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A SURVEY OF THE HOMOLOGY COBORDISM GROUP

In this survey, we present most recent highlights from the study of the homology cobordism group, with a particular emphasis on its long-standing and rich history in the context of smooth manifolds. Further, we list various results on its algebraic structure and discuss its crucial role in the development of low-dimensional topology. Also, we share a series of open problems about the behavior of homology 3-spheres and the structure of Θ 3 Z . Finally, we briefly discuss the knot concordance group C and the rational homology cobordism group Θ 3 Q , focusing on their algebraic structures, relating them to Θ 3 Z , and highlighting several open problems. The appendix is a compilation of several constructions and presentations of homology 3-spheres introduced by

1.1. The Predecessor: Θ n . An n-manifold M with ∂M = ∅ is called a homotopy n-sphere if M has the same homotopy type as the unit n-dimensional sphere S n , i.e., M ≃ S n . The n-dimensional homotopy cobordism group Θ n is defined as Θ n = {homotopy n-spheres up to diffeomorphism}/ ∼ where the equivalence relation h-cobordism 1 ∼ is given for two arbitrary homotopy n-spheres M 0 and M 1 as

M 0 ∼ M 1 ⇐⇒         
There exists an (n + 1)-manifold W such that

• ∂W = -(M 0 ) ∪ M 1 ,
• The inclusions induce homotopy equivalences:

M 0 ֒ W ֓ M 1 ⇒ M 0 ≃ W ≃ M 1 . W M 0 M 1
After Milnor detected exotic 7-spheres (7-manifolds homeomorphic but not diffeomorphic to S 7 ) in his groundbreaking work [START_REF] Milnor | On manifolds homeomorphic to the 7-sphere[END_REF], he also introduced the notion Θ n to study homotopy nspheres in an unpublished note [START_REF]Differentiable manifolds which are homotopy spheres[END_REF] and obtained some partial results on the orders of Θ n . It forms an abelian group under the addition induced by connected sum. The zero element of Θ n is the homotopy cobordism class of S n , and the inverse elements come with opposite orientation. Later, Kervaire and Milnor elaborated the structure of Θ n systematically in their celebrated article "Groups of homotopy spheres: I " [START_REF] Kervaire | Groups of homotopy spheres. I[END_REF].

Kervaire and Milnor were able to prove the following powerful statement, independent of the seminal articles of Connell [START_REF] Connell | A topological H-cobordism theorem for n ≥ 5[END_REF], Newman [START_REF] Newman | The engulfing theorem for topological manifolds[END_REF], Smale [START_REF] Smale | Generalized Poincaré's conjecture in dimensions greater than four[END_REF], Stallings [START_REF] Stallings | Polyhedral homotopy-spheres[END_REF], and Zeeman [START_REF] Zeeman | The generalised Poincaré conjecture[END_REF] about the topological Poincaré conjecture and the piecewise linear Poincaré conjecture in higher dimensions. 2 Furthermore, they created the famous table with a single unknown value, depicted in Table 1.

Theorem A (Theorem 1.2, [START_REF] Kervaire | Groups of homotopy spheres. I[END_REF]). For n = 3, the group Θ n is finite. n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |Θ n | 1 1 ? 1 1 1 28 2 8 6 992 1 3 2 16256 2 16 16 Table 1. The orders of Θ n for 1 ≤ n ≤ 18. The classical results of Moise [START_REF] Moise | Affine structures in 3-manifolds. IV. Piecewise linear approximations of homeomorphisms[END_REF][START_REF]Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung[END_REF] showed that every topological 3-manifold has a unique smooth structure. After the confirmation of the last topological Poincaré conjecture, the missing point in Table 1 was clarified as an immediate consequence of Perelman's breakthrough.

Theorem B ([Per02, [START_REF]Finite extinction time for the solutions to the Ricci flow on certain three-manifolds[END_REF][START_REF]Ricci flow with surgery on three-manifolds[END_REF]). The group Θ 3 is trivial, hence |Θ 3 | = 1. Kervaire and Milnor never published "Groups of homotopy spheres: II "; however, Levine's lecture notes [START_REF] Levine | Lectures on groups of homotopy spheres, Algebraic and geometric topology[END_REF] can be considered as its sequel paper. 3 Finding the order of Θ n for each value of n is a very challenging problem in algebraic and geometric topology. Moreover, it is closely tied to the smooth Poincaré conjecture in higher dimensions. 4 For the state of the art regarding the order of Θ n , one can see [START_REF] Daniel | More stable stems[END_REF]Table 1].

Further discussions and results about homotopy theoretical approaches to study Θ n can be seen in excellent papers of Hill, Hopkins, and Ranevel [START_REF] Hill | On the nonexistence of elements of Kervaire invariant one[END_REF], Wang and Xu [START_REF] Wang | The triviality of the 61-stem in the stable homotopy groups of spheres[END_REF], and Behrens, Hill, Hopkins, and Mahowald [START_REF] Behrens | Detecting exotic spheres in low dimensions using coker J[END_REF].

1.2. The Successor: Θ n Z . In a similar vein, a homology n-sphere is an n-manifold M with ∂M = ∅ such that M has the same homology groups of S n in integer coefficients, i.e., H * (M ; Z) = H * (S n ; Z). The n-dimensional homology cobordism group Θ n is formed as

Θ n Z = {homology n-spheres up to diffeomorphism}/ ∼ Z
where the equivalence relation homology cobordism ∼ Z is depicted for two arbitrary homology n-spheres M 0 and M 1 by

M 0 ∼ Z M 1 ⇐⇒         
There exists an (n + 1)-manifold W such that

• ∂W = -(M 0 ) ∪ M 1 ,
• The inclusions induce isomorphisms on all homology groups:

M 0 ֒ W ֓ M 1 ⇒ H * (M 0 ; Z) ∼ = H * (W ; Z) ∼ = H * (M 1 ; Z).
Inspired by the novel work of Kervaire and Milnor, González-Acuña defined the object Θ n Z to decipher the homology n-spheres in his Ph.D. thesis "On homology spheres" [START_REF]On homology spheres[END_REF]. Similarly, Θ n Z admits an abelian group structure with the summation induced by connected sum. The homology cobordism class of S n serves as the identity element of Θ n Z . Besides, inverse elements can be obtained by reversing the orientation.

