Instead of training on a fixed dataset, the algorithm incorporates the data gen-

eration and model training into the same loop, similar to the meshfree method in Sirignano & Spiliopoulos

(2018). Since it is trained on brand-new data each time, the model does not overfit any dataset. Training

is over when a certain metric is satisfied. For example, when the loss drops to a threshold or the number of145

iterations exceeds a given value.

4. Results

We use the Google Colab Pro+ platform to conduct our experiments. We build and train the neural

network model by Pytorch 1.9.1. We use CVXPY to model the LP and call various solvers therein (Diamond

& Boyd, 2016). We compare MG-CNN with the WL-CNN approach (Wu & Lisser, 2022b) and the LP150

approach. The LP approach is represented by four optimization solvers, ECOS, GLPK, SCS, and Gurobi

(Domahidi et al., 2013; GLPK, 2012; Brendan et al., 2016; Gurobi Optimization, LLC, 2021).

In Section 4.1, We show how to train an MG-CNN model, including the hyperparameter setting, the

model structure, and the training loss. In Section 4.2, we demonstrate the computational speed advantage of

the MG-CNN model versus WL-CNN and LP approaches. In Section 4.3, we show the prediction accuracy155

of the MG-CNN model versus the WL-CNN approach.

4.1. Model training

The hyperparameters for training are as follows

• The optimizer for training the neural network is ADAM (Kingma & Ba, 2014), with a learning rate of

0.001.160

8

Group
Layer
Type

Layer description
Input size Output size

Description Activation

Main part

Conv2d 16 filters, 3*3 kernal size, 1 padding, 1 stride, with BN Leaky relu (1, n, m) (16, n, m)
Conv2d 32 filters, 3*3 kernal size, 1 padding, 1 stride, with BN Leaky relu (16, n, m) (32, n, m)
Conv2d 64 filters, 3*3 kernal size, 1 padding, 1 stride, with BN Leaky relu (32, n, m) (64, n, m)
Conv2d 64 filters, 3*3 kernal size, 1 padding, 1 stride, with BN Leaky relu (64, n, m) (64, n, m)

Subpart for x

Conv2d 64 filters, 3*3 kernal size, 1 padding, 1 stride, with BN Leaky relu (64, n, m) (64, n, m)
Conv2d 32 filters, 3*3 kernal size, 1 padding, 1 stride, with BN Leaky relu (64, n, m) (32, n, m)
Conv2d 16 filters, 3*3 kernal size, 1 padding, 1 stride, with BN Leaky relu (32, n, m) (16, n, m)
Conv2d 8 filters, 3*3 kernal size, 1 padding, 1 stride None (16, n, m) (8, n, m)
Globaly
polling

Depth-wise and width-wise polling Softmax (8, n, m) (n,)

Subpart for y

Conv2d 16 filters, 3*3 kernal size, 1 padding, 1 stride, with BN Leaky relu (64, n, m) (64, n, m)
Conv2d 16 filters, 3*3 kernal size, 1 padding, 1 stride, with BN Leaky relu (64, n, m) (32, n, m)
Conv2d 16 filters, 3*3 kernal size, 1 padding, 1 stride, with BN Leaky relu (32, n, m) (16, n, m)
Conv2d 16 filters, 3*3 kernal size, 1 padding, 1 stride, with BN None (16, n, m) (8, n, m)
Globaly
polling

Depth-wise and length-wise polling Softmax (8, n, m) (m,)

Table 3: The MG-CNN model details. The MG-CNN model is dived into one main part and two subparts. BN refers to
batch normalization. (n,m) refers to the game size of the input matrix game. The final feature maps of the main part is passed
to the two subparts.

• The batch size is 128, and the maximum number of iterations is 30, 000.

• The neural network structure is shown by Table 3.

We initialize an MG-CNN model and train it according to Algorithm 1. We use the game size (20, 20)

and the uniform distribution U(0, 100) to generate the matrix games. Both training and testing data are

randomly generated in the same way. At each iteration, a training batch is generated to train the model.165

Every 50 iterations, a testing batch is generated to test the model. We use the same training scheme and a

similar network structure to train the WL-CNN model, which is used hereafter for comparison purposes.

0 5000 10000 15000 20000 25000 30000
Iterations

1.0

1.5

2.0

2.5

3.0

3.5

M
.S
.E

Train
Test

Figure 2: The training and testing loss versus the number of iterations. M.S.E refers to mean square error.

