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ABSTRACT
The adoption of ARM processor architectures is on the rise in the
HPC ecosystem. Fugaku supercomputer is a homogeneous ARM-
based machine, and is one among the most powerful machine in the
world. In the programming world, dependent task-based program-
ming models are gaining tractions due to their many advantages:
dynamic load balancing, implicit expression of communication/-
computation overlap, early-bird communication posting, . . .MPI
and OpenMP are two widespreads programming standards that
make possible task-based programming at a distributed memory
level. Despite its many advantages, mixed-use of the standard pro-
gramming models using dependent tasks is still under-evaluated
on large-scale machines.

In this paper, we provide an overview on mixing OpenMP de-
pendent tasking model with MPI with the state-of-the-art software
stack (GCC-13, Clang17, MPC-OMP). We provide the level of per-
formances to expect by porting applications to such mixed-use
of the standard on the Fugaku supercomputers, using two bench-
marks (Cholesky, HPCCG) and a proxy-application (LULESH). We
show that software stack, resource binding and communication
progression mechanisms are factors that have a significant impact
on performance. On distributed applications, performances reaches
up to 80% of effiency for task-based applications like HPCCG. We
also point-out a few areas of improvements in OpenMP runtimes.

CCS CONCEPTS
• Computing methodologies Distributed programming lan-
guages; • Computing methodologies Parallel programming
languages;
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1 INTRODUCTION
On the road toward the Exascale, supercomputer designs have
evolved differently. Most of the time, heterogeneous architectures
with GPU accelerators have been adopted. Indeed, GPU accelera-
tors provide massively parallel hardware with good parallel and
energy efficiencies. However, such architectures have raised new
programming challenges that still need to be overcome. Among
alternative solutions to GPU, ARM processor designs have been
growing in interest for the HPC community for a decade [24]. In
2020, RIKEN in Japan unveiled the supercomputer Fugaku [26]: a
homogeneous system based on ARM processors. Its A64FX proces-
sor reaches high performance, while Fugaku is amongst the most
performant and green supercomputers. Recently, NVIDIA has also
chosen ARM designs for its first 72-core Grace processor [9].

While supercomputer architectures are evolving, the way of pro-
gramming them is as well. Task-based programming models fix
many cores and heterogeneous programming issues in an asynchro-
nous fashion. Thanks to dependent task abstractions, developers
can represent their applications as a dependency graph, provid-
ing a partial order of execution that a run-time scheduler can dy-
namically unroll. In recent years, task-based programming models
have demonstrated benefits in several scenarios. At the node level,
they show significant improvement on load balancing concerns [4]
and help to improve the use of hierarchical memories [19]. On a
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larger scale, they allow seamless expression of communication/-
computation overlap [25] thanks to task synchronizations through
dependences and reduce idle periods with early-bird requests post-
ing [11, 17]. Dependent task-based programming has been adopted
in OpenMP since its specifications 4.0 [8]. MPI is the de-facto stan-
dard for distributed memory programming. It has already been
demonstrated that coupling MPI with OpenMP is challenging, es-
pecially in a task-based programming context [23, 25, 28]. This
challenge may also vary depending on the supercomputer used.

Despite its many advantages, mixed-use of the standard pro-
gramming models using dependent tasks is still under-evaluated on
large-scale machines. As experienced in [19], task-based applica-
tions are sensitive to hardware and execution environments. In this
previous work, authors only focused on very similar architectures
and coupling Open MPI with MPC-OpenMP [5] runtime systems.
With the arrival of ARM architectures in HPC systems like Fugaku,
a study on the software stack’s impact on performance needs to
be performed. For this purpose, we propose an overview by exper-
imenting with several MPI and OpenMP implementations on the
Fugaku supercomputer. The contributions of this paper are:

(1) Evaluating task-based applications performances at node-
level with different execution environments,

(2) Studying resources binding and performance scaling on dis-
tributed executions,

(3) Arguing on the impact of ARM architectures for task-based
parallel applications.

We organize the paper as follows. Section 2 reviews related
work already achieved in this area. Then, section 3 presents the
different execution environments, understudy. Section 4 reports
performances at node-level parallelism, while Section 5 focuses
on distributed execution. Section 6 report technical issues encoun-
tered during our experiments that partly remain to be addressed.
Eventually, we conclude this work in Section 7.

