
HAL Id: hal-04370985
https://hal.science/hal-04370985

Submitted on 3 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CCGnet: A deep learning approach to predict Nash
equilibrium of chance-constrained games

Dawen Wu, Abdel Lisser

To cite this version:
Dawen Wu, Abdel Lisser. CCGnet: A deep learning approach to predict Nash equilibrium of chance-
constrained games. Information Sciences, 2023, 627, pp.20-33. �10.1016/j.ins.2023.01.064�. �hal-
04370985�

https://hal.science/hal-04370985
https://hal.archives-ouvertes.fr

CCGnet: A deep learning approach to predict Nash equilibrium of

chance-constrained games

Dawen Wua (dawen.wu@centralesupelec.fr), Abdel Lissera (abdel.lisser@l2s.centralesupelec.fr)

a Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette,

France

Corresponding Author:

Dawen Wu

Address: Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190,

Gif-sur-Yvette, France.

Tel: (+33) 750798387

Email: dawen.wu@centralesupelec.fr

CCGnet: A deep learning approach to predict Nash equilibrium of
chance-constrained games

Dawen Wua,∗, Abdel Lissera

aUniversité Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France

Abstract

This paper proposes a novel method for efficiently finding the Nash equilibrium in a chance-constrained

games (CCG). Conventional numerical integration methods require significant computational time to solve

multiple instances of CCG. We introduce CCGnet, a deep learning approach which can solve efficiently

multiple instances of CCG in a one-shot manner. CCGnet uses a specialized network structure and training

algorithm based on neurodynamic optimization. We present the strong performance of CCGnet in practice

and show that our proposed method outperforms conventional methods.

Keywords: Chance-constrained game, Nash equilibrium, Neural network, Neurodynamic optimization

1. Introduction

Game theory analyzes the strategic interactions between rational individuals in situations involving con-

flict or cooperation [1]. A Nash equilibrium is a state in which no player can improve his payoff by changing

his strategy unilaterally. von Neumann [2] demonstrated the existence of a saddle point for two-person zero-

sum games through the minimax theorem. Nash [3] showed that an equilibrium also exists in multi-player5

non-zero-sum games commonly called Nash equilibrium.

The games mentioned above are all deterministic. However, many real-world situations involve games

where the player’s payoff function or strategy set contains randomness. Such a game with randomness is

called a stochastic Nash game. Ravat & Shanbhag [4] characterized the solution set for various types of

stochastic Nash games. If players are assumed to be risk-neutral, the expected payoff criterion can be used10

to handle the randomness in the game [4, 5].

When considering a risk-averse case, the randomness in a game can be addressed through the chance

constraint programming approach, known as a chance constraint game [6, 7, 8]. In a chance constraint game

(CCG), players are guaranteed to receive payoffs with a certain confidence level. For example, Singh & Lisser

[7] studied a two-person zero-sum game with a random strategy set and characterized the saddle point as a15

primal-dual pair of second-order cone programs when the random variable follows an elliptical distribution.

∗Corresponding author
Email address: dawen.wu@centralesupelec.fr, abdel.lisser@l2s.centralesupelec.fr (Abdel Lisser)

Preprint submitted to Information Sciences January 3, 2024

Neurodynamic optimization uses ordinary differential equation (ODE) systems to solve optimization prob-

lems. Hopfield & Tank [9] proposed Hopfield networks for solving linear programming problems. Kennedy &

Chua [10] developed an approach based on the penalty function method for solving nonlinear programming

problems. However, this approach involves a penalty parameter and the optimal solution can only be obtained20

when the penalty term tends to infinity.. Since then, neurodynamic optimization has been well established for

solving various optimization problems, such as convex optimization problems [11, 12], pseudoconvex problems

[13, 14], distributed optimization problems [15, 16, 17, 18], and Nash equilibrium computation [19, 20].

Deep learning is a type of machine learning that involves the use of deep neural networks, which consist

of multiple layers of interconnected nodes, to identify complex patterns and relationships in data. It has25

been applied successfully to various fields, including computer vision [21], natural language processing [22],

bioinformatics [23], game theory [24, 25], and operation research [26, 27, 28]. However, deep learning also

has limitations, and researchers are working to improve its performance and address challenges such as bias

and interpretability.

Approximation methods using deep learning for differential equations were first studied in the 1990s.30

Dissanayake & Phan-Thien [29] used a neural network as an approximate solution to a differential equation,

where the neural network was trained to satisfy the given differential equation and boundary conditions.

Lagaris et al. [30] proposed a neural network model that can satisfy boundary conditions by construction.

They discussed the use of this method on ODE and PDE problems, respectively. This method was extended

to irregular boundaries [31]. In recent years, with the rapid development of deep learning, these methods35

have been further extended for solving high-dimensional PDEs [32, 33]. Flamant et al. took the parameters

of the ODE system as the input variables of the neural network, allowing the neural network to be used as

the solution for a group of ODE systems [34]. The rapid development of this research direction has been

made possible by automatic differentiation tools, which facilitate the computation of derivatives [35, 36].

1.1. Contributions and paper outline40

The main contributions of this paper can be summarized as follows:

• Our proposed CCGnet is able to receive instances of different parameters and solve them directly with-

out any iterative process. In terms of computational time, CCGnet outperforms traditional solution

approaches. This advantage becomes even more significant when solving multiple instances. For ex-

ample, for 10,000 instances, the CCGnet model solves within 1.53 ms CPU time, while traditional45

numerical solvers take at least 22,500 ms CPU time.

• CCGnet transforms a CCG problem into a neural network training problem. Since our CCGnet model is

based entirely on deep learning infrastructure, we can solve CCG without using any standard numerical

solvers.

The remaining sections of this paper are organized as follows: Section 2 presents the background knowledge50

needed for understanding the paper, including the introduction of CCG and the neurodynamic optimization

2

approach. Section 3 presents our proposed CCGnet approach. Section 4 gives numerical results of using

CCGnet for solving CCG. Section 5 summarizes the paper and gives future directions.

1.2. Notations

Notation Definition

CCG Chance-constrained game
NPE Nonlinear projection equation
IVP Initial value problem
CCGθ, NPEθ and IV P θ A CCG, NPE, IVP with parameter θ
n ∈ N The number of players
x ∈ Rn A strategy profile of a stochastic cournot competition
y ∈ R2n Variable of a NPE
Φ(z) : R2n → R2n An ODE system, dz

dt = Φ(z)
z(t) : R → R2n A state solution
ẑ(t, θ;w) A CCGnet model with model weight w
(t0, z0) ∈ R2n+1 An initial point
[t0, T] ⊂ R A time range
θ ∈ Θ CCG parameter

2. Preliminaries55

Section 2.1.1 introduces the CCG problem, including the definition of a CCG and the existence theorem

of Nash equilibria. Section 2.1.2 introduces a specific type of CCG, namely stochastic cournot games among

electrical firms, and shows how to reformulate this CCG as an nonlinear projection equation (NPE). Section

2.2 introduces the neurodynamic optimization approach for solving the NPE.

