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ON HOMOLOGY PLANES AND CONTRACTIBLE 4-MANIFOLDS

RODOLFO AGUILAR AGUILAR AND OĞUZ ŞAVK

Abstract. We call a non-trivial homology sphere a Kirby-Ramanujam sphere if it bounds both
a homology plane and a Mazur or Poénaru manifold. In 1980, Kirby found the first example by
proving that the boundary of the Ramanujam surface bounds a Mazur manifold and it has remained
a single example since then. By tracing their initial step, we provide the first additional examples
and we present three infinite families of Kirby-Ramanujam spheres. Also, we show that one of
our families of Kirby-Ramanujam spheres is diffeomorphic to the splice of two certain families of
Brieskorn spheres. Since this family of Kirby-Ramanujam spheres bound contractible 4-manifolds,
they lie in the class of the trivial element in the homology cobordism group; however, both splice
components are separately linearly independent in that group.

1. Introduction

In algebraic geometry, the homology planes are defined to be algebraic complex smooth quasi-
projective surfaces with the same homology groups of the complex plane C2 in integer coefficients.
Ramanujam provided the first example of a homology plane [Ram71], today this object is known
as Ramanujam surface W (1) with the dual graph shown in Figure 1. Further, he proved that W (1)
is a contractible 4-manifold with a non-trivial homology sphere boundary and it is different than
C2 up to algebraic isomorphism. Since W (1) ×C is diffeomorphic but not algebraically isomorphic
to the complex space C3, the Ramanujam surface provided the first exotic algebraic structure on
C3. It was also used by Seidel and Smith [SS05] to produce the first examples of exotic symplectic
structures on Euclidean spaces which are convex at infinity.
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Figure 1. A generalization of the Ramanujam surface W (n).

The compact contractible smooth 4-manifolds with non-trivial homology sphere boundaries
were constructed in the eminent articles of Mazur [Maz61] and Poénaru [Poé60] simultaneously.
The Mazur manifolds are built with a single 0-, 1-, and 2-handle, so they are obtained by adding
an appropriate 2-handle to the unknotted disk exterior of the 4-ball B4. Later, Mazur manifolds
were systematically explored in the celebrated work of Akbulut and Kirby [AK79]. In a similar
vein, the Poénaru manifolds are obtained by attaching an appropriate 2-handle to a ribbon or slice
disk exterior of B4, see Section 3 for details. Since contractible 4-manifolds are core objects of
Akbulut corks [Akb91], they have been extensively studied in low-dimensional topology, see the
recent papers [DHM20, HP20, Akb21, Lad22].

A classical problem in low-dimensional topology asks which homology spheres bound con-
tractible 4-manifolds, see [Kir78b, Problem 4.2]. Around the 1980s, Kirby was able to find a
Mazur manifold that has the same boundary as the Ramanujam surface up to diffeomorphism, see
[Man80, Pg. 56]. This valuable observation provides the initial motivation behind our definition.
We aim to enrich the problem of 3- and 4-manifolds above by addressing the algebro-geometric
objects as well.
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Definition. A non-trivial homology sphere is said to be
a Kirby-Ramanujam sphere if it bounds both a homology
plane and a Mazur or Poénaru manifold.

X

homology plane

W

Mazur/Poénaru manifold

∂X
Kirby-Ramanujam sphere

Ramanujam Kirby

Our definition also fits in complex geometry. Note that homology planes are always affine
[Fuj82], hence they are all Stein [Har70, Chapter VI.3]. Further, smooth Stein 4-manifolds have
handle decompositions of index ≤ 2 [Gom98]. Here, our choice of contractible 4-manifolds is not
random, we study such 4-manifolds constructed directly by using slice knots.

After the ground-breaking work of Ramanujam, several novel techniques for the constructions
of homology planes appeared in the works of Gurjar and Miyanishi [GM88], tom Dieck and Petrie
[tDP89, tDP93], and Zaidenberg [Zai93]. We use their constructions for the existence of our ho-
mology spheres and we present the first new examples after Kirby and Ramanujam.

Theorem A. All dual graphs are depicted in Figure 2.

• Let X(n) be the dual graphs of tom Dieck-Petrie homology planes of log-Kodaira dimension
2. Then ∂X(n) bound Mazur manifolds with one 0-handle, one 1-handle and one 2-handle.

• Let Y (n) be the dual graphs of Zaidenberg homology planes of log-Kodaira dimension 2. Then
∂Y (n) bound Poénaru manifolds with one 0-handle, two 1-handles and two 2-handles.

• Let Z(n) be the dual graphs of Gurjar-Miyanishi homology planes of log-Kodaira dimension 1.
Then ∂Z(n) bound Poénaru manifolds with one 0-handle, n+1 1-handles and n+1 2-handles.

Therefore, ∂X(n), ∂Y (n), and ∂Z(n) are all Kirby-Ramanujam spheres.
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Figure 2. The dual graphs of homology planes X(n), Y (n), and Z(n).