Figure 2 shows the loss computed on the training and testing batch during the training step. The MG-

CNN model does not overfit any training data. The training loss and the testing loss have almost the same

9

rate of decline. This is due to the fact that the training data is not fixed but rather generated randomly170

and only used once. Our algorithm is not concentrated on any specific dataset but rather on minimizing the

overall generalization error.

4.2. Computational performance

1000 1200 1400 1600 1800 2000
Number of instances

10000

12500

15000

17500

20000

22500

25000

27500

C
P
U
tim
e
(m
s)

ECOS
GLPK
SCS
Gurobi

1000 1200 1400 1600 1800 2000
Number of instances

3000

4000

5000

6000

7000

8000

9000

C
P
U
tim
e
(m
s)

ESWA-CNN

1000 1200 1400 1600 1800 2000
Number of instances

60

80

100

120

140

160

C
P
U
tim
e
(m
s)

MG-CNN

(b) (c)

(a)

Figure 3: The CPU times versus the number of instances. The vertical axis indicates the total CPU time required to
solve a certain number of instances. CPU time is shown in milliseconds (ms). (a) The MG-CNN approach. (b) The
WL-CNN approach. (c) The LP approach, represented by the four optimization solvers, ECOS, GLPK, SCS, and Gurobi.

We now test the computational performance of MG-CNN and compare it with the WL-CNN and LP

approaches. The MG-CNN computation time is the CPU time of the CNN model for both v and (x, y).175

The WL-CNN computation time includes the CPU time of the CNN model for v and the CPU time of the

optimization solver for (x, y). The LP computation time is the CPU time of the optimization solver for both

v∗ and (x∗, y∗).

We randomly generate six test batches with 1000, 1200, 1400, 1600, 1800, and 2000 instances, respectively.

Each matrix game within the test batch has size (20, 20) and is sampled by the uniform distribution U(0, 100).180

Figure 3 shows the CPU time of the three approaches to solve these test batches. When solving 1000 samples,

MG-CNN takes 53.3ms, WL-CNN takes 3280ms, and the LP approach takes at least 9570ms. When solving

10

CPU time (ms)
Instance
number

Probability
distribution

Game
size

MG-CNN WL-CNN
LP

ECOS GLPK SCS Gurobi

1

U(0, 100) (10*10)

5.1 5.8 13.6 12.6 12.7 12.9
10 8.6 27.3 102 106 96.7 114
100 9.2 228 934 982 1040 1080
1000 18.5 2220 9170 9570 9700 10200
3000 73.2 4520 18300 19100 20300 20900

1

U(0, 100) (15*15)

5.5 6.1 12.9 11.7 13.7 12.9
10 8.5 27.8 104 104 112 109
100 7.5 289 975 1020 1140 1090
1000 24.3 2780 9390 9820 11000 10400
3000 99.6 5530 19200 19600 23600 21600

1

U(0, 100) (20*20)

5.8 6.91 13.1 12.3 14.2 16.2
10 9.5 42.2 105 102 136 119
100 15.2 351 1010 1040 1300 1150
1000 53.3 3280 9570 9950 13400 10700
3000 156 7170 20200 20700 29700 22200

1

U(0, 100) (25*25)

6.2 7.3 13.2 14.0 15.5 15.0
10 6.9 45.1 104 110 145 117
100 15.6 377 1020 1050 1590 1130
1000 73.7 3910 9950 10500 16400 11100
3000 230 8570 21100 21800 38800 23400

1

U(0, 100) (30*30)

7.3 10.2 14.3 13.2 15.7 14.2
10 8.2 46.5 109 117 220 121
100 17.2 472 1110 1140 2090 1180
1000 76.3 9000 10700 11000 21300 11500
3000 237 10300 22300 23100 53200 24200

Table 4: The CPU time comparison of the three approaches. CPU time is represented as milliseconds (ms). Instance
number refers to how many instances a test batch contains. Probability distribution refers to how each instance is sampled.
Game size refers to the size of each instance.

11

2000 samples, MG-CNN takes 84.6ms, WL-CNN takes 6700ms, and the LP approach takes at least 19500ms.

In addition, the CPU time of MG-CNN does not grow as fast as WL-CNN and LP.

Table 4 presents the CPU time for different numbers of instances and different game sizes. In all cases,185

MG-CNN outperforms WL-CNN and is much faster than the four LP solvers. The advantage becomes more

significant when dealing with a large number of instances.