2.1. Chance-constrained game60

2.1.1. The model

Let an n-player game with continuous action and random payoffs be defined as a tuple
(
I,
(
Xi

)
i∈I

,
(
ri
)
i∈I

)
,

where

• I = {1, 2, . . . , n} is a set of players.

• For each i ∈ I, let Ai be a finite action set of player i together with its generic element ai. A vector65

a = (a1, a2, · · · , an) denotes an action profile of the game. Let A=×n
i=1Ai be the set of all action

profiles of the game. Denote, A−i=×n
j=1;j ̸=iAj , and a−i ∈ A−i is a vector of actions aj , j ̸= i.

xi ∈ RAi is a strategy of player i. x ∈ RA is a strategy profile. x−i ∈ RA−i is a strategy profile without

xi. Xi, X−i and X are feasible set for xi, x−i and x, respectively.

• Let (Ω,F , P) be a probability space. ξi : Ω → Rli is a random vector, and f i : X → Rli is a function

determining player i’s payoff. Consider a strategy profile x ∈ X and an event ω ∈ Ω, the payoff of

player i is

ri(x, ω) = f i(x) · ξi(ω). (1)

3

The CCG defines the payoff function of player i as

uαi
i (x) = sup

{
γ | P

({
ω | ri(x, ω) ≥ γ

})
≥ αi

}
, (2)

where αi ∈ [0, 1] is a confidence level of player i, and α = (αi)i∈I ∈ [0, 1]n. A strategy profile x∗ is a Nash

equilibrium, if the following holds

uαi
i

(
xi∗, x−i∗) ≥ uαi

i

(
xi, x−i∗) , ∀xi ∈ Xi. (3)

We consider the case where each random vector ξi, ∀i ∈ I follows an elliptically symmetric distribution,

i.e., Ellip (µi,Σi, φi). µi is a location parameter. Σi is a positive definite matrix and φi is a characteristic

generator function. Then, the payoff function of player i is

uαi
i (x) = µT

i f
i(x) +

∥∥∥Σ1/2
i f i(x)

∥∥∥ϕ−1
Zi

(1− αi) , (4)

where ϕ−1
Zi

(·) is the quantile function of the distribution Ellip (µi,Σi, φi).70

Assumption 1. The following conditions hold for each player i.

• Xi ⊂ Rji is a non-empty, convex and compact set.

• f i
k : Rj → R is a continuous function, for all k = 1, 2, . . . , li.

• For a given x−i ∈ X−i, f i
k

(
·, x−i

)
is an affine function, for all k = 1, 2, . . . , li. Or, for a given

x−i ∈ X−i, f i
k

(
·, x−i

)
is an non-positive and concave function, for all k = 1, 2, . . . , li, and all elements75

of µi and Σi are non-negative.

Theorem 1 (Singh & Lisser [37], Theorem 1). Consider a chance constrained game
(
I,
(
Xi

)
i∈I

,
(
ri
)
i∈I

)
.

For each player i ∈ I, the random vector ξi follows an elliptical distribution Ellip (µi,Σi, φi). Let Assumption

1 holds. There exists a Nash equilibrium for this chance constrained game with any α ∈ (0.5, 1]n.

2.1.2. Stochastic cournot competition80

We now consider an example of CCG, namely stochastic cournot competitions among electricity firms.

We show how this CCG can be reformulated as an nonlinear projection equation.

Consider an electricity market with n competing firms. xi ∈ Xi ⊂ R+ denote an amount of electricity

generated by firm i. Each firm i has a finite capacity Ci, i.e., Xi =
[
0, Ci

]
. x =

(
x1, x2, . . . , xn

)
∈ Rn denote

a strategy profile. Let (Ω,F , P) be a probability space. The unit market price is determined by x and an

event ω,

P (x, ω) = a− b ·
n∑

i=1

xi + ζ(ω), (5)

where ζ : Ω → R is a random variable, and a ∈ R and b ∈ R+ are two market price factors.

4

The payoff function of firm i is

ri(x, ω) = xi · P (x, ω)− ci
(
xi
)
, (6)

where ci
(
xi
)
is the cost of firm i to produce xi amount of electricity, and ci (·) is assumed to be differentiable

and convex.85

The chance-constraint payoff function for player i with confidence level αi is defined as

uαi
i (x) = sup

γ | P

ω | xi

a− b ·
n∑

j=1

xj

+ xi · ζ(ω)− ci
(
xi
)
≥ γ


 ≥ αi

 . (7)

If xi > 0,∀i ∈ I, we have

uαi
i (x) = sup

γ | P

ω | ζ(ω) ≤
γ − xi

(
a− b ·

∑n
j=1 x

j
)
+ ci

(
xi
)

xi


 ≤ 1− αi


= sup

γ | γ ≤ xi

a− b ·
n∑

j=1

xj

− ci
(
xi
)
+ xiϕ−1

ζ (1− αi)


= xi

a− b ·
n∑

j=1

xj

− ci
(
xi
)
+ xiϕ−1

ζ (1− αi) .

(8)

If xi = 0,∀i ∈ I, we have

uαi
i (x) = −ci

(
xi
)
. (9)

Therefore, for a given x and αi , the payoff of firm i is

uαi
i (x) = xi

a− b ·
n∑

j=1

xj

− ci
(
xi
)
+ xiϕ−1

ζ (1− αi) . (10)

Definition 1. The nonlinear complementarity problem NCP (F) is to find a vector y∗ ∈ Rm such that

0 ≤ y∗ ⊥ F (y∗) ≥ 0, (11)

where F : Rm → Rm.

Theorem 2 ([37]). Denote a decision vector y =
(
x1, . . . , xn, λ1, . . . , λn

)
∈ R2n, and let F (y) = (F1(y), . . . , F2n(y)),

where

Fi(y) =

 −
(
a− b

∑n
j=1;j ̸=i x

j
)
+ 2bxi +

dci(xi)
dxi − ϕ−1

ζ (1− αi) + λi, if i = 1, . . . , n

Ci−n − xi−n, if i = n+ 1, . . . , 2n.
(12)

5

The strategy profile x∗ of y∗ = (x∗, λ∗) is a Nash equilibrium of the CCG if and only if y∗ is a solution of

the NCP (F).