The generalization of the Ramanujam surface shown in Figure 1 appeared in [Şav20a], and the
second author proved that ∂W (n) bound Poénaru manifolds with one 0-handle, two 1-handles,
and two 2-handles. During the course of this paper, we also investigate that W (n) originate
from the homology planes for every n ≥ 1, see Proposition 2.5. Therefore, they also provide
examples of Kirby-Ramanujam spheres. Since our all Kirby-Ramanujam spheres bound contractible
4-manifolds, they are homology cobordant to the 3-sphere S3; and therefore, they represent the
trivial element in the homology cobordism group Θ3

Z, see [Man18, Şav22].
The algebraic complexity of the structure of Θ3

Z has been always studied by using Brieskorn

spheres Σ(p, q, r), which are the links of the complex surface singularities xp + yq + zr = 0 in
the complex space C3 where p, q, and r are pairwise relatively prime integers. Their links are
Seifert fibered spheres over the 2-sphere with three singular fibers having the multiplicities p, q,
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and r. In [DHST18], Dai, Hom, Stoffregen, and Truong provided the first family of Brieskorn
spheres generating an infinite rank summand Z∞ in Θ3

Z. Recently, even more families were found
by Karakurt and the second author [KŞ22].

Next, we show that one of our families of Kirby-Ramanujam spheres comes from the splice of
two resolutions of Brieskorn singularities. Note that the n = 1 case corresponds to the splice of the
Poincaré homology sphere Σ(2, 3, 5) and Σ(2, 3, 7) along their singular fibers of degree 5 and 7.

Theorem B. Let K1(n) = K(n2 + 3n + 1) and K2(n) = K(n2 + 3n + 3) denote the singular fibers
of Brieskorn spheres Σ1(n) = Σ(n + 1, n + 2, n2 + 3n + 1) and Σ2(n) = Σ(n + 1, n + 2, n2 + 3n + 3)
respectively. Then there is a diffeomorphism between Kirby-Ramanujam spheres ∂Z(n) and the
splice of Σ1(n) and Σ2(n) along K1(n) and K2(n):

∂Z(n) ≈ Σ1(n) ⊲⊳K1(n) K2(n) Σ2(n) for each n ≥ 1.

From perspectives of both algebraic geometry and low-dimensional topology, the result pre-
sented above is to be considered an unexpected novelty due to the following reasons:

• Since their intersection matrices are not negative-definite, the dual graphs in Figure 2 do not
originate from the resolution of singularities in normal surfaces, see Artin’s article [Art66,
Proposition 2].

• Brieskorn spheres may bound Mazur and Poénaru manifolds, see [Şav20b] and references
therein. However, one cannot realize any Brieskorn sphere as a boundary of a homology
plane due to Orevkov [Ore97].

• The Brieskorn spheres Σ1(n) and Σ2(n) uniquely bound negative-definite resolution dual
graphs, shown in Figure 3. Using the algorithm of Neumann and Raymond [NR78, Section 7],
one can easily compute the Neumann-Siebenmann invariants of Σ2(n) as follows:

µ̄ (Σ2(n)) =







n+1

2
·(n+1

2
+1)

2 = n2+4n+3
8

, if n ≥ 1 odd,
n

2
·(n

2
+1)

2 = n2+2n
8

, if n ≥ 2 even.

Since µ̄ is splice additive due to Saveliev [Sav95, Theorem 1], we say that µ̄ (Σ1(n)) =
−µ̄ (Σ2(n)) by using Theorem A and Theorem B. Thus, Σ1(n) and Σ2(n) are homology cobor-
dant to neither S3 nor each other for each n ≥ 1 because µ̄ is a homology cobordism invariant
for plumbings, see Saveliev’s article [Sav02a].

• Furuta’s gauge theoretic argument [Fur90] guarantees that {Σ1(n)}∞

n=1 are linearly independent
in Θ3

Z since their Fintushel-Stern R-invariant is positive [FS85, NZ85]. Relying on the compu-
tations [Ném07] arising from Némethi’s lattice homology [Ném05], we know that Σ2(n) have
vanishing Ozsváth-Szabó d-invariants [OS03a] and they are of projective type. For Brieskorn
spheres, the involutive d-invariants satisfy the equalities: d = d and d = −2µ̄ [DM19]. Since
the difference between involutive d-invariants is arbitrarily large, we can apply the Floer theo-
retic linear independence argument of Dai and Manolescu [DM19] to see that {Σ2(n)}∞

n=1 also
generate a Z∞ subgroup in Θ3

Z.
• One can extract monotone graded subroots [DM19] from the graded roots [Ném05] by using

the recipe in [DM19, Section 6]. Némethi’s computations [Ném07] yield that Σ2(n) have
complicated monotone graded subroots, depicted in Figure 4. Let Σ′

2(n) and Σ′′

2(n) denote the
subfamilies of Σ2(n) with respect to the odd and even values of n, respectively. Even though
their gradings are different, they have very similar monotone graded subroots as the family of
Dai, Hom, Stoffregen, and Truong. By mimicking their calculations, one can compute their
invariants to conclude that {Σ′

2(n)}∞

n=1 and {Σ′′

2(n)}∞

n=2 both generate Z∞ summands in Θ3
Z.