4.3. Prediction accuracy

We evaluate the accuracy on the basis of the prediction v and the true v∗. We use the mean absolute

error (MAE), the mean squared error (MSE), and the mean absolute percentage error (MAPE) as metrics,

defined by

MAE =
1

B

B∑
i=1

|v∗i − vi| , (11)

MSE =
1

B

B∑
i=1

(v∗i − vi)
2, (12)

MAPE =
1

B

B∑
i=1

∣∣∣∣v∗i − vi
vi

∣∣∣∣ ∗ 100%, (13)

where B refers to the number of instances in a test batch, v∗i refers to the true optimal value of a matrix

game, which is obtained by the LP approach. vi refers to the prediction of MG-CNN or WL-CNN. We also

provide ”Mean v∗” and ”Mean v” used to describe a test batch, defined as

Mean v∗ =
1

B

B∑
i=1

v∗i , (14)

Mean v=
1

B

B∑
i=1

vi. (15)

Probability
distribution

Game
size

MG-CNN WL-CNN LP

MAE MSE MAPE Mean v MAE MSE MAPE Mean v Mean v∗

U(0, 100) (20, 20) 0.87 1.18 1.73% 50.07 1.41 3.11 2.83% 49.90 50.07

Table 5: Prediction accuracy on training probability distribution and game size. The test batch is generated by
U(0, 100) with size (20, 20) but is not trained.

Table 5 shows the prediction accuaracy on the training distribution and the game size, i.e., U(0, 100) and190

(20, 20), respectively. Table 6 and 7 study various probability distributions and game sizes that the models

have not trained. Each row in the tables shows the results of a test batch containing 1000 matrix games. In

all cases, MG-CNN has a lower error than WL-CNN one, and its predicted Mean v is closer to the Mean v∗.

12

Probability
distribution

Game
size

MG-CNN WL-CNN LP

MAE MSE MAPE Mean v MAE MSE MAPE Mean v Mean v∗

U(0, 100)

(10, 10) 1.39 3.23 2.80% 49.86 2.89 14.83 5.82% 49.75 49.90
(15, 15) 0.97 1.51 1.95% 50.04 1.67 4.52 3.35% 49.84 50.00
(25, 25) 0.74 0.86 1.47% 49.96 1.24 2.45 2.50% 49.88 50.00
(30, 30) 0.62 0.62 1.24% 50.05 1.19 2.30 2.41% 49.89 50.07
(15, 25) 2.41 7.16 4.97% 48.67 3.71 17.23 7.41% 49.94 46.26
(25, 15) 2.50 7.51 4.88% 51.28 3.92 18.62 7.88% 49.88 53.77

N(50, 50)

(10, 10) 2.35 9.17 4.86% 49.47 5.13 43.63 10.36% 49.64 49.55
(15, 15) 1.75 5.05 3.56% 49.76 3.21 17.02 6.45% 49.74 49.76
(25, 25) 1.24 2.45 2.49% 50.05 1.90 5.62 3.81% 49.89 50.03
(30, 30) 1.05 1.82 2.10% 49.98 1.63 4.16 3.28% 49.80 49.96
(15, 25) 4.35 22.86 9.16% 47.82 6.42 50.52 12.95% 49.85 43.48
(25, 15) 4.43 23.54 8.54% 52.08 6.64 53.52 13.25% 49.91 56.50

Pois(50)

(10, 10) 0.44 0.33 0.88% 49.89 0.93 1.38 1.87% 49.92 49.87
(15, 15) 0.31 0.15 0.62% 49.99 1.06 1.81 2.15% 49.88 49.97
(25, 25) 0.20 0.07 0.41% 49.97 1.30 2.74 2.65% 49.86 50.00
(30, 30) 0.17 0.04 0.33% 49.97 1.42 3.28 2.89% 49.83 49.98
(15, 25) 0.61 0.46 1.22% 49.66 1.48 2.96 2.95% 49.88 49.06
(25, 15) 0.63 0.50 1.26% 50.26 1.27 2.77 2.60% 49.89 50.88

Table 6: Prediction accuracy on untrained probability distributions and game sizes i. U(a, b) refers to the uniform
distribution on the interval [a, b]. N(µ, σ2) refers to the normal distribution with mean µ and variance σ2. Pois(λ) refers to the
Poisson distribution with parameter λ.