Proposition 1 ([38, 39]). The nonlinear projection equation NPE(F) is to find a vector y∗ ∈ Rm such that

(y∗ − F (y∗))+ = y∗, (13)

where F : Rm → Rm is a continuous function, (y)+ = max(0, y). y∗ is the solution of NCP (F) if and only

if y∗ is the solution of NPE(F).90

By Theorem 1, a Nash equilibrium exists for this CCG with any α ∈ (0.5, 1]n. By Theorem 2 and

Proposition 1, the Nash equilibrium of this CCG can be obtained by solving the NPE(F). Note that NPEs

are equivalent to variational inequalities and generalized complementarity problems, the proof is given by

Browder fixed-point theorem [38, 39]. Here, Proposition 1 considers a simpler case, i.e., the equivalence

between NPE and NCP.95

2.2. Neurodynamic optimization

Xia & Feng [11] proposes the following ODE system to solve the NPE(F)

dz

dt
= −F

(
(z)+

)
+ (z)+ − z. (14)

The ODE system (14) can be simplified as dz
dt = Φ(z). Let z∗ be an equilibrium point of the ODE system,

i.e., Φ(z∗) = 0. Then, we have

z∗ = −F
(
(z∗)+

)
+ (z∗)+ (15)

Applying the projection operator (·)+ on both side, we have

(z∗)+ =
(
−F

(
(z∗)+

)
+ (z∗)+

)+
, (16)

and hence the point (z∗)+ is a solution of NPE(F).

Definition 2. Consider an ODE system dz
dt = Φ(z), Φ(z) : Rm → Rm, and a given initial point (t0, z0) ∈

Rm+1. A vector value function z(t) : R → Rm is called a state solution, if it satisfies the initial condition

z(t0) = z0 and the ODE system dz
dt = Φ(z).100

Definition 3. An ODE system dz
dt = Φ(z) converges globally to a solution set Z∗ if for any given initial

point, the state solution z(t) satisfies

lim
t→∞

dist (z(t),Z∗) = 0, (17)

where dist (z(t),Z∗) = infz∗∈Z∗ ∥z(t) − z∗∥, and ∥·∥ is the euclidean norm. In particular, if the set Z∗

contains only one point z∗, then limt→∞ z(t) = z∗, and the ODE system is globally asymptotically stable at

z∗.

6

1. ODE system

2. Initial point

3. Time range

Problems

Solutions

1. Players set

3. Payoff functions

2. Strategy set

1. Variable

2. NPE

Figure 1: The problem reformulation from a CCG to an IVP via an NPE. We use the stochastic cournot competition
for illustration. In the left box of CCG, x∗ represents the Nash equilibrium, and the payoff function u

αi
i (x) is given by (10). In

the middle box of NPE, y∗ represents the solution of the NPE, and the function F (y) is given by (12). In the right box of IVP,
z(t), t ∈ [t0, T] represents the state solution, and the ODE system Φ(z) is given by (14).

Theorem 3 (Xia & Feng [11], Theorem 1). If ∇G(z) is symmetrical and positive semi-definite, then the

ODE system (14) converges globally to the solution set of NPE(K,G). In particular, if NPE(K,G) has105

only one solution z∗, then z∗ is globally asymptotically stable.

3. CCGnet

In Section 3.1, we summarize the reformulation of a CCG to an initial value problem (IVP) and present a

method for parametrizing CCG instances using θ. Section 3.2 introduces the CCGnet model and its associated

loss function. Section 3.3 presents the training algorithm and discusses newly introduced hyperparameters.110

3.1. Problem setup

In this work, we consider the stochastic cournot game as introduced in Section 2.1.2. The CCG problem

can be reformulated as an NPE where the solution y∗ = (x∗, λ∗) includes the Nash equilibrium x∗ of the

CCG. The neurodynamic approach, introduced in Section 2.2, models this NPE as an IVP, resulting in a

state solution z(t) for t ∈ [t0, T]. According to the global convergence theorem, as T approaches infinity,115

z(T) converges to y∗. Figure 1 summarizes this reformulation from a CCG to an IVP.

Next, we consider the case of multiple instances. We parameterize a CCG instance by θ ∈ Θ, where a

different θ leads to a different CCG instance. The set Θ is typically an uncountably infinite set that represents

a range of possible values for θ. For example, in the stochastic cournot game, θ can be the market price

7

factor a or b, and Θ can be [1, 5]. We denote the CCG instance for θ as CCGθ, the corresponding NPE as120

NPEθ, and the IVP as IV P θ.

3.2. CCGnet framework

The CCGnet model is defined by the following equation:

ẑ (t, θ;w) = z0 + (1− e−(t−t0))N (t, θ;w) , (18)

where t is an input time that falls within the time range [t0, T] ⊂ R. (t0, z0) is an initial point. N (t, θ;w) is

a fully-connected neural network with weight w. We put θ ∈ Θ as an input to the neural network, allowing

the CCGnet model to solve multiple CCG instances. The terms z0 and
(
1− e−(t−t0)

)
in (18) ensure that the125

CCGnet model satisfies the initial condition (t0, z0) by construction, i.e., ẑ (t0, θ;w) = z0. This construction

method for handling initial conditions was introduced by Lagaris et al [30]. We use an exponential multiplier

of 1− e−(t−t0), which has been shown to achieve better convergence than the Lagaris method [40].

The CCGnet model solves CCGθ, NPEθ and IV P θ, for any θ ∈ Θ, as shown in Figure 2-(A). For a

given instance of parameter θ, the CCGnet model’s predicted state solution for the IV P θ is ẑ (t, θ;w), where130

t ∈ [t0, T]. This is obtained by using t as a variable and keeping θ constant. The predicted solution for

the NPEθ is ẑ (T, θ;w) = [x̂1, . . . , x̂n, λ̂
1, . . . , λ̂n], which is obtained by using a constant value of T and a

constant value of θ. The predicted Nash equilibrium for the CCGθ is [x̂1, . . . , x̂n]. Figure 2-(B) illustrates

how the CCGnet model gives predictions for these three problems.