However, we are not able to distinguish the homology cobordism classes of Σ′

2(n) and Σ′′

2(n).
For our first family Σ1(n), the corresponding monotone graded subroots are trivial due to
Tweedy’s calculations [Twe13] since d (Σ1(n)) = d (Σ1(n)). Therefore, we cannot address the
invariants of Dai, Hom, Stoffregen, and Truong.

In [Sav98, Section 6], Saveliev computed instanton Floer homology of surgeries along the gen-
eralized square knots. His result includes our family Σ1(n) ⊲⊳

K1(n) K2(n) Σ2(n) as well. He also
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Figure 3. The resolution dual graphs for Σ1(n) and Σ2(n).
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Figure 4. The monotone graded subroots of Σ2(n).

described the representation spaces of irreducible representations of the fundamental groups of
splices in SU(2) in [Sav98, Section 5]. Our other Kirby-Ramanujam spheres a priori have the splice
decompositions of some Brieskorn spheres, but we do not know currently what they are. After
finding these components, one can study these objects by following Saveliev’s strategies or decipher
their homology cobordism classes by using our approaches presented in the paper.

Organization. In Section 2, we review the constructions of tom Dieck-Petri, Zaidenberg, and
Guryar-Miyanishi types of homology planes. In Section 3, we provide a background for the Mazur
and Poénaru manifolds, and the splicing of homology spheres. We present the proofs of Theorem
A and Theorem B together in Section 4. Finally, we discuss some further research topics and list
several open problems in Section 5.

Acknowledgements. We are indebted to Alexander I. Suciu for his initiative to bring us as
collaborators. We are very grateful to Marco Golla, Nikolai Saveliev, and Mikhail G. Zaidenberg
for sharing their expertise with us and providing insightful suggestions. Also, we want to thank
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Fulbright Commission “Ph.D. dissertation research grant”. OŞ thanks his advisor Çağrı Karakurt
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2. Preliminaries in Algebraic Geometry

Consider a curve D = D1 ∪ . . . ∪ Di in a projective smooth surface Ȳ with the irreducible
components Dj of D. We say that the curve D is simple normal crossing or SNC for short if each
Dj is smooth and around every point p ∈ D there exists local complex coordinates (z1, z2) such
that D = {z1z2 = 0} or D = {z1 = 0}. For any SNC curve D, we can associate a dual graph ∆D

as follows:

• For every irreducible component Dj , we have a vertex vj,
• For every point in Dk ∩ Dl, we have an edge connecting vk and vl,
• Every curve Dj has a self-intersection number D2

j corresponding to weight of the vertex vj .
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The weights constitute the diagonal entries of the intersection matrix of ∆D. For the rest, we
write 1 if there is an edge connecting vertices and we assign 0 otherwise.

An algebraic complex smooth quasi-projective surface X is called a homology plane if it has
the same of homology groups of C2 in integer coefficients, i.e., H∗(X;Z) = H∗(C2;Z). It can be
compactified to a projective variety X̄ and by blowing up points, this compactification X̄ can be
chosen to be a smooth projective surface such that D = X̄ \ X is an SNC curve.

Moreover, for a homology plane X, there always exists a compactification X̄ such that the dual
graph ∆D for D = X̄ \X is absolutely minimal, in the sense that the weight of any of at most linear
vertex (i.e. linear or end) of ∆D does not exceed −2. See [Zai93, Appendix A.2] for details. Such a
dual graph determines uniquely the homology plane X, consult [Zai93, Remark A.2.5]. Therefore,
we will use X to denote both the homology plane and its absolutely minimal dual graph.

The SNC curve D is of a very special type due to the following folklore result, for a proof see
[tDP93, Proposition 2.1].

Proposition 2.1. Let X be a homology plane and let D = D1 ∪ . . .∪Di = X̄ \X be an SNC curve.

Then the irreducible components Dj of D are isomorphic to CP1. Moreover, the dual graph ∆D is

a tree, i.e., it is connected and has no cycles.

Therefore, there exists a compact regular tubular neighborhood U of D in X̄ and its boundary
∂U is a plumbed homology sphere with the plumbing graph ∆D. By abusing of language, we also
call ∂U the boundary of the homology plane X.

2.1. The Classification of Homology Planes. The partial classification of homology planes
follows the lines of classification of open smooth algebraic surfaces. We refer to the book of Miyan-
ishi [Miy01] for an overview of this classification. A main ingredient is the invariant called the
logarithmic Kodaira dimension.