2 RELATEDWORKS
Profiling Task-based Execution Performances. N. R. Tallent [29]

proposed a breakdown of the execution time of parallel applica-
tions: the work, the idleness, and the overhead. It enables perfor-
mance characterization of multithreaded executions to balance the
parallelism (idleness) with management costs (overheads). In this
work, we use this time breakdown adapted in the context of de-
pendent task-based parallelism through MPC profiling tools [20].
It allows performance characterization using per-task hardware
events counter mixing the Portable Application Profiling Interface
(PAPI) [21] with the OpenMP Tools Interface (OMPT).

Evaluating OpenMP and MPI on A64FX. In 2020, T. Odajima
et al. [15] evaluated several benchmarks (including LULESH) on
A64FX processors, where each benchmark uses theOpenMP pragma
omp parallel for construct (static workshare). In 2021, A. Poe-
naru et al. [22] benchmarked the A64FX processor. They compare
it to more traditional processors of the HPC industry, such as In-
tel Skylake or AMD Rome processors, and conclude that A64FX’s
high-memory bandwidth allows it to outperform them on memory-
bound benchmarks (BabelStream). In 2021, B.Michalowicz et al. [14]
compared GCC, LLVM, and Fujitsu compilers on three OpenMP
mini-applications (LeblancBig, Minimod, and SWIM) on A64FX,

all using the static workshare construct as well. In [13], authors
evaluated the SPEC CPU and SPEC OMP benchmark suites: their
conclusions showed that A64FX performs lower than Xeon CPU
with the same numbers of cores on the int and fp benchmarks. How-
ever, A64FX sometimes outperforms Xeon CPU due to its HBM.
All this previous work relies on loop-level parallelism using the
pragma omp parallel for construct. In our work, we studied
data-flow parallelism using OpenMP tasks mixed with MPI requests
for distributed execution.

3 EXECUTION ENVIRONMENTS
Our performance survey was executed on the supercomputer Fu-
gaku. We start to present the architecture of this supercomputer,
and we focus on the A64FX processor design. Supercomputer ar-
chitecture has a major role in task-based performance study, but
software stack as well: compilers, runtimes, and applications. We
then present versions used on each software in the next section.

3.1 A64FX Compute Nodes
The A64FX [27] is a 64-bit ARM architecture many-core processor.
Fig. 1 presents its specification (left-side table, retrieved from the
processor manual [10]) and an overview of its architecture (right-
side figure). It is a 52-core processor, where processors are packed
in Core Memory Groups (i.e., CMGs) of 13 cores (12 cores usable
by programmers, and 1 assistant core). Each core has 64KB of data
and 64KB of instruction L1 cache. Each CMG has an L2 cache of
8MB connected to 8GB of High-Bandwidth Memory (HBM2); there
is no L3 cache. CMGs of the same processor are connected with
a network on the chip, and Fugaku interconnects multiple A64FX
processors using TofuD interfaces. The default clock frequency that
we used throughout this paper is 2.0GHz.

3.2 Runtimes and Compilers
Ourwork is based on the use of programming standards like OpenMP
and MPI. Such programming standards have various implementa-
tions, depending on the compiler or execution environment used.
Here, we present the software stack we used on Fugaku for our
performance study.

Compilers. In this study, we compare the GNU Compiler Collec-
tion (GCC [2]) and the Low-Level Virtual Machine (LLVM [3]) C
compilers. We always report the best performances obtained with
any versions, using optimizations flags -march=armv8.2-a+sve,
-msve-vector-bits=512, -mtune=a64fx, or -O3.