The loss function is defined by the following equation:

L(t, θ;w) = e(−τ(t−t0))ℓ

(
∂ẑ(t, θ;w)

∂t
,Φθ(ẑ(t, θ;w))

)
. (19)

Φθ is the ODE system corresponding to CCGθ. ∂ẑ(t,θ;w)
∂t is the partial derivative of the CCGnet model with

respect to time t. ℓ(·, ·) is an error metric, e.g., mean square error. The term ℓ
(

∂ẑ(t,θ;w)
∂t ,Φθ(ẑ(t, θ;w))

)
represents how well the CGGnet model solves the ODE system Φθ at time t. The weighting function e(−τ(t−t0))

is an exponentially decaying function with respect to time t, with τ ∈ R as a hyperparameter. We include

this weighting function to avoid initial errors which might increase the global errors exponentially [34]. For

a given instance of parameter θ ∈ Θ and a time t ∈ [t0, T], the computational flow of the loss value L(t, θ;w)

is shown in Figure 2-(C). The batch loss is defined as follows:

L(T, θ;w) =
1

|T|
∑
t∈T

L(t, θ;w), (20)

where T ⊂ [t0, T] is the batch of t, and |T| represents the batch size.135

8

Loss

(C)

3

1

2

1 The predicted Nash equilibrium for 2 The predicted solution for

The predicted state solution for 3

(B)

A CCGnet model

Solves

(A)

Figure 2: CCGnet framework. (A) One CCGnet model to solve multiple CCG instances. (B) The CCGnet
predictions for the CCGθ, NPEθ and IV P θ. (C) The computation flow of the CCGnet loss.

9

Algorithm 1: Training of a CCGnet model for solving CCGθ ∀θ ∈ Θ

Input : The CCG problem; Confidence level set Θ
Hyperparameters: Time range [t0, T]; Initial point (t0, y0)
Output : The CCGnet model after training

1 Function Main():
2 Initialize a CCGnet model, ŷ(t, θ;w).
3 while iter ≤ Max iteration do
4 θ ∼ Θ: Uniformly sample a confidence level α ∈ Θ
5 T ∼ [t0, T]: Uniformly sample a batch of times T from the time range [t0, T]

6 Φθ: Derive the ODE system Φθ associated with the instance CCGθ

7 Forward propagation: Compute the batch loss L(T, θ;w)
8 Backward propagation: Update the weight w of the CCGnet model by ∇wL(T, θ;w)

9 end

10 end

Algorithm 2: Training of a CCGnet model for solving CCGθ ∀θ ∈ Θ

Hyperparameters: Time range [t0, T]; Initial point (t0, z0)
Result : The CCGnet model after training

1 Function Main():
2 Initialize a CCGnet model.
3 while iter ≤ Max iteration do
4 θ ∼ Θ: Uniformly sample a θ from the set Θ
5 T ∼ [t0, T]: Uniformly sample a batch of time T from the time range [t0, T]

6 Φθ: Derive the ODE system Φθ related to the instance CCGθ

7 Forward propagation: Compute the batch loss L(T, θ;w)
8 Backward propagation: Update the weight w of the CCGnet model by ∇wL(T, θ;w)

9 end

10 end

The objective function of the CCGnet model is given by the following equation:

E(w) =

∫
θ∈Θ

∫
t∈[t0,T]

L(t, θ;w), dt, dθ. (21)

The goal of training the CCGnet model is to minimize the objective function, i.e.,

min
w

E(w). (22)

The loss value L(t, θ;w) measures the error of the instance with θ at time t. The objective value E(w)

measures the overall error for all instances of θ ∈ Θ over the time range [t0, T].

3.3. CCGnet training

Algorithm 2 presents the training of a CCGnet model for solving CCGθ ∀θ ∈ Θ. At each training

iteration, a value of θ is randomly sampled from the set Θ, and a batch of time points T is randomly sampled140

from the time range [t0, T], forming a training data (θ,T). The CCGnet model is then trained using this

batch of data, and once the iteration finishes, the batch is discarded. The goal of the algorithm is to minimize

10

the objective function E(w), and the batch loss L(T, θ;w) is an estimate of E(w).

The time range [t0, T] is a hyperparameter that affects both the prediction accuracy and training difficulty

of the CCGnet model. Given a CCGθ and its corresponding NPEθ with solution y∗, the initial value problem145

IV P θ with time range [t0, T] has state solution z(t), where z(T) ≈ y∗. The predicted state solution ẑ(t, θ;w)

approximates z(t) on [t0, T], such that ẑ(T, θ;w) ≈ z(T) ≈ y∗. Increasing the time range [t0, T] leads to

higher accuracy for z(T) and, subsequently, a higher accuracy limit for ẑ(T, θ;w). However, a larger time

range also makes training more challenging as the model has a larger input space to learn.

The size of the time range is a trade-off that must be considered carefully. If the time range is too small,150

the model will have a lower accuracy limit and will not be able to surpass it, regardless of the number of

training iterations. If the time range is too large, the model will require more iterations to reach its accuracy

limit. Thus, it is important to choose a time range that is appropriate for the number of training iterations.

4. Numerical results

We conducted our experiments using the Google Colab platform and built the neural network with Pytorch155

1.9.1 and the ODE system with JAX 0.3.13 [41]. The hyperparameters for training are as follows:

• The ADAM optimizer [42] was used for training with a learning rate of 0.001 and a batch size of 512.

The maximum number of iterations was set to 10,000.

• The CCGnet model consists of a fully connected neural network with three hidden layers, each con-

taining 100 neurons and using the tanh activation function.160

• The time range for the model was set to the interval [0, 1] with an initial point of (0,0).

• The mean squared error (MSE) was used as the error metric and the weighting hyperparameter was

set to τ = 0.5.

The CCGnet model was compared to four numerical integration methods: RK45, LSODA, BDF, and DOP853

[43, 44, 45, 46]. These four methods can be accessed using Scipy [47].165

We consider a concrete example of stochastic cournot competitions as introduced in Section 2.1.2. The

number of electricity firms are n = 5, and the cost function of firm i is defined as ci
(
xi
)
=

(
xi
)2
. The

random variable follows the normal distribution ζ ∼ N
(
µ, σ2

)
. The Nash equilibrium of this game can be

reformulated as the following NPE

PY (y − (My + q)) = y, (23)

11

where Y =
{
y ∈ R10 | y ≥ 0

}
, y =

(
x1, x2, x3, x4, x5, λ1, λ2, λ3, λ4, λ5

)T
,

M =



2b+ 2 b b b b 1 0 0 0 0

b 2b+ 2 b b b 0 1 0 0 0

b b 2b+ 2 b b 0 0 1 0 0

b b b 2b+ 2 b 0 0 0 1 0

b b b b 2b+ 2 0 0 0 0 1

−1 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0



, q =



−a− ϕ−1
ζ (1− α1)

−a− ϕ−1
ζ (1− α2)

−a− ϕ−1
ζ (1− α3)

−a− ϕ−1
ζ (1− α4)

−a− ϕ−1
ζ (1− α5)

C1

C2

C3

C4

C5



.