Let X be a homology plane and X̄ a smooth projective compactification with an SNC D = X̄\X.
Define its logarithmic Kodaira dimension k̄(X) ∈ {−∞, 0, 1, 2} as the unique value that satisfies
the following inequalities: for some positive constants α and β we have

αmk̄(X) ≤ dim H0(X̄, m(KX̄ + D)) ≤ βmk̄(X)

where m is sufficiently large and divisible positive integer. Here, H0 stands for the sheaf cohomology
and KX̄ denotes the canonical divisor of X̄ . The invariant k̄(X) does not depend on the chosen

compactification X̄, see [Iit77, Chapter 11.1].
We know that k̄(X) = −∞ if and only if X ∼= C2 as algebraic varieties, see the articles of Fujita

[Fuj79] and Miyanishi and Sugie [MS80]. Fujita also prove that if X is not isomorphic to C2 then
k̄(X) ≥ 1 [Fuj82]. Furthermore, the homology planes with k̄(X) = 1 are completely classified by
Gurjar and Miyanishi in [GM88]. Also, there are explicit constructions of homology planes with
k̄(X) = 2 due to tom Dieck and Petrie [tDP93] and Zaidenberg [Zai93, Zai94].

In order to construct infinite families of homology planes, we first define an operation on a dual
graph ∆D of an SNC curve D in a projective surface Ȳ called expanding an edge.

Let vk and vl be two vertices of ∆D and let e be an edge joining them. Fix two coprime positive
integers a and b. We use the following short-hand notation for the continued fraction expansion:

[ds, ds−1 . . . , d1] = ds −
1

ds−1 −
1

· · · −
1

d1

·

Now set
a + b

b
= [c−r, . . . , c−1] and

a + b

a
= [cs, . . . , c1].

Replace the edge e by a linear graph divided in three linear subgraphs with r − 1, 1 and s − 1
vertices respectively:

∆a,b = {E−r+1, . . . , E−1}, E0, ∆′

a,b = {E1, . . . , Es−1}
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with weights:

E2
h =

{
−ch, if h 6= 0,

−1, if h = 0,

and we modify the weights of vk and vl to D2
k − c−r + 1 and D2

l − cs + 1 respectively, see Figure 5.

∆a,b ∆
′

a,b

E0

−1

vk vlvlvk

D
2
k D

2
l D

2
k
− c

−r + 1 D
2
l
− cs + 1

∆a,b =

∆
′

a,b =

E
−r+1 E

−2 E
−1

−c
−r+1 −c

−2 −c
−1

E1 Es−1 Es

−c1 −cs−1 −cs

with

Figure 5. Expanding an edge.

Lemma 2.2. Consider a = n and b = 1, then we have

a + b

b
= n + 1

a + b

a
= [2, 2, . . . , 2

︸ ︷︷ ︸

n-times

]·

2.2. Gurjar-Miyanishi Homology Planes. Now we review the following constructions of ho-
mology planes appeared in [GM88]. We call the resulting surfaces Gurjar-Miyanishi homology

planes. They can be obtained in the following fashion.
Suppose that ∆1 ⊂ ∆D is a cycle, that the vertices vk, vl and the edge e are in ∆1. We call the

following procedure cutting a cycle:

• Fix two coprime positive integers a and b and expand the edge e as above,
• Remove the vertex E0 and its two adjacent edges.

Consider the union of four lines in the complex projective plane

L(1, 4)
.
= ∪4

k=1lk ⊂ CP2

where the first three lines intersect in a point P and the fourth line is in general position. Blow up
the point P to obtain an SNC curve D. Denote its dual graph by ∆D. We will cut the cycles in
∆D at the edges corresponding to the points l1 ∩ l4 and l2 ∩ l4 and two pairs of coprime positive
integers a, b and c, d such that ac − ad − bc = ±1. This step is expressed by dashed lines in Figure
6.

l4

l1 l2 l3

1

−1

0 0 0

−1

−2

−2

−2

−1
P

Figure 6. The procedure for the construction of Gurjar-Miyanishi homology planes.

We also need to blow up a smooth point in the strict transform of l4, which can be followed by
a sequence of k many blow up operations, and each time a smooth point of the exceptional divisor
is created by the precedent blow up. This yields a chain of −2-curves and one −1-curve. We do
not consider this −1-curve in the divisor D′, whose dual graph is shown in Figure 7. The divisor
D′ lies in a projective smooth surface X̄ obtained by sequences of blow ups in CP2.

The Gurjar-Miyanishi homology plane corresponding to the numerical data (k, (a, b), (c, d)) is
given by X

.
= X̄ \ D′. If (a, b) 6= (1, 1) 6= (c, d), then X has logarithmic Kodaira dimension 1 and

it is contractible.
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−1

−1

v2

v1

v4

v3

∆a,b

∆c,d

∆
′

a,b

∆
′

c,d

k − 1 vertices

−2

−2

−2

Figure 7. The dual graph of Gurjar-Miyanishi homology planes.

Lemma 2.3. Let (a, b) = (n + 1, n) then

a + b

a
= [2, n + 1],

a + b

b
= [3, 2, 2, . . . , 2

︸ ︷︷ ︸

n-times

].

2.3. tom Dieck-Petri Homology Planes. Next, we consider homology planes introduced by
tom Dieck and Petri. In Figure 8, we have the line arrangement L(3) together with its blow ups at
two points of multiplicity three.

In this way, we can obtain an SNC curve and a dual graph ∆D where we cut the cycles
corresponding to intersections of lines L2 ∩L3, L2 ∩L7, L5 ∩L6, and L1 ∩L4. Here, the cutting data
(1, 1) stands for the first three intersections and (a, b) for the last one. The resulting dual graphs
depicted in Figure 9 are called tom Dieck-Petri homology planes.