OpenMP. GCC [2] and LLVM [3] implement the OpenMP stan-
dard specifications. They both extend their own C compiler to
support OpenMP-specific interfaces, coupled with a run-time li-
brary through an Application Binary Interface (ABI). We evaluate
the most recent releases of GCC and LLVM that were retrieved and
built on Fugaku: LLVM release/17.x and GCC releases/gcc-13. In ad-
dition, we also evaluate the Multi-Processor Computing (MPC [16])
OpenMP run-time library (MPC-OMP [5]), which is compatible
with both LLVM and GCC OpenMP ABI: it allows us in later eval-
uations to compare only GCC and LLVM compiler performances
under the same OpenMP run-time library (MPC-OMP).
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(with 8GB of HBM2 / CMG at 1,024GB/s)

Figure 1: A64FX Node Specifications and Overview (from [10])

MPI. In all our experiments, the MPI run-time library is un-
changed: we always use the MPICH-Tofu [1] implementation with
support for MPI_THREAD_MULTIPLE (mpich-tofu@1.0/epbdicy) in-
stalled on the supercomputer Fugaku. In our mixed-use of the two
standards, communication calls (MPI_Send, MPI_Allreduce, ...) are
executed as part of OpenMP tasks scheduled by the OpenMP task
scheduler. MPI requests progression and OpenMP task completion
are compared using two state-of-the-art techniques:

• MPI_Detach (later referenced as mpi-detach) consists of a
dedicated kernel thread oversubscribing physical cores im-
plemented by J. Protze et al. [23] that periodically progresses
pending requests with MPI_Test.

• OpenMP Tools (later referenced as mpc-ompt) consists in op-
portunistically progressing pending requests with MPI_Test
in-between OpenMP scheduling points. It mimics the behav-
ior of ompt_callback_task_schedule callback, but the progres-
sion mechanism is not based on the OMPT interface. This
progression mechanism is only compatible with the MPC’
OpenMP runtime [18].

Additionally, in [18], authors proposed a scheduling strategy to
favor the early-bird posting of MPI requests by marking associated
tasks with OpenMP priority clause. Their heuristic (priority)
had only been implemented into the MPC’s OpenMP runtime,
which we compare with the default heuristic (no-priority).

3.3 Applications
We conduct performance evaluations on a task-based version of
three mainstream HPC benchmarks: the Cholesky tiled decomposi-
tion, the High-Performance Conjugate Gradient (HPCCG [7]), and
the Livermore Unstructured Lagrangian Explicit Shock Hydrody-
namics (LULESH [12]). We introduce each application characteris-
tics so HPC users can extrapolate our results to their needs.

Cholesky. The Cholesky benchmark computes the decomposi-
tion 𝐴 = 𝐿.𝐿𝑇 of a Hermitian positive-definite real matrix 𝐴. We
retrieved the version implemented by J. Schuchart [28] that paral-
lelized computation nesting BLAS/LAPACK kernels into OpenMP
tasks (netlib-lapack@3.10.1/selikac on Fugaku) and in dis-
tributed memory by partitioning the matrix tiles in a cyclic-manner

on a group of MPI processes. The matrix 𝐴 is dense and made of
double precision floating-point, built upon tiles of configurable size
defining the computational tasks’ granularity. Hence, this bench-
mark is representative of dense linear algebra codes where opera-
tions can be pipelined using tasks and dependencies.

HPCCG. The HPCCG benchmark resolves the linear system
𝐴.𝑥 = 𝑏 implementing a conjugate gradient (CG) algorithm, where
𝐴 is a sparse matrix and 𝑏 a dense vector, made of double precision
floating-point. The CG algorithm consists of a series of three op-
erations: matrix/vector multiplication (SPMV), dot products (dot),
and scaled vector addition (axpby). In the task-based version used,
each operation is programmed with for loops that can be decom-
posed into multiple tasks with a configurable parameter defining
task granularity. This benchmark is representative of applications
whose execution is typically bound by memory access time.

LULESH. The LULESH proxy-application models a hydrody-
namic simulation of materials motion subject to forces over an
unstructured mesh. It consists of a series of mesh-wide loops per-
forming computation on mesh nodes or elements. We retrieved the
task-based version of LULESH proposed by R. Pereira 1. It defines
a single grain parameter as the number of tasks sub-decomposing
such a loop: we refer to it as the tasks per loop (TPL) parameter.
Additionally, we added support for MPI using the MPI_Detach pro-
posal [23]. Even though the proxy application remains simple, it is
a fairly good representative of HPC production simulation codes
with irregular computation schemes.

3.4 Summary
Table 1 summarizes the hardware, compilers, OpenMP/MPI run-
times, and applications considered in this paper.