The two market price factors are a = 1 and b = 2, The capacity of each firm is C1 = C2 = C3 = C4 = C5 = 5.

The confidence level of each firm are α1 = α2 = α3 = α4 = α5 = 0.6. The mean and the variance of the

normal distribution is µ = 1 and σ2 = 2.

We use the following metric to evaluate the accuracy of the prediction ŷ

ϵ = ∥PY (ŷ − (Mŷ + q))− ŷ∥. (24)

We consider three different ways to parameterize this CCG problem. Subsection 4.1 parameterize the

market price factor a as a variable. Subsection 4.2 parameterize the market price factor b as a variable.170

Subsection 4.3 parameterize the confidence level ᾱ as a variable. We construct three independent CCGnet

models, each corresponding to one subsection, then train and test these three models separately.

The experimental setup for Sections 4.1, 4.2, and 4.3 is the same and each subsection includes the following

results: (1) the training loss of the CCGnet model, (2) the predicted state solutions of four IVPs corresponding

to four CCG instances, (3) the predicted solutions to the four CCG instances, and (4) a comparison of CPU175

time between the CCGnet model and the numerical integration methods. Finally, Section 4.4 compares the

advantages and limitations of our method to the numerical integration methods.

4.1. Case 1: a as variable

Index a CCGnet prediction Nash equilibrium
1 1.37 [0.16, 0.16, 0.16, 0.16, 0.16] [0.14, 0.14, 0.14, 0.14, 0.14]
2 3.27 [0.29, 0.29, 0.29, 0.29, 0.29] [0.28, 0.28, 0.28, 0.28, 0.28]
3 2.53 [0.24, 0.24, 0.24, 0.24, 0.24] [0.23, 0.23, 0.23, 0.23, 0.23]
4 4.20 [0.36, 0.35, 0.36, 0.35, 0.36] [0.35, 0.35, 0.35, 0.35, 0.35]

Table 1: Case 1: a as variable. The predicted Nash equilibrium for the four example instances. CCGnet prediction
refers to the predicted Nash equilibrium from the CCGnet model. Nash equilibrium refers to the true value.

12

0 5000 10000
Iteration

10− 2

10− 1

100

101

102

M
.S
.E 0.0 0.2 0.4 0.6 0.8 1.0

t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

x

x1
x2
x3
x4
x5

0.0 0.2 0.4 0.6 0.8 1.0
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

x

x1
x2
x3
x4
x5

0.0 0.2 0.4 0.6 0.8 1.0
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

x

x1
x2
x3
x4
x5

0.0 0.2 0.4 0.6 0.8 1.0
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

x

x1
x2
x3
x4
x5

(A)

(B)

Figure 3: Case 1: a as variable. (A) The training loss versus the number of iterations. (B) The predicted
state solutions for the four example instances. The top-left, top-right, bottom-left, and bottom-right show the results of
a = 1.37, a = 3.27, a = 2.53, and a = 4.20, respectively.

We developed a CCGnet model, denoted as:

ẑ(t, a;w), t ∈ [0, 1], a ∈ [1, 5], (25)

to solve for the case when the market price factor a is a variable with a parameter set of Θ = [1, 5]. At

each iteration, a market price factor a is uniformly sampled from the interval [1, 5], and a batch of time T is180

uniformly sampled from the time range [0, 1], together forming the batch (a,T) to train the model. Figure

3-(A) shows the loss value during training, which decreases from an initial value of 91.75 to 0.05.

We selected four different values of a to represent four different instances and used the CCGnet model

to solve them. Denote ẑ(t, a;w) =
(
x̂(t, a;w), λ̂(t, a;w)

)
. In the following results, we only present the

results of x̂(t, a;w). Figure 3-(B) shows the predicted state solutions for x̂(t, a = 1.37;w), x̂(t, a = 3.27;w),185

x̂(t, a = 2.53;w), and x̂(t, a = 4.20;w). Table 1 shows the predicted Nash equilibria for these four instances

at t = 1, i.e., x̂(t = 1, a = 1.37;w), x̂(t = 1, a = 3.27;w), x̂(t = 1, a = 2.53;w), and x̂(t = 1, a = 4.20;w).

Table 2 compares the computational performance of the CCGnet model, ẑ(t, a;w), and the neurodynamic

approach when solving multiple instances. When solving a single instance, the CCGnet model has a CPU

time of less than 1 ms, which is faster than the best result of 2.23 ms for the neurodynamic approach. When190

solving 10,000 instances, the CCGnet model takes only 1.53 ms of CPU time, significantly faster than the

best result of 22,500 ms for the neurodynamic approach. On average, the CCGnet model has an error of

ϵ = 0.2.

13

Instance number
CCGnet Neurodynamic approach
CPU time
(without GPU)
(ms)

CPU time
(with GPU)
(ms)

ϵ error
RK45
CPU time
(ms)

LSODA
CPU time
(ms)

BDF
CPU time
(ms)

DOP853
CPU time
(ms)

1 < 1 < 1 0.27 2.51 2.23 8.94 3.41
100 < 1 < 1 0.21 250 217 852 341
500 1.07 < 1 0.20 1260 1120 4340 1760
1000 2.18 < 1 0.20 2590 2280 8830 3510
5000 8.94 1.1 0.20 12800 11200 43900 17400
10000 17.5 1.53 0.20 25500 22500 84000 34500

Table 2: Case 1: a as variable. The computational performance of the CCGnet model and the neurodynamic
approach. Each row represents a test batch of many different instances. With or without GPU, refers to whether the CCGnet
model uses CUDA. RK45, LSODA, BDF, and DOP853 are four numerical integration methods.

0 5000 10000
Iteration

10− 2

10− 1

100

101

102

M
.S
.E 0.0 0.2 0.4 0.6 0.8 1.0

t

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

x

x1
x2
x3
x4
x5

0.0 0.2 0.4 0.6 0.8 1.0
t

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

x

x1
x2
x3
x4
x5

0.0 0.2 0.4 0.6 0.8 1.0
t

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

x

x1
x2
x3
x4
x5

0.0 0.2 0.4 0.6 0.8 1.0
t

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

x

x1
x2
x3
x4
x5

(A)

(B)

Figure 4: Case 2: b as variable. (A) The training loss versus the number of iterations. (B) The predicted
state solutions for the four example instances. The top-left, top-right, bottom-left, and bottom-right show the results of
b = 3.83, b = 3.90, b = 2.34, and b = 1.46, respectively.