Table 6-7 demonstrates the ability of our MG-CNN to predict untrained probability distributions and

game sizes. However, MG-CNN is less accurate in solving non-square matrix games than square matrix195

games. This is because the neural network model was trained only for square games and not for non-square

games.

One drawback of WL-CNN is that it only works when Mean v and Mean v∗ are close to each other. For

example, WL-CNN has been trained only on U(0, 100) with Mean v ≈ 50, such that it can only predict matrix

games generated by a probability distribution with Mean v ≈ 50 like U(20, 80), N(50, 50) and Pois(50). For200

the games generated by other distributions, WL-CNN needs to be retrained before prediction. Our MG-CNN

does not have this drawback and is robust with a respect to different distributions. As shown in Table 7,

for the distribution U(50, 100) and size (10, 10), MG-CNN has Mean v = 74.78 with MAPE of 1.15%, while

WL-CNN has Mean v = 49.89 with MAPE of 50.09%.

5. Discussion205

The MG-CNN approach solves a matrix game differently from WL-CNN and LP approaches. The LP

approach formalizes a matrix game problem as an LP problem which is then solved by an optimization solver.

WL-CNN solves a matrix game in two steps. First, it uses a CNN model to predict the optimal value v, then

obtains the related strategy profile (x, y) by solving a system of linear inequalities. The MG-CNN model

solves a matrix game by directly predicting (x, y) and v.210

13

Probability
distribution

Game
size

MG-CNN WL-CNN LP

MAE MSE MAPE Mean v MAE MSE MAPE Mean v Mean v∗

U(0, 50)

(10, 10)

0.68 0.78 2.77% 24.93 24.85 620.94 49.91% 49.82 24.98
U(50, 100) 0.86 1.26 1.15% 74.78 24.97 626.90 50.09% 49.89 74.86
U(20, 80) 0.89 1.28 1.79% 49.99 1.72 4.93 3.45% 49.85 50.10
N(25, 50) 2.37 9.26 10.62% 24.92 24.66 648.84 50.03% 49.63 24.97
N(50, 50) 2.35 9.31 4.79% 49.79 4.98 41.82 10.04% 49.81 49.96
N(75, 50) 2.31 9.07 3.11% 74.98 25.47 695.00 51.00% 49.78 75.26
Pois(25) 0.29 0.14 1.16% 24.94 24.92 622.20 49.95% 49.86 24.95
Pois(50) 0.44 0.31 0.88% 49.96 0.98 1.57 1.97% 49.92 50.01
Pois(75) 0.60 0.58 0.80% 74.91 25.08 630.43 50.33% 49.92 75.00

U(0, 50)

(20, 20)

0.40 0.25 1.61% 24.98 24.88 621.19 49.88% 49.86 24.98
U(50, 100) 0.45 0.34 0.60% 74.99 25.17 635.40 50.61% 49.87 75.04
U(20, 80) 0.52 0.43 1.03% 49.99 1.16 2.18 2.35% 49.86 49.99
N(25, 50) 1.45 3.36 5.98% 24.93 24.99 634.13 50.22% 49.89 24.90
N(50, 50) 1.42 3.28 2.86% 49.89 2.26 8.41 4.53% 49.89 49.89
N(75, 50) 1.47 3.46 1.97% 75.00 25.21 644.26 50.69% 49.77 74.99
Pois(25) 0.16 0.04 0.65% 24.97 24.93 623.67 49.93% 49.90 24.96
Pois(50) 0.23 0.09 0.46% 49.96 0.99 1.63 2.01% 49.88 49.95
Pois(75) 0.30 0.15 0.40% 74.94 25.09 631.75 50.49% 49.86 74.95

U(0, 50)

(30, 30)

0.31 0.15 1.25% 24.99 24.93 623.74 49.90% 49.92 24.99
U(50, 100) 0.32 0.17 0.43% 74.99 25.21 638.27 50.83% 49.82 75.03
U(20, 80) 0.38 0.23 0.75% 49.98 1.22 2.39 2.47% 49.84 49.98
N(25, 50) 1.08 1.88 4.34% 25.03 24.83 620.63 49.87% 49.86 25.03
N(50, 50) 1.07 1.79 2.14% 49.94 1.61 4.07 3.24% 49.88 49.86
N(75, 50) 1.09 1.90 1.45% 75.13 25.25 641.92 50.78% 49.84 75.09
Pois(25) 0.12 0.02 0.47% 24.98 24.87 621.99 49.83% 49.84 24.97
Pois(50) 0.17 0.05 0.34% 49.97 1.40 3.32 2.86% 49.79 49.98
Pois(75) 0.21 0.07 0.28% 74.95 25.14 635.20 50.69% 49.82 74.96

Table 7: Prediction accuracy on untrained probability distribution and game size ii U(a, b) refers to the uniform
distribution on the interval [a, b]. N(µ, σ2) refers to the normal distribution with mean µ and variance σ2. Pois(λ) refers to the
Poisson distribution with parameter λ.