L1

L2

L3 L4

L6

L7

L5

L1

L2

L3

L4

L5

0 0

0

0

−1

−1

−1

= cycles to cut

Figure 8. The L(3) arrangement.

∆a,b ∆
′

a,b

−2 −2 0 −1 −2 0 −2

L5 L7 L1 L3 L6 L4 L2

Figure 9. The dual graph of tom Dieck-Petri homology planes.

Remark 1. In order to obtain a homology plane from the conditions (a, b) above, they must satisfy:
4b − 3a = ±1, see [AA21, Section 5.2.3].

Lemma 2.4. For a = 4n + 1 and b = 3n + 1, we have

a + b

b
= [3, 2, 2, n + 1],

a + b

a
= [2, 5, 2, 2, . . . , 2

︸ ︷︷ ︸

n−1-times

].

2.4. Zaidenberg Homology Planes. We finally consider the homology planes constructed by
Zaidenberg [Zai93]. His approach provides the generalization of the original Ramanujam surface
[Ram71].

Consider CP1 × CP1 with coordinates (x : y, u : v) and the curves
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cs = {u2ys = xsv2}, e0 = {v = 0}, e1 = {y = 0}, l1 = {x = y}.

Denote by ds = cs ∪ e0 ∪ e1 ∪ l1, let π : X̄ ′

s → CP1 × CP1 be the minimal resolution of singularities
of ds and let Bs = π−1(ds). In Figure 10, there is a representation in the affine plane C2 with
coordinates (x, u) of the curve ds.

c3 = {u2
= x

3}

l1 = {x = 1} e1 = {x = ∞}

e0 = {u = ∞}

Figure 10. Zaidenberg’s curves.

Consider the integer valued 2 × 2 matrix

M =

(
a b

c d

)

, det(M) = 1

and apply the cutting cycles procedure to (X̄ ′

s, Bs) in two points z1 and z2 corresponding to l1 ∩ cs

according to the numerical data in M and denote by (X̄s, Ws) the resulting pair. Zaidenberg proved
that the surface Xs = X̄s \ Ws is a contractible homology plane [Zai93].

Here we only use the case of s = 3. A partial resolution of singularities of the curve ds is shown
in Figure 11. This can be used to obtain the dual graph of Ws, depicted in Figure 12. They are
said to be Zaidenberg homology planes.

c3

e0

l1
e1

−1

c3

e1

e0
l1

−1

l1

e0

−2c3

e1

−1

−2

e0

l1

c3

−3

e1

0
0

0

c
2

3
c
2

3
− 4

−1

−1

−2

c
2

3
− 5

−1

−1

c
2

3
− 6

−2

Figure 11. A partial resolution of singularities of the curve ds.

∆a,b

∆b,c

∆
′

a,b

∆
′

c,d

−3

−1

−2

c3
−1

−2

−2 −2

l1

Figure 12. The dual graph of the divisor Ws.

Example 2.1. The original Ramanujam surface corresponds to the numerical data: s = 3, M =
(

1 1
1 2

)

.

Analysing the Zaidenberg’s construction, we see that Ramanujam manifolds studied by the
second author in [Şav20a] are also homology planes.
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Proposition 2.5. Let W (n) be Ramanujam manifolds depicted in Figure 1. Then the boundaries

∂W (n) are Kirby-Ramanujam homology spheres.

Proof. By [Şav20a], we already know that the homology spheres ∂W (n) bound Poénaru manifolds.

Also, their dual graph corresponds to the numerical data s = 3 and M =

(
1 1
n n + 1

)

. Using

Lemma 2.3 and the dual graph in Figure 11, we are done. �

3. Preliminaries in Low-Dimensional Topology

3.1. Mazur and Poénaru Manifolds. A knot K in S3 is said to be a ribbon knot if it can be built
by attaching bands between components of an unlink. The minimal number of bands is recorded
by the quantity called fusion number. Since the Euler characteristic of a disk is one, the fusion
number also determines the number of components of the corresponding unlink. A knot K in S3 is
called a slice knot if it bounds an embedded smooth disk in B4. In other words, ribbon knots are
slice knots whose slice disks have no 2-dimensional 2-handles. The disks corresponding to ribbon
knots are said to be ribbon disks.

The basic examples of ribbon knots are the unknot U , the square knot T (2, 3)#T (2, 3), and the

generalized square knot T (n + 1, n + 2)#T (n + 1, n + 2) for n ≥ 1. They respectively have fusion
numbers 0, 1, and n, see [JMZ20, Section 1.7]. Here, the notation T (p, q) stands for the left-handed

(p, q)-torus knot given coprime positive integers p and q and T (p, q) denotes its mirror image.
The Poénaru manifolds are defined by attaching a 4-dimensional 2-handle to slice disk exteriors

of B4 in order to kill their fundamental groups. This can be achieved easily by using a knot in
the 3-manifold obtained by 0-surgery on the slice knot, provided that the former knot normally
generates the fundamental group of slice disk exteriors of B4. The original construction of Poénaru
addresses the square knot [Poé60] and the strategy can be generalized to all slice knots directly,
see [AG96, Pg.289-290]. The slice disks may have 2-dimensional 2-handles; therefore, the handle
decomposition of the corresponding Poénaru manifolds may include 3-handles. Since we want to
control the number of handles of the 4-manifold precisely, we prefer to work with ribbon knots.