Index b CCGnet prediction Nash equilibrium
1 3.83 [0.07, 0.07, 0.07, 0.07, 0.07] [0.07, 0.07, 0.07, 0.07, 0.07]
2 3.90 [0.07, 0.07, 0.07, 0.07, 0.07] [0.06, 0.06, 0.06, 0.06, 0.06]
3 2.34 [0.11, 0.11, 0.11, 0.11, 0.11] [0.10, 0.10, 0.10, 0.10, 0.10]
4 1.46 [0.17, 0.17, 0.17, 0.17, 0.17] [0.15, 0.15, 0.15, 0.15, 0.15]

Table 3: Case 2: b as variable. The predicted Nash equilibrium for the four example instances. CCGnet prediction
refers to the predicted Nash equilibrium from the CCGnet model. Nash equilibrium refers to the true value.

14

4.2. Case 2: b as variable

We developed a CCGnet model, denoted as:

ẑ(t, b;w), t ∈ [0, 1], b ∈ [1, 5], (26)

to solve for the case when the market price factor b is a variable with a parameter set of Θ = [1, 5]. At each195

iteration, a market price factor b is uniformly sampled from the interval [1, 5] and a batch of time points,

denoted as T, is uniformly sampled from the time range [0, 1]. These two samples, (b,T), form a batch used

to train the model. Figure 4-(A) shows the loss value during training, which decreases from an initial value

of 76.51 to 0.01.

We tested this CCGnet model on four example instances with different values of b, specifically 3.83, 3.90,200

2.34, and 1.46. Figure 4-(B) shows the predicted state solutions for x̂(t, b = 3.83;w), x̂(t, b = 3.90;w),

x̂(t, b = 2.34;w), and x̂(t, b = 1.46;w). Table 3 shows the predicted Nash equilibria for these four instances

at t = 1, i.e., x̂(t = 1, b = 3.83;w), x̂(t = 1, b = 3.90;w), x̂(t = 1, b = 2.34;w), and x̂(t = 1, b = 1.46;w).

Instance number
CCGnet Neurodynamic approach

CPU time
(ms)

CPU time
(with GPU)
(ms)

ϵ error
RK45
CPU time
(ms)

LSODA
CPU time
(ms)

BDF
CPU time
(ms)

DOP853
CPU time
(ms)

1 < 1 < 1 0.04 3.09 2.64 8.70 3.68
100 < 1 < 1 0.07 282 247 841 355
500 1.03 < 1 0.07 1510 1410 4290 1840
1000 2.02 < 1 0.07 3000 2620 8550 3740
5000 8.61 1.07 0.07 15000 13000 42700 18500
10000 17.1 1.50 0.07 30200 26100 84000 36900

Table 4: Case 2: b as variable. The computational performance of the CCGnet model and the neurodynamic
approach. Each row represents a test batch of many different instances. With or without GPU, refers to whether the CCGnet
model uses CUDA. RK45, LSODA, BDF, and DOP853 are four numerical integration methods.

Table 4 compares the computational performance of the CCGnet model, ẑ(t, b;w), and the neurodynamic

approach. When solving a single instance, the CCGnet model has a CPU time of less than 1 ms, outperforming205

the best result of 2.64 ms for the neurodynamic approach. When solving 10,000 instances, the CCGnet model

takes only 1.50 ms of CPU time, faster than the best result of 26,100 ms for the neurodynamic approach.

On average, the CCGnet model has an error of ϵ = 0.07.

4.3. Case 3: ᾱ as variable

Index ᾱ CCGnet endpoint Nash equilibrium
1 0.60 [0.11, 0.11, 0.11, 0.11, 0.11] [0.12, 0.12, 0.12, 0.12, 0.12]
2 0.90 [0.01, 0.01, 0.01, 0.01, 0.01] [0.01, 0.01, 0.01, 0.01, 0.01]
3 0.67 [0.09, 0.09, 0.09, 0.09, 0.09] [0.10, 0.10, 0.10, 0.10, 0.10]
4 0.75 [0.06, 0.06, 0.06, 0.07, 0.06] [0.08, 0.08, 0.08, 0.08, 0.08]

Table 5: Case 3: ᾱ as variable. The predicted Nash equilibrium for the four example instances. CCGnet prediction
refers to the predicted Nash equilibrium from the CCGnet model. Nash equilibrium refers to the true value.

15

0 5000 10000
Iteration

10− 1

100

101

102

M
.S
.E 0.0 0.2 0.4 0.6 0.8 1.0

t

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

x

x1
x2
x3
x4
x5

0.0 0.2 0.4 0.6 0.8 1.0
t

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

x

x1
x2
x3
x4
x5

0.0 0.2 0.4 0.6 0.8 1.0
t

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

x

x1
x2
x3
x4
x5

0.0 0.2 0.4 0.6 0.8 1.0
t

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

x

x1
x2
x3
x4
x5

(A)

(B)

Figure 5: Case 3: ᾱ as variable. (A) The training loss versus the number of iterations (B) The predicted
state solutions for the four instances The top-left, top-right, bottom-left, and bottom-right show the results of ᾱ = 0.60,

¯alpha = 0.90, ᾱ = 0.67, and ᾱ = 0.75, respectively.

We studied the case where the confidence level is a variable and assumed that α1 = α2 = α3 = α4 = α5.

We denote this common value as ᾱ and build a CCGnet model, denoted as:

ẑ(t, α;w), t ∈ [0, 1], α ∈ [0.5, 0.9], (27)

to solve for this case when ᾱ is a variable with a parameter set of Θ = [0.5, 0.9]. At each iteration, a value210

of ᾱ is uniformly sampled from the interval [0.5, 0.9] and a batch of time points, denoted as T, is uniformly

sampled from the time range [0, 1]. These two samples, (ᾱ,T), form a batch used to train the model. Figure

5-(A) shows the loss value during training, which decreases from an initial value of 74.39 to 0.03.

We tested this CCGnet model on four example instances with different values of ᾱ, specifically 0.60, 0.90,

0.67, and 0.75. Figure 5-(B) shows the predicted state solutions for x̂(t, ᾱ = 0.60;w), x̂(t, ᾱ = 0.90;w),215

x̂(t, ᾱ = 0.67;w), and x̂(t, ᾱ = 0.75;w). Table 5 shows the predicted Nash equilibria for these four instances

at t = 1, i.e., x̂(t = 1, ᾱ = 0.60;w), x̂(t = 1, ᾱ = 0.90;w), x̂(t = 1, ᾱ = 0.67;w), and x̂(t = 1, ᾱ = 0.75;w).