4 SHARED MEMORY PERFORMANCES
Our performance overview crosses software configurations and
starts with shared-memory evaluations on a single A64FX node. For
each application, we first study the impact of their task granularity
parameter on 12-threads bound 1:1 with physical cores (1 CMG);

1https://github.com/rpereira-dev/LULESH

https://github.com/rpereira-dev/LULESH
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Hardware A64FX and TofuD Interconnect (Fugaku)
Compiler LLVM/release/17.x (clang17), GCC/releases-13 (gcc)
OpenMP Runtime LLVM/release/17.x (kmp), GCC/releases-13 (gomp), MPC (mpc)
MPI Runtime MPICH-Tofu
MPI Request Progression Engine MPI-Detach thread (mpi-detach), MPC-OMPT (mpc-ompt)
MPI Request Task Scheduling Default (no-priority), Early-bird Posting (priority)
Applications Cholesky, HPCCG, LULESH

Table 1: Hardware and Software Stack Understudy
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Figure 2: Grain study with 12 threads compactly bound on A64FX CMG0.
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we then perform strong-scalability evaluations from 1 thread to 48
threads compactly bound to CMGs.

4.1 The Impact of Tasks Granularity
Fig. 2 is a study on the impact of task granularity on performances
for the three applications. For each sub-figure, the X-axis varies
grain parameters: there are few/coarse tasks on the left-most points
and many/fine tasks on the right-most points. Y-axes represent the
execution time. Left and right-side figures are respectively non-
traced and traced execution (using MPC runtime with Clang17
compiler) on a single execution per point. Traced performances
show a work/overhead/idle time breakdown cumulated and av-
eraged on threads: the work section is the time spent executing
explicit task instructions; the overhead section is the time spent
executing non-explicit task instructions while there is an explicit
task that would be ready for schedule; and the idle section is the
time spent executing non-explicit tasks instructions and there is
no ready-task for schedule anyway. There is 1 MPI process of 12
threads compactly bound to the CMG0, and applications problem
sizes from 60% to 70% of the CMG0 8GB High-Bandwidth (HBM).
It corresponds to a matrix of size 𝑛 = 16, 384 for Cholesky, a triplet
(𝑠𝑥 , 𝑠𝑦, 𝑠𝑧) = (216, 216, 216) for HPCCG, and a mesh size 𝑠 = 160
for LULESH. We present and analyze results per application.

Cholesky. There are only a few coarse tasks on the left-most
points, and performances are poor (about 30 to 35 s.). We ob-
serve that coarse-grain performances are worst for MPC and KMP
OpenMP runtimes over GOMP, most likely due to task scheduling
policies. Refining tasks, tile size in the range [176; 320] provides the
best performances (about 24s.). Refining furthermore only degrades
performances for any compiler/runtimes. As seen on the right-side
traced execution, performance variations are mostly due to work
time inflations, most likely related to optimal LAPACK kernels
tile size used by tasks. Finally, results using the MPC-OMP run-
time show that the compiler (GCC13 or Clang17) does not impact
performances.

HPCCG. On the left-most points, there are only a few coarse tasks
for which the benchmark reaches the best performances. In this
granularity, performances are similar to the original parallel-for
version of the benchmark that uses no tasks. Refining the grain size
furthermore, tasking overheads bound the execution time, and we
also observe a slight work time inflation.

LULESH. Refining the grain size improves performances with di-
minishing idleness, and the task-based version underMPC and KMP
OpenMP runtimes even outperforms the original parallel-for
version for 𝑇𝑃𝐿 = 168. We explain these gains thanks to better
load balancing due to task dependencies synchronizations over the
original implementation that implies synchronization barriers after
each loop. Hence, work-stealing scheduling strategies implemented
in MPC and KMP reduce idleness on threads and can execute work-
load earlier than the parallel for version could. However, GOMP
runtime performances remain lower than the parallel for ver-
sion for every task grain. While the exact reasons remain to be
further investigated, we suspect the issue to be throttling mecha-
nisms implemented in GCC that limit the parallelism visible to the
runtime scheduler.