Lemma 3.1 (Lemma 2.1, [Şav20a]). Let Y be the 3-manifold obtained by 0-surgery on a ribbon

knot in S3 with the fusion number n ≥ 1. Then any homology sphere obtained by an integral surgery

on a knot in Y bounds a Poénaru manifold with one 0-handle, n+1 1-handles, and n+1 2-handles.

Further, if the initial ribbon knot is the unknot, then the resulting homology sphere bounds a Mazur

manifold with one 0-handle, one 1-handle, and one 2-handle.

In order to shorten the proof of Theorem A, we need the following Kirby calculus trick of
Akbulut and Larson. It was found in [AL18] and played a key role in the proof of their main
theorem. Later, it was also effectively used by the second author [Şav20a, Şav20b].

Definition 3.2. The Akbulut-Larson trick is an observation about describing the iterative proce-
dure for passing from the surgery diagram of a homology sphere to a consecutive one by using a
single blow up with an isotopy, see Figure 13.

3.2. Splicing Homology Spheres. The splice operation was defined by Siebenmann [Sie80] and
later it was elaborated systematically in the novel book of Eisenbud and Neumann [EN85].

Let (Y1, K1) and (Y2, K2) be two pairs of homology spheres and knots together with meridians
and longitudes (µ1, λ1) and (µ2, λ2), and tubular neighboords ν(K1) and ν(K2) inside Y1 and Y2 .
The splice operation between (Y1, K1) and (Y2, K2) produces a homology sphere given by

Y1 ⊲⊳K1 K2
Y2

.
= (Y1 \ ˚ν(K1)) ∪ (Y2 \ ˚ν(K2))

where the pasting homeomorphism along tori boundaries sends µ1 onto λ2 and λ1 onto µ2.
Since Brieskorn spheres bound unique negative definite plumbing graphs [Sav02b, Example 1.17],

we can describe their splice on a joint plumbing graph by using the recipe in [EN85, Chapter V.20].
These plumbings graphs of Brieskorn spheres are the same as their resolution dual graphs of singu-
larities up to blow up and down, see also Neumann’s plumbing calculus [EN85, Theorem 18.3-18.4].
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. . .

. . .

up
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w

−1

−2

= isotopy

−3

−2

−1

−3

−1

−2

Figure 13. The Akbulut-Larson trick.

Let (Σ(a1, a2, a3), K(an)) and (Σ(b1, b2, b3), K(bm)) be a pairs of Brieskorn spheres and singular
fibers with plumbing graphs G and G′ respectively. In Figure 14, the arrows indicate the singular
fibers. The weights en and em label the endmost vertices in the branches of K(an) and K(am)
respectively. The additional weights x and y appeared after the splice operation are given by the
formula x = det(G0) and y = det(G′

0) where G0 and G′

0 are the portions of G and G′ obtained by
removing en and em respectively. These type of determinants can be easily found, consult [EN85,
Chapter V.21].

G G′

en em en emx y
splice

Figure 14. The splice of plumbing graphs.

4. Proofs of Theorem A and Theorem B

Since we need a portion of the proof Theorem A in the proof argument of Theorem B, we first
show Theorem A.

Proof of Theorem A. We present our proof case by case.

• The Family X(n) : First, we verify that X(n) for every n ≥ 1 originate from tom Dieck-Petri
homology planes by addressing Subsection 2.3. Note that we can contract −1’s in the dual graph
shown in Figure 9. Then we set a = 4n + 1 and b = 3n + 1 as in Lemma 2.4. Writing ∆a,b and ∆′

a,b

explicitly, we obtain the dual graph X(n) displayed in Figure 2. Since X(n) does not come from a
Gurjar-Mayanishi type dual graph and it is absolutely minimal, the logarithmic Kodaira dimension
of X(n) is 2, see [Zai93, Appendix A.5]

In Figure 15, we first draw the surgery diagram of ∂X(1). The additional 2-handle is shown
in dark black. Applying the several Kirby moves indicated in the picture, we end up with the
surgery diagram of S3

0(U). Now we can use Lemma 3.1 to conclude that ∂X(1) bounds a Mazur
manifold with one 0-handle, one 1-handle, and one 2-handle. We can guarantee that all ∂X(n) for
n ≥ 2 bound such Mazur manifolds as well by using the Akbulut-Larson trick consecutively, see
Figure 16.

• The Family Y (n) : By following Subsection 2.4, we initially verify that Y (n) for n ≥ 1 are indeed
Zaidenberg homology planes. We use Lemma 2.3 and the dual graph in Figure 11 to guarantee

that the resolution graph of Y (n) is encoded by the numerical data s = 3 and M =

(
1 1
n + 1 n

)

.