Table 6 compares the computational performance of the CCGnet model, ẑ(t, α;w), and the neurodynamic

approach. When solving a single instance, the CCGnet model has a CPU time of less than 1 ms, faster than

the best result of 2.27 ms for the neurodynamic approach. When solving 10,000 instances, the CCGnet model220

takes only 1.14 ms of CPU time, significantly faster than the best result of 24,300 ms for the neurodynamic

approach. On average, the CCGnet model has an error of ϵ = 0.15.

16

Instance number
CCGnet Neurodynamic approach

CPU time
(ms)

CPU time
(with GPU)
(ms)

ϵ error
RK45
CPU time
(ms)

LSODA
CPU time
(ms)

BDF
CPU time
(ms)

DOP853
CPU time
(ms)

1 < 1 < 1 0.16 2.57 2.27 8.02 3.47
100 < 1 < 1 0.15 267 225 838 347
500 1.02 < 1 0.16 1320 1180 4230 1770
1000 2.05 < 1 0.15 2640 2420 8440 3540
5000 8.52 1.08 0.15 13200 12200 42300 17700
10000 17.9 1.41 0.15 26600 24300 87000 35700

Table 6: Case 3: ᾱ as variable. The computational performance of the CCGnet model and the neurodynamic
approach. Each row represents a test batch of many different instances. With or without GPU, refers to whether the CCGnet
model uses CUDA. RK45, LSODA, BDF, and DOP853 are four numerical integration methods.

4.4. Discussion

The main advantage of the CCGnet model is its computational performance. It can directly predict the

Nash equilibrium without any iterative process, making it much faster than numerical integration methods.225

This advantage becomes even more significant when there are a large number of instances to solve. For

example, when solving 10,000 different instances, the CCGnet model can predict all the Nash equilibria in

a one-shot manner with only 1.5 ms, while numerical methods require more than 20,000 ms to solve each

instance one after another. Additionally, the CCGnet model can utilize a GPU to further accelerate the

solution process, while GPU-based numerical methods are still under development.230

One limitation of the CCGnet model is its prediction accuracy compared to exact solutions obtained

through numerical integration methods. While numerical integration methods can provide exact solutions

given sufficient computational time, the CCGnet model can only provide predictions. The accuracy of

these predictions depends on technical details such as the neural network structure, training algorithm, and

hyperparameter settings, which are active areas of research in machine learning and deep learning. As these235

areas progress, the CCGnet model has the potential to improve its prediction accuracy.

5. Conclusion

This paper presents a deep learning approach called CCGnet for solving chance-constrained games.

CCGnet is based on neurodynamic optimization, which models a chance-constrained game as an ODE sys-

tem. One of the key benefits of CCGnet is its ability to solve multiple instances in a very short amount240

of CPU time, significantly faster than traditional methods. The paper provides a detailed description of

the proposed method, including the parametrization of CCG instances, the model framework, the training

algorithm, and a discussion of hyperparameters.

However, it is important to note that the proposed method should not be considered a replacement for

standard solvers like RK45 and BDF. These methods have been well-developed over many years. Our purpose245

is to link the machine learning community and CCG. We believe that with the rapid growth of research on

17

machine learning, both methodologically and experimentally, this paper will continue to contribute to the

efficient solution of CCG problems.

There are many potential avenues for future research. Some examples include: 1) Choosing the hyperpa-

rameter initial point to be all zero may not always lead to the best computational performance. Is it possible250

to find other choices that lead to better results? 2) We used a uniform distribution to sample the dataset.

Could other sampling methods lead to better results? 3) We used a fully-connected network structure. How

can we design a more suitable neural network structure and activation function?

Bibliography

[1] Algorithmic Game Theory, Cambridge University Press, 2007. doi:10.1017/CBO9780511800481.255

[2] J. von Neumann, Zur theorie der gesellschaftsspiele, Mathematische annalen 100 (1) (1928) 295–320.

[3] J. F. Nash, et al., Equilibrium points in n-person games, Proceedings of the national academy of sciences

36 (1) (1950) 48–49.

[4] U. Ravat, U. V. Shanbhag, On the characterization of solution sets of smooth and nonsmooth convex

stochastic nash games, SIAM Journal on Optimization 21 (3) (2011) 1168–1199.260

[5] H. Jiang, U. V. Shanbhag, S. P. Meyn, Distributed computation of equilibria in misspecified convex

stochastic nash games, IEEE Transactions on Automatic Control 63 (2) (2017) 360–371.

[6] V. V. Singh, A. Lisser, A characterization of nash equilibrium for the games with random payoffs, Journal

of Optimization Theory and Applications 178 (3) (2018) 998–1013.

[7] V. V. Singh, A. Lisser, A second-order cone programming formulation for two player zero-sum games265

with chance constraints, European Journal of Operational Research 275 (3) (2019) 839–845.

[8] H. N. Nguyen, A. Lisser, V. V. Singh, Random games under elliptically distributed dependent joint

chance constraints, Journal of Optimization Theory and Applications 195 (1) (2022) 249–264.

[9] J. J. Hopfield, D. W. Tank, “neural” computation of decisions in optimization problems, Biological

cybernetics 52 (3) (1985) 141–152.270

[10] M. P. Kennedy, L. O. Chua, Neural networks for nonlinear programming, IEEE Transactions on Circuits

and Systems 35 (5) (1988) 554–562.

[11] Y. Xia, G. Feng, A new neural network for solving nonlinear projection equations, Neural Networks

20 (5) (2007) 577–589.

[12] A. Nazemi, A. Sabeghi, A new neural network framework for solving convex second-order cone con-275

strained variational inequality problems with an application in multi-finger robot hands, Journal of

Experimental & Theoretical Artificial Intelligence 32 (2) (2020) 181–203.

18

https://doi.org/10.1017/CBO9780511800481

[13] J. Liu, X. Liao, A projection neural network to nonsmooth constrained pseudoconvex optimization,

IEEE Transactions on Neural Networks and Learning Systems (2021).

[14] N. Liu, J. Wang, S. Qin, A one-layer recurrent neural network for nonsmooth pseudoconvex optimization280

with quasiconvex inequality and affine equality constraints, Neural Networks 147 (2022) 1–9.

[15] Y.-W. Lv, G.-H. Yang, C.-X. Shi, Differentially private distributed optimization for multi-agent systems

via the augmented lagrangian algorithm, Information Sciences 538 (2020) 39–53.

[16] J. Zou, R. Sun, S. Yang, J. Zheng, A dual-population algorithm based on alternative evolution and

degeneration for solving constrained multi-objective optimization problems, Information Sciences 579285

(2021) 89–102.