14

Pros MG-CNN is faster than both the WL-CNN and LP approaches, which is mainly due to the following

reasons:

• MG-CNN can predict the saddle point directly without calling any optimization solver. The LP ap-

proach needs to call an optimization solver to obtain both (x∗, y∗) and v∗, and WL-CNN needs to call

an optimization solver to obtain the strategy profile (x, y).215

• When dealing with a batch of instances, the inherent parallel solving capabilities allow MG-CNN to

solve multiple instances in one shot. In comparison, the LP approach solves sequentially the different

instances, and WL-CNN solves sequentially the linear systems to obtain (x, y).

MG-CNN shows acceptable accuracy, which outperformsWL-CNN. MG-CNN also exhibits robustness against

untrained game sizes and probability distributions.220

Cons The disadvantage of MG-CNN is that it requires training to achieve the desired prediction accuracy.

MG-CNN also shows weaknesses in predicting non-square matrix games, while the LP approach is more

reliable in this case. Prediction accuracy depends heavily on technical details, such as neural network structure

and training methods, which fall into the general machine learning scope. The numerous ongoing research

on these topics can directly benefit MG-CNN.225

Compared to WL-CNN, MG-CNN can be viewed as an enhanced version, which is more accurate, faster,

and robust against various untrained probability distributions and game sizes. Compared to LP, MG-CNN

and LP have their pros and cons and are suitable for different scenarios. The LP approach is more suitable

when requiring reliability and high accuracy. MG-CNN is more suitable to solve multiple instances with a

remarkably reduced computational effort.230

6. Conclusion

We propose a deep learning approach to predict the saddle point of a matrix game, i.e., MG-CNN.

We presented MG-CNN in detail, including the neural network structure, loss function, objective function,

training data generation, and training algorithm. We conducted experiments and compared MG-CNN with

other solution methods.235

We must emphasize that our proposed approach should not be considered as substitute for the classical

LP approaches, which have been developed over the last decades and are well established. The traditional LP

solution method satisfies the requirements of robustness and reliability needed in practice. Our main contri-

bution is to provide a novel approach for solving matrix games, which shows a great computational potential.

With the rapid development of machine learning or deep learning in methodology and implementation, we240

believe this work will lead to ongoing contributions to benefit a wide range of practitioners in game theory.

There are many future directions for this work, and we give some examples here. 1) How to design a

better model structure to adapt to the matrix game problem? 2) How to migrate this approach to games with

15

continuous actions ? 3) How to use advanced machine learning methods to improve the prediction accuracy

and robustness of MG-CNN? We can gradually consolidate MG-CNN by answering the above questions.245

Bibliography

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaŕıa, J., Fadhel,

M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, cnn architectures,

challenges, applications, future directions. Journal of big Data, 8 , 1–74.

Bertsimas, D., & Tsitsiklis, J. N. (1997). Introduction to linear optimization volume 6. Athena Scientific250

Belmont, MA.

Brendan, O., Eric, C., Neal, P., & Stephen, B. (2016). Operator splitting for conic optimization via homo-

geneous self-dual embedding. Journal of Optimization Theory and Applications, 169 , 1042–1068. URL:

https://doi.org/10.1007/s10957-016-0892-3. doi:10.1007/s10957-016-0892-3.

Cheng, J., Leung, J., & Lisser, A. (2016). Random-payoff two-person zero-sum game with joint chance255

constraints. European Journal of Operational Research, 252 , 213–219. doi:10.1016/j.ejor.2015.12.024.

Courville, I. G., Bengio, Y., & Aaron (2016). Deep learning. Nature, 29 , 1–73. URL: http://www.

deeplearningbook.org.