Since Zaidenberg classified his homology planes in terms of their logarithmic Kodaire dimensions
[Zai93], we know that k̄(Y (n)) = 2.
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Figure 15. (−1)-surgery from ∂X(1) to S1 × S2 = S3
0(U).
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Figure 16. The Akbulut-Larson trick for the family X(n).
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Then we address our previous strategy for the family Y (n). We first start with the surgery
diagram of ∂Y (1) and then attach a (−1)-framed dark black 2-handle. Now we perform various blow

down operations and we eventually find the surgery diagram of S3
0(T (2, 3)#T (2, 3)). Recall that the

square knot has fusion number one, by using Lemma 3.1, we can say that ∂Y (1) bounds a Poénaru
manifold with one 0-handle, two 1-handles, and two 2-handles. Applying the Akbulut-Larson trick
again, we can pass the surgery diagram of ∂Y (2), and so on; therefore, we are done.

−2

−3

−1 −1
−2

−3

0

=

isotopy

−2

−3

−2

−3

0

+1+3

−6

−1

−1 −1+1

−2

−1

−2

−3

−1

−1

−2

−2

−2

−2

blow down

blow down

blow down

4 times

2 times

3 times

blow

down

Figure 17. (−1)-surgery from ∂Y (1) to S3
0(T (2, 3)#T (2, 3)).

• The Family Z(n) : We first see that Z(n) for n ≥ 1 are Gurjar-Miyanishi homology planes by
following Subsection 2.2. Let k = 1, (a, b) = (n + 2, 1) and (c, d) = (n + 1, n). Note that the vertex
v3 in Figure 7 has weight −1, so we can contract it. Using Lemma 2.2 and Lemma 2.3, we can
write the linear graphs obtained by cutting the cycles explicitly. Thus, the dual graph of Z(n)
corresponds to one shown in Figure 2. Moreover, k̄(Z(n)) = 1.

Now, we begin with the surgery diagram of ∂Z(n) for every n ≥ 1, see Figure 18. Next,
we apply a blow up and find the second picture. Performing many blow down operations along
both right- and left-hand sides of our figure, we finally reach the surgery diagram of the manifold
S3

−1(T (n + 1, n + 2)#T (n + 1, n + 2)), compare with [Kir78a, Proposition 1.A-1.B]. Note that the
last two blow downs in Figure 18 respectively change the framings as follows:

• (−1)-blow down effect: 2n + 2 + (n + 1)2 = n2 + 4n + 3,
• (+1)-blow down effect: n2 + 4n + 3 − (n + 2)2 = −1.

To address Lemma 3.1, we can add a (−1)-framed 2-handle to pass to the surgery diagram

S3
0(T (n + 1, n + 2)#T (n + 1, n + 2)). Since the generalized square knot has fusion number n, we

can conclude that for each n ≥ 1, our Kirby-Ramanujam spheres ∂Z(n) bounds a Poénaru manifold
built with one 0-handle, n + 1 1-handles, and n + 1 2-handles.

�

Now we are ready to prove our other theorem.

Proof of Theorem B. We already know from the previous proof that homology spheres ∂Z(n) and

S3
−1(T (n + 1, n + 2)#T (n + 1, n + 2)) are diffeomorphic for every n ≥ 1. We claim that there is
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−2

−2

−2

−2

−1 −1−1

blow
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+1

−2
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n+ 1

+1−1 2n+ 2

blow down

n+ 1 times

blow down

n+ 1 times

twice

blow down

−1

−1

n+ 1

−n− 2

n n

n

n n+ 1

n+ 1

n

0 0

−2

−2

−2

−2

−n− 1−n− 2

−n− 1−n− 2

n+ 2

n+ 2n+ 1

Figure 18. A diffeomorphism between ∂Z(n) to S3
−1(T (n + 1, n + 2)#T (n + 1, n + 2)).

also a diffeomorphism between the latter family of 3-manifolds and the splice of Brieskorn spheres
Σ(n + 1, n + 2, n2 + 3n + 1) ⊲⊳

K(n2+3n+1) K(n2+3n+3) Σ(n + 1, n + 2, n2 + 3n + 3).

We first consider the base case n = 1. Using the recipe in Subsection 3.2, we can easily find the
plumbing graph of Σ(2, 3, 5) ⊲⊳

K(5) K(7) Σ(2, 3, 7), shown in Figure 19. Using the recipe in Subsec-

tion 3.2, one can find the additional weights as −2 and −1, which correspond to the determinants
of the E7 graph and the linear graph with vertices −2, −1 and −7, respectively. Next, we apply
blow down operations six many times and we obtain the last picture in Figure 19. In Figure 20, we
first draw the surgery diagram of the last plumbing graph appeared in Figure 19. Applying blow
down operations seven many times more, we get the surgery diagram of S3

−1(T (2, 3)#T (2, 3)), as
expected. Our argument and procedure can be simply generalized to all values of n, so they are left
to readers as exercises. In the general case, one can work with positive-definite plumbing graphs
to avoid sign ambiguities of additional vertices appeared after the splicing operation.
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−2

−2

−2

−3
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−2
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−2−2 −2−2 −2 −1−7

−2

−2

−3

−2

−1

−2

−1−1
blow down

6 times

Σ(2, 3, 5) Σ(2, 3, 7)

Figure 19. The splice graph of Σ(2, 3, 5) ⊲⊳
K(5) K(7) Σ(2, 3, 7).