[17] Z. Wang, J. Liu, D. Wang, W. Wang, Distributed cooperative optimization for multiple heterogeneous

euler-lagrangian systems under global equality and inequality constraints, Information Sciences 577

(2021) 449–466.

[18] C. Xu, Q. Liu, T. Huang, Resilient penalty function method for distributed constrained optimization290

under byzantine attack, Information Sciences 596 (2022) 362–379.

[19] C.-X. Shi, G.-H. Yang, Distributed nash equilibrium computation in aggregative games: An event-

triggered algorithm, Information Sciences 489 (2019) 289–302.

[20] D. Wu, A. Lisser, A dynamical neural network approach for solving stochastic two-player zero-sum

games, Neural Networks (2022).295

[21] M. Raza, S. S. Khan, M. Ali, Deep learning for computer vision: A comprehensive review, IEEE Access

9 (2021) 62530–62558.

[22] L. Tan, X. Zhang, Deep learning for natural language processing: A review, IEEE Access 8 (2020)

138913–138931.

[23] Y. Hu, H. Chen, F. Zhuang, Deep learning in bioinformatics: A comprehensive survey, Briefings in300

Bioinformatics 21 (3) (2020) 742–761.

[24] D. Wu, A. Lisser, Using cnn for solving two-player zero-sum games, Expert Systems with Applications

(2022) 117545.

[25] D. Wu, A. Lisser, Mg-cnn: A deep cnn to predict saddle points of matrix games, Neural Networks (2022).

[26] D. Wu, A. Lisser, A deep learning approach for solving linear programming problems, Neurocomputing305

(2022).

19

[27] V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov, B. O’Donoghue, N. Sonnerat,

C. Tjandraatmadja, P. Wang, et al., Solving mixed integer programs using neural networks, arXiv

preprint arXiv:2012.13349 (2020).

[28] Y. Bengio, A. Lodi, A. Prouvost, Machine learning for combinatorial optimization: a methodological310

tour d’horizon, European Journal of Operational Research 290 (2) (2021) 405–421.

[29] M. W. M. G. Dissanayake, N. Phan-Thien, Neural-network-based approximations for solving par-

tial differential equations, Communications in Numerical Methods in Engineering 10 (3) (1994) 195–

201. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.1640100303, doi:https://

doi.org/10.1002/cnm.1640100303.315

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303

[30] I. Lagaris, A. Likas, D. Fotiadis, Artificial neural networks for solving ordinary and partial differential

equations, IEEE Transactions on Neural Networks 9 (5) (1998) 987–1000. doi:10.1109/72.712178.

[31] K. S. McFall, J. R. Mahan, Artificial neural network method for solution of boundary value problems

with exact satisfaction of arbitrary boundary conditions, IEEE Transactions on Neural Networks 20 (8)320

(2009) 1221–1233.

[32] B. Yu, et al., The deep ritz method: a deep learning-based numerical algorithm for solving variational

problems, Communications in Mathematics and Statistics 6 (1) (2018) 1–12.

[33] J. Han, A. Jentzen, E. Weinan, Solving high-dimensional partial differential equations using deep learn-

ing, Proceedings of the National Academy of Sciences 115 (34) (2018) 8505–8510.325

[34] C. Flamant, P. Protopapas, D. Sondak, Solving differential equations using neural network solution

bundles (2020). arXiv:2006.14372.

[35] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, J. M. Siskind, Automatic differentiation in machine

learning: a survey, Journal of machine learning research 18 (2018).

[36] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,330

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style, high-performance deep learning

library, in: Advances in Neural Information Processing Systems 32, Curran Associates, Inc., 2019, pp.

8024–8035.

URL http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.335

pdf

[37] V. V. Singh, A. Lisser, Variational inequality formulation for the games with random payoffs, Journal

of Global Optimization 72 (4) (2018) 743–760.

20

https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.1640100303
https://doi.org/https://doi.org/10.1002/cnm.1640100303
https://doi.org/https://doi.org/10.1002/cnm.1640100303
https://doi.org/https://doi.org/10.1002/cnm.1640100303
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303
https://doi.org/10.1109/72.712178
http://arxiv.org/abs/2006.14372
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[38] P. T. Harker, J.-S. Pang, Finite-dimensional variational inequality and nonlinear complementarity prob-

lems: a survey of theory, algorithms and applications, Mathematical programming 48 (1) (1990) 161–220.340

[39] B. C. Eaves, On the basic theorem of complementarity, Mathematical Programming 1 (1) (1971) 68–75.

doi:10.1007/BF01584073.

URL https://doi.org/10.1007/BF01584073

[40] M. Mattheakis, D. Sondak, P. Protopapas, Hamiltonian neural networks for solving equations of motion,

arXiv preprint arXiv:2001.11107 (2020).345

[41] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,

J. VanderPlas, S. Wanderman-Milne, Q. Zhang, JAX: composable transformations of Python+NumPy

programs (2018).

URL http://github.com/google/jax

[42] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization (2014). doi:10.48550/ARXIV.1412.350

6980.

URL https://arxiv.org/abs/1412.6980

[43] J. R. Dormand, P. J. Prince, A family of embedded runge-kutta formulae, Journal of computational and

applied mathematics 6 (1) (1980) 19–26.

[44] L. Petzold, Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential355

equations, SIAM journal on scientific and statistical computing 4 (1) (1983) 136–148.

[45] L. F. Shampine, M. W. Reichelt, The matlab ode suite, SIAM journal on scientific computing 18 (1)

(1997) 1–22.

[46] E. Hairer, S. P. Nørsett, G. Wanner, Solving ordinary differential equations. 1, Nonstiff problems,

Springer-Vlg, 1993.360

[47] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,

P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. May-

orov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore,

J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris,

A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0 Contributors, SciPy 1.0:365

Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17 (2020) 261–272.

doi:10.1038/s41592-019-0686-2.

21

https://doi.org/10.1007/BF01584073
https://doi.org/10.1007/BF01584073
https://doi.org/10.1007/BF01584073
http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/jax
https://arxiv.org/abs/1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1038/s41592-019-0686-2

	Introduction
	Contributions and paper outline
	Notations

	Preliminaries
	Chance-constrained game
	The model
	Stochastic cournot competition

	Neurodynamic optimization

	CCGnet
	Problem setup
	CCGnet framework
	CCGnet training

	Numerical results
	Case 1: a as variable
	Case 2: b as variable
	Case 3: as variable
	Discussion

	Conclusion
	Bibliography