Dantzig, G. B. (1963). Linear Programming and Extensions. Santa Monica, CA: RAND Corporation.

doi:10.7249/R366.260

Dasgupta, P., & Collins, J. B. (2019). A survey of game theoretic approaches for adversarial machine learning

in cybersecurity tasks. AI Magazine, 40 , 31–43. doi:10.1609/aimag.v40i2.2847. arXiv:1912.02258.

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: pre-training of deep bidirectional trans-

formers for language understanding. CoRR, abs/1810.04805 . URL: http://arxiv.org/abs/1810.04805.

arXiv:1810.04805.265

Diamond, S., & Boyd, S. (2016). CVXPY: A Python-embedded modeling language for convex optimization.

Journal of Machine Learning Research, 17 , 1–5.

Dixit, A. K., & Pindyck, R. S. (2012). Investment under uncertainty . Princeton University Press. doi:10.

2307/2329279.

Domahidi, A., Chu, E., & Boyd, S. (2013). Ecos: An socp solver for embedded systems. In 2013 European270

Control Conference (ECC) (pp. 3071–3076). IEEE.

Fudenberg, D., & Tirole, J. (1991). Game theory . MIT press.

GLPK (2012). GNU Linear Programming Kit. URL: http://www.gnu.org/software/glpk/glpk.html.

16

https://doi.org/10.1007/s10957-016-0892-3
http://dx.doi.org/10.1007/s10957-016-0892-3
http://dx.doi.org/10.1016/j.ejor.2015.12.024
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.7249/R366
http://dx.doi.org/10.1609/aimag.v40i2.2847
http://arxiv.org/abs/1912.02258
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://dx.doi.org/10.2307/2329279
http://dx.doi.org/10.2307/2329279
http://dx.doi.org/10.2307/2329279
http://www.gnu.org/software/glpk/glpk.html

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning . MIT Press. http://www.

deeplearningbook.org.275

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio,

Y. (2020). Generative adversarial networks. Communications of the ACM , 63 , 139–144. doi:10.1145/

3422622. arXiv:1406.2661.

Gurobi Optimization, LLC (2021). Gurobi Optimizer Reference Manual. URL: https://www.gurobi.com.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings280

of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 770–778).

volume 2016-Decem. doi:10.1109/CVPR.2016.90. arXiv:1512.03385.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional

networks. In Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR

2017 (pp. 2261–2269). volume 2017-Janua. doi:10.1109/CVPR.2017.243. arXiv:1608.06993.285

Jared L, Adair, Kristin L, Detry, Richard J, Durfee, Justin D, Jones, K., & A, Martin, N. (2012). Comparison

of Open-Source Linear Programming Solvers, . doi:10.2172/1104761.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates,

R., Ž́ıdek, A., Potapenko, A. et al. (2021). Highly accurate protein structure prediction with alphafold.

Nature, 596 , 583–589.290

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. In Proceedings of the

sixteenth annual ACM symposium on Theory of computing (pp. 302–311).

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep

convolutional neural networks. Artificial Intelligence Review , 53 , 5455–5516. URL: https://doi.org/10.

1007%2Fs10462-020-09825-6. doi:10.1007/s10462-020-09825-6.295

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 , .

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural

networks. Communications of the ACM , 60 , 84–90. doi:10.1145/3065386.

LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The handbook300

of brain theory and neural networks, 3361 , 255–258. URL: http://www.iro.umontreal.ca/\simlisa/

pointeurs/handbook-convo.pdf.

Mittelmann, H. D. (2022). Benchmarks of optimization software. URL: http://plato.asu.edu/bench.html.

17

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1145/3422622
http://arxiv.org/abs/1406.2661
https://www.gurobi.com
http://dx.doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1109/CVPR.2017.243
http://arxiv.org/abs/1608.06993
http://dx.doi.org/10.2172/1104761
https://doi.org/10.1007%2Fs10462-020-09825-6
https://doi.org/10.1007%2Fs10462-020-09825-6
https://doi.org/10.1007%2Fs10462-020-09825-6
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.1145/3065386
http://www.iro.umontreal.ca/$\sim $lisa/pointeurs/handbook-convo.pdf
http://www.iro.umontreal.ca/$\sim $lisa/pointeurs/handbook-convo.pdf
http://www.iro.umontreal.ca/$\sim $lisa/pointeurs/handbook-convo.pdf
http://plato.asu.edu/bench.html

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences,

36 , 48–49. doi:10.1073/pnas.36.1.48.305

von Neumann, J. (1928). Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100 , 295–320. doi:10.