4.2 Strong Scalability on a Single Node
Fig. 3 is a strong-scalability study over A64FX 48-cores for each
application. For each sub-figure, the X-axis varies the number of
cores (on which threads are compactly bound 1:1). Left-side tables
show wall-clock execution time (in s.) on 1, 12, 24, 32 and 48 cores.
In the middle figures, the Y-axis represents efficiency built upon the
execution time using single-core as a reference. On the right-side
figures, the Y-axis represents the time breakdown cumulated on
cores. There is only 1 MPI process for each application, and the
problem sizes used are the same as of the previous granularity
study: it occupies 60%-70% of the CMG0 memory, allocated and
first-touched by the first core of the CMG0. We tuned each applica-
tion task grain with respect to previous experiments so it provides
the best performances for the 12-core (CMG0) configuration. We
present and analyze results per application.

Cholesky. For any OpenMP runtime, efficiency remains high
(above 60%) but the MPC runtime shows the best scaling with
above 90% all the time. One reason could be the default scheduling
heuristic of MPC that favors the execution of successors (in terms
of task dependencies) on the same cores as per their predecessors,
which could improve data temporal locality over KMP/GOMP that
have no such heuristics.

In addition, we also observe that work time inflates from 1 to
12 cores, as there is more business on the CMG0. However, when
the 13th thread is allocated and bound on the CMG1, even though
the matrix is fully allocated on the CMG0, we observe a significant
work time deflation that leads to improved efficiency. We collected
hardware counters for each explicit task using MPC tracing capa-
bilities coupled with the Portable Application Profiling Interface
(PAPI) [21]. We observed a correlation between the number of
PAPI_RES_STL events ("Cycles processor is stalled on resource") and
the work time inflation. While we do not come with the exact re-
source that is causing stalls, it does not seem related to the memory
controller as L1/L2 caches miss, Translation Lookaside Buffer (TLB)
misses, and PAPI_MEM_SCY ("Cycles Stalled Waiting for Memory Ac-
cess") events occurrences had no such inflations.

HPCCG. For any OpenMP version but GOMP with tasks, per-
formance efficiency degrades linearly until around 38 cores (full
CMG[0,1,2], and 2 cores on CMG3). Tracing with MPC, we ob-
serve linearly growing idleness, as the number of workers keeps
increasing while the available parallelism remains constant go-
ing left to right on the figure. We also observe a work time and
memory-related hardware events inflations (PAPI_RES_STL and
PAPI_MEM_SCY): HPCCG is well-known for being memory-bound,
which is observed on this work time inflation when increasing the
number of threads. Above 38 cores, these phenomena are getting
exacerbated with significant performance degradation. The increas-
ing overheads also suggest that many threads create contention on
the data structures shared by the runtime threads (tasks, queues...),
slowing down the overall scheduling decisions.

LULESH. For any OpenMP version but GOMP with tasks, per-
formance efficiency degrades linearly from 1 to 48 cores due to (1)
slight work time inflation related to memory access time (measured
with PAPI_MEM_SCY), (2) more overheads and idleness due to an
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Figure 3: Strong scaling compactly bounding 1 to 48 threads on A64FX. Tables are execution time with tracing disabled.

increase of workers. For GOMP, we observe an unexplained perfor-
mance efficiency irregularity at 8 cores. The high efficiency of the
reference parallel for is due mainly to its poor performance on
1-core against task-based versions (654.59s. against 554.68s.).

5 DISTRIBUTED MEMORY PERFORMANCES
In this section, we focus on multi-processes execution on A64FX
usingMPI. Our first experiment evaluates the repartition of cores be-
tween MPI processes and OpenMP threads to find optimal bindings.
Then, we perform a weak and strong scaling on the supercomputer
Fugaku up to 32 interconnected A64FX. In terms of methodology,
we allocate a small set of Fugaku’s A64FX compute nodes and report
worst/best/median performances over 5 executions.

5.1 A Study on Threads Repartition
Fig. 4 is a study of core allocation between MPI processes and
OpenMP threads for Cholesky and HPCCG. Cores are allocated
compactly. For instance, 1-48 means there is only one MPI pro-
cess per A64FX (of 48 OpenMP threads), and 4-12 means there is
one MPI process per CMG (of 12 OpenMP threads). We evaluate
6 configurations using software presented in Section 3.4, always
compiling the source code with Clang 17.x:

• (kmp, parallel-for) runs parallel for versions using
KMP 17.x runtime.