−2

−2

−2

−1 −1−1

−2

−3 −2

−2

−2

−1

+1 −1

+1 −1

twice

blow down

twice

blow downblow down

−1

3 times

+4

Figure 20. A diffeomorphism between Σ(2, 3, 5) ⊲⊳
K(5) K(7) Σ(2, 3, 7) and S3

−1(T (2, 3)#T (2, 3)).

Remark 2. An alternative proof argument for Theorem B can be given as follows.

• One can prove our initial claim in full generality by using 3-dimensional techniques of Fukuhara
and Maruyama [FM88, Pg. 285-286]. They provided a surgery formula for the splicing oper-
ation of homology spheres. Their observation is a generalization of Gordon’s previous argu-
ments in [Gor75] and [Gor83, Pg. 700-701]. Their useful observation was recently reproved by
Karakurt, Lidman, and Tweedy by using Kirby calculus [KLT21, Lemma 2.1]. Thus we have

(1) Σ1 ⊲⊳K1 K2
Σ2 ≈ S3

−1(T (n + 1, n + 2)) ⊲⊳K1 K2
S3

−1(T (n + 1, n + 2)), and

(2) S3
−1(T (n+1, n+2)) ⊲⊳K1 K2

S3
−1(T (n + 1, n + 2)) ≈ S3

−1(T (n+1, n+2)#T (n + 1, n + 2)).
• A famous result of Gordon indicates that a homology sphere obtained by (±1)-surgery along

a slice knot in S3 bounds a contractible 4-manifold [Gor75, Theorem 3].

�

5. Further Directions

We state some problems and questions for possible further research directions engaging with
Kirby-Ramanujam spheres and their modifications.

Question A. Let X be a homology plane and ∂X be a Kirby-Ramanujam sphere bounding a
Mazur or Poénaru manifold W . Does W always admit a complex structure? If yes, is there a
complex structure such that W is biholomorphic to X?
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In a similar vein to the concept of Kirby-Ramanujam spheres, we introduce the objects called
Ramanujam spheres. They are non-trivial homology spheres bounding homology planes. In contrast
to Theorem B, we have a certain constraint due to the article of Orevkov [Ore97] in which he proved
that Brieskorn spheres as well as Seifert fibered spheres cannot be Ramanujam spheres.

Problem A. Which homology spheres arise as Kirby-Ramanujam spheres or Ramanujam spheres?

In order to compare our objects, we may raise the following naive question:

Problem B. Are Ramanujam spheres always Kirby-Ramanujam spheres?

A homology plane X is known to be affine [Fuj82], see also [Zai98, Lemma 2.1]. Therefore, ∂X

admits a contact structure. However, there are examples of Mazur manifolds with Brieskorn sphere
boundaries such that they cannot admit Stein structures due to Mark and Tosun [MT18].

Question B. Is there any example of a Kirby-Ramanujam sphere that bounds an Akbulut cork?

Since there are several examples of homology planes that are known to be non-contractible
[Miy01, AA21], we curiously ask the following question. Compare with [Şav22, Problem G].

Question C. Does a Kirby-Ramanujam sphere bound a non-contractible homology plane?

It would be interesting to study Ramanujam spheres by using the certain invariants of 3-
manifolds [OS03b, Ném08, GM21, AM22]. Note that some these invariants are only defined for
specific 3-manifolds. Hence we inquire:

Question D. Is it possible to extend/compute all these types of invariants for Ramanujam spheres?

If the answer is positive, then one can pursue to extend invariants to Q-homology planes.
Similarly, they are affine complex smooth surfaces having the same Q-homology as C2. For the
basic properties and the partial classification of Q-homology planes, see [Miy01, Peł21].

Using the notion of bad vertices in [Ném05], one can show that the graphs in Figure 2 have two
bad vertices. One can obtain rational singularities by reducing the weight of these vertices.

Question E. Is it possible to characterize Ramanujam spheres by using the lattice cohomology?

In [Sav99, Chapter 14], the representation varieties of Seifert fibered spheres were discussed.
In contrast to the Orekov’s theorem [Ore97], there exist homology planes of log-Kodaira dimension
1 with the fundamental group isomorphic to that of a Seifert manifold. Also, there is a surjective
homorphism π1(∂X) → π1(X) for a homology plane.

Problem C. For a non-contractible homology plane X, study Hom(π1(X), SU(2)) the repre-
sentation variety of the Ramanujam sphere ∂X as a subvariety of the representation variety
Hom(π1(∂X), SU(2)) of X.

Question F. Which invariants or representations of a Ramanujam sphere ∂X can be extended to
a homology plane X?
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