1007/BF01448847.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,

N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-

amkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). PyTorch: An impera-310

tive style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,

F. d Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural Information Processing Sys-

tems. Curran Associates, Inc. volume 32. URL: https://proceedings.neurips.cc/paper/2019/file/

bdbca288fee7f92f2bfa9f7012727740-Paper.pdf. arXiv:1912.01703.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J.,315

Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbren-

ner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016).

Mastering the game of Go with deep neural networks and tree search. Nature, 529 , 484–489. URL:

https://doi.org/10.1038/nature16961. doi:10.1038/nature16961.

Simmons, G. (1998). Investment science. URL: https://econpapers.repec.org/RePEc:oxp:obooks:320

9780195108095. doi:10.1108/md.1998.36.6.419.1.

Singh, H. (1999). Introduction to Game Theory and Its Application in Electric Power Markets. IEEE

Computer Applications in Power , 12 , 18–20. doi:10.1109/67.795133.

Singh, V. V., & Lisser, A. (2019). A second-order cone programming formulation for two player zero-sum

games with chance constraints. European Journal of Operational Research, 275 , 839–845. doi:10.1016/j.325

ejor.2019.01.010.

Sirignano, J., & Spiliopoulos, K. (2018). Dgm: A deep learning algorithm for solving partial differential

equations. Journal of computational physics, 375 , 1339–1364.

Tan, M., & Le, Q. V. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks, .

URL: https://arxiv.org/abs/1905.11946. doi:10.48550/ARXIV.1905.11946.330

Tembine, H. (2020). Deep Learning Meets Game Theory: Bregman-Based Algorithms for Interactive Deep

Generative Adversarial Networks. IEEE Transactions on Cybernetics, 50 , 1132–1145. doi:10.1109/TCYB.

2018.2886238.

Vanderbei, R. J. (2014). Integer programming. In Linear Programming (pp. 345–362). Springer.

Vega-Redondo, F. (2003). Economics and the theory of games. CRC Press. doi:10.1017/CBO9780511753954.335

18

http://dx.doi.org/10.1073/pnas.36.1.48
http://dx.doi.org/10.1007/BF01448847
http://dx.doi.org/10.1007/BF01448847
http://dx.doi.org/10.1007/BF01448847
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://arxiv.org/abs/1912.01703
https://doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature16961
https://econpapers.repec.org/RePEc:oxp:obooks:9780195108095
https://econpapers.repec.org/RePEc:oxp:obooks:9780195108095
https://econpapers.repec.org/RePEc:oxp:obooks:9780195108095
http://dx.doi.org/10.1108/md.1998.36.6.419.1
http://dx.doi.org/10.1109/67.795133
http://dx.doi.org/10.1016/j.ejor.2019.01.010
http://dx.doi.org/10.1016/j.ejor.2019.01.010
http://dx.doi.org/10.1016/j.ejor.2019.01.010
https://arxiv.org/abs/1905.11946
http://dx.doi.org/10.48550/ARXIV.1905.11946
http://dx.doi.org/10.1109/TCYB.2018.2886238
http://dx.doi.org/10.1109/TCYB.2018.2886238
http://dx.doi.org/10.1109/TCYB.2018.2886238
http://dx.doi.org/10.1017/CBO9780511753954

Wright, S. J. (1997). Primal-dual interior-point methods. SIAM.

Wu, D., & Lisser, A. (2022a). A dynamical neural network approach for solving stochastic two-player zero-sum

games. Neural Networks, .

Wu, D., & Lisser, A. (2022b). Using cnn for solving two-player zero-sum games. Expert Systems with

Applications, (p. 117545).340

Xu, Y., & Zhang, H. (2022). Convergence of deep convolutional neural networks. Neural Networks, .

Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new

perspectives. ACM Computing Surveys (CSUR), 52 , 1–38.

Zhou, Y., Kantarcioglu, M., & Xi, B. (2019). A survey of game theoretic approach for adversarial machine

learning. doi:10.1002/widm.1259.345

19

http://dx.doi.org/10.1002/widm.1259

	Introduction
	Related works
	Contributions
	Notations

	Preliminaries
	Matrix game
	LP to solve Matrix game

	MG-CNN
	MG-CNN model
	MG-CNN training

	Results
	Model training
	Computational performance
	Prediction accuracy

	Discussion
	Conclusion
	Bibliography