• (kmp, task, mpi-detach, no-priority) runs task-based
versions using KMP 17.x runtime, the MPI_Detach progres-
sion thread, and KMP’ scheduler.

• (mpc, task, mpi-detach, no-priority) runs task-based
versions using the MPC-OMP runtime, the MPI_Detach pro-
gression thread, and MPC’ default scheduler.

• (mpc, task, mpi-detach, priority) runs task-based
versions using the MPC-OMP runtime, the MPI_Detach pro-
gression thread, and favoring early-bird requests posting.

• (mpc, task, mpc-ompt, no-priority) runs task-based
versions using the MPC-OMP runtime, OpenMP Tool for
requests progression, and MPC’s default scheduler.

• (mpc, task, mpc-ompt, priority) runs task-based ver-
sions using the MPC-OMP runtime, OpenMP Tool for re-
quests progression, and favoring early-bird requests posting.

First, we observe a performance gap between the 1-48 and other
repartitions for both applications. While we expected the 4-12
configuration (one MPI process per CMG) to outperform other
repartition, the 2-24 one also provides a high level of performances
that could be interesting to dampen the number of MPI processes
when scaling on Fugaku.

Secondly, we observe a significant slowdown whenever mixing
the MPI_Detach progression thread with the MPC-OMP runtime.
The MPC-OMP runtime relies on MPC low-level threading library,
and we expect this performance issue to come from interference
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Figure 4: Study of core allocation (compact) between MPI processes and OpenMP threads for Cholesky and HPCCG on A64FX.

related to the co-existence of multiple threading libraries (pthread
and MPC threads). Using the MPC’s OpenMP tool (mpc-ompt) over
the dedicated (p)thread (mpi-detach), MPI requests are opportunis-
tically progressed in-between scheduling points without spawning
a new kernel (p)thread which removes previously observed inter-
ferences.

Finally, regarding scheduling heuristics, early-bird posting of
MPI communications does not significantly impact performances
on Cholesky and HPCCG, most likely because we are running on a
single A64FX node where inter-process synchronization times are
already short. However, it seems to dampen performance degrada-
tion observed previously when using the MPI_Detach thread with
MPC-OMP runtime.

In the next section, we conduct evaluations executing on dis-
tributed A64FX processors interconnected via TofuD. From now
on, we always use the 4-12 repartition that is compactly binding
processes of 12 threads on CMGs.

5.2 Scalability on a Cluster of A64FX
Fig. 5 reports a weak and strong scaling for Cholesky and HPCCG
from 1 to 128MPI Processes of 12 OpenMP threads compactly bound
to A64FX’ CMGs (that is 1 to 32 A64FX nodes). Both applications
had been executed with the same 6 configurations as before. The
left-most points are performance references obtained on a single
process, and correspond to the 12 threads execution of Fig. 3. We
scale weakly and strongly up to 128 MPI processes of 12 threads.

On both the strong and weak scaling, coupling the MPC-OMP
runtime with the MPI_Detach progression thread only leads to poor
performances due to threading libraries co-existence. Hence, in the
following paragraphs, we only focus on other configurations.

Strong Scalability. Task-based versions of both applications have
good strong scalability (>80% efficiency) up to 8 MPI processes on
2x A64FX, but performance degrades above. HPCCG performance
degradation most likely comes from tasks becoming too fine, lead-
ing to important management overhead, as observed previously
in the grain study. On Cholesky, task grain remains constant, but

each MPI process ends up with less work while the amount of com-
munications on-the-fly increases, leading to efficiency degradation.

Weak Scalability. HPCCG’s weak scalability is a lot better (>80%
We suspect it comes from the application communication pattern
and MPI runtime management of many concurrent requests on the
fly. HPCCG only executes a few point-to-point requests with its
topological neighbors: for 32 MPI Processes, each process commu-
nicates on 1 or 2 neighbors. On the other hand, Cholesky tends to
post many more concurrent point-to-point requests and to remote
nodes: for 32 MPI Processes, each process communicates with 10
others.

6 TECHNICAL DIFFICULTIES REPORT
On our journey to evaluating the mixed use of MPI and OpenMP
using dependent tasks, we encountered several technical difficulties
with LULESH that still need to be addressed.

Vectorizing Irregular Applications. We profiled an execution of
LULESH compiled with Clang17 using the Modular Assembler
Quality Analyzer and Optimizer (MAQAO) [6]. The few loops with
regular access patterns successfully took advantage of vectorized
instructions. However, most of the workload has irregular memory
accesses that had not been vectorized. Hence, the application can-
not take full advantage of the SVE512 instructions of the A64FX
processor.

GOMP Performances. The GOMP runtime seems to have a per-
formance issue related to the task dependency graph construction.
Fig. 6 shows the median execution time on 10 instances (y-axis)
of LULESH, for a size -s 50 and 12 tasks per loop, on a single
MPI process of 12 threads bound to the CMG0, varying the num-
ber of simulation iterations (x-axis) In this specific configuration,
we observe that using the KMP and MPC-OMP runtime, the ex-
ecution time grows linearly with the number of iterations, that
is, the expected behavior, as the amount of work grows linearly
with the number of iterations. However, with the GOMP runtime,
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Figure 5: Scalability Study on multiple A64FX Nodes

the execution time grows with a quadratic shape. Preliminary in-
vestigations with GDB suggest that the GOMP runtime could be
creating many unnecessary dependencies between tasks whose
correct order of execution is already granted by other edges. Hence,
the single-producer thread is significantly slowed down when con-
structing the task dependency graph and ends up bounding the
total execution time.

Distributing Execution. Distributing the proxy-application LULESH
mostly ends with deadlocks or crashes. Hence, we could not record
performances for LULESH for distributed executions.We performed
preliminary investigations and reported the following issues in the
OpenMP runtimes.

• With the GOMP runtime, an assertion related to the detach
clause fails, making us believe in a race condition in the
clause implementation.

• With the KMP runtime, the application sometimes ends up
deadlocking.
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Figure 6: LULESH performances over iterations
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• With the MPC runtime, the OpenMP standard version of
the application does not compile due to missing ABI, even
though a non-standard (MPC-OMP specific) version does
compile and execute correctly.

7 CONCLUSION AND FUTUREWORK
ARM supercomputers are growing in interest. While processor
architectures should have almost no impact on how codes are pro-
grammed, it impacts their performances at run-time. In this paper,
we evaluated the performances of mixing MPI and OpenMP using
the dependent tasking model on Fugaku, an ARM-based supercom-
puter at RIKEN. Our evaluations include a study crossing a relevant
set of software used in HPC: compilers (GCC13, Clang17), runtime
systems (GOMP, KMP, MPC-OMP), and applications (Cholesky,
HPCCG, LULESH).

At the node level, the study shows that any combination of com-
piler/runtime provides similar peak performances on Cholesky and
HPCCG. Though on LULESH specifically, using the GCC/GOMP
runtime over Clang17/KMP or MPC-OMP leads to a 20% perfor-
mance loss. We also conducted a study on up to 32 A64FX nodes
enabling MPI. We showed that binding a single MPI process on
two CMGs (instead of every CMGs usually) does not deteriorate
performances, and could be a way of dampening the number of
processes at extreme scale. We also showed that communication
progression mechanisms can have a considerable impact: in partic-
ular, when extending the MPC-OMP runtime system with a dedi-
cated progression thread (using MPI_Detach implementation [23]).
Clang17/KMP and MPC-OMP runtimes provide the same level of
scalability for task-based versions of Cholesky and HPCCG. How-
ever, the non-task-based (parallel for) version of HPCCG has
better strong scalability than its task-based version: as shown in the
grain study, this most likely comes from tasking overheads as tasks
are getting too fine. Weak scalability remains high, with above 80%
of efficiency for any task-based version.

We identified a few issues in Section 6 that we would like to
investigate further. We reported performance problems with the
GCC/GOMP executions.We also experienced deadlocks and crashes
when executing the standard task-based LULESH on distributed
environments with any OpenMP runtime. As a perspective, we will
investigate these issues to enhance application performance.
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