Using surgery theory and Milnor's π-manifolds, 5 González-Acuña was able to construct a group isomorphism between Θ n and Θ n Z unless n = 3. Hence, they are algebraically identical except for the single case of n = 3.

Theorem C (Theorem I.2, [START_REF]On homology spheres[END_REF]). For n = 3, Θ n Z is isomorphic to Θ n . Therefore, Θ n Z is finite unless n = 3.

It should be very interesting to compare González-Acuña's elegant theorem with the following achievement of Kervaire which was published around the same time.

Theorem D (Theorem 3, [START_REF] Michel | Smooth homology spheres and their fundamental groups[END_REF]). For n ≥ 5, let M be a homology n-sphere. Then there exists a unique homotopy sphere Σ M such that M #Σ M bounds a contractible (n + 1)-manifold.

1.3. The Aberrant: Θ 3 Z . The isomorphism of González-Acuña cannot be valid for the last case n = 3 due to the famous invariant of Rokhlin [Rok52]. There is a surjective group homomorphism from the 3-dimensional homology cobordism group (the homology cobordism group for short) to the cyclic group of order two µ : Θ 3 Z Z 2 , µ(Y ) = σ(W )/8 mod 2 where W is any 4-manifold with a Z 2 -valued even intersection form, 6 ∂W = Y , and σ(W ) denotes the signature of W .

The homology cobordism invariance of the Rokhlin invariant µ was first observed in [GAn70b, Section I.5]. See also [START_REF] Javier | Dehn's construction on knots[END_REF] Section 2] and [FK20, Section 3.8]. Since the Poincaré homology sphere Σ(2, 3, 5) (see Section 4 for its several descriptions) uniquely bounds the negative-definite plumbing -E 8 of signature -8, we have µ(Σ(2, 3, 5)) = 1. Therefore, it is not homology cobordant to S 3 , and we conclude: Theorem E ([Rok52]; Section I.5, [START_REF]On homology spheres[END_REF]). The group Θ 3 Z is non-trivial. 7 The non-triviality of Θ 3 Z is sensitive to both homology and smoothness conditions on the cobordism 4-manifold. The group would be trivial if at least one of these conditions were removed. See the articles by Rokhlin [Rok51] and Freedman [START_REF] Freedman | The topology of four-dimensional manifolds[END_REF] respectively. Also, Θ 3 Z is countable by the classical results of Moise [START_REF] Moise | Affine structures in 3-manifolds. IV. Piecewise linear approximations of homeomorphisms[END_REF][START_REF]Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung[END_REF].

Until the 1980s, the only known invariant of Θ 3 Z was the Rokhlin invariant µ and there was a belief that it might be an isomorphism. However, it later turned out that Θ 3 Z is far from being finite. The understanding of the infinitude of Θ 3 Z has led to the construction of numerous invariants of homology 3-spheres.

The seminal work of Matumoto [START_REF] Matumoto | Triangulation of manifolds, Algebraic and geometric topology[END_REF] and Galewski and Stern [START_REF]Classification of simplicial triangulations of topological manifolds[END_REF] yielded a rich connection between the Rokhlin invariant µ, the group Θ 3 Z , and the triangulation conjecture. Manolescu revolutionized low-dimensional topology by introducing the Seiberg-Witten (monopole) Pin(2)equivariant Floer homology, constructing the β-invariant, and disproving the triangulation conjecture [START_REF]Pin(2)-equivariant Seiberg-Witten Floer homology and the triangulation conjecture[END_REF]. His β-invariant is an integer lift of the Rohklin invariant µ and its existence rejects the triangulation conjecture by relying on the articles [START_REF] Matumoto | Triangulation of manifolds, Algebraic and geometric topology[END_REF][START_REF]Classification of simplicial triangulations of topological manifolds[END_REF]. Consult Section 2.4 for more details. The several variations of Manolescu's Floer homotopic approach have led to the invention of new powerful theories and sensitive invariants of knots and manifolds. Recently, there has also been increased activity in studying Θ 3 Z using techniques from SU (2)-gauge theory, following the work of Daemi [START_REF] Daemi | Chern-Simons functional and the homology cobordism group[END_REF].

Homology cobordism is closely related to the concepts of knot concordance and rational homology cobordism, and both give rise to abelian groups C and Θ 3 Q , similar to Θ 3 Z . By the classical work of González-Acuña [START_REF] Javier | Dehn's construction on knots[END_REF], Gordon [START_REF] Gordon | Knots, homology spheres, and contractible 4-manifolds[END_REF], and Casson and Gordon [START_REF] Casson | On slice knots in dimension three, Algebraic and geometric topology[END_REF], there are natural mappings between these three abelian groups given by (1/n)-surgery on knots in the 3-sphere S 3 1/n (K) for any integer n, p r -fold cyclic branched coverings of the 3-sphere along knots Σ p r (K) for any prime p and r ≥ 1, and inclusion ψ. Consult Section 3.2, Section 3.1, and Section 4 for further details.

Θ 3 Z C Θ 3 Q ψ S 3 1/n Σ p r
In a nutshell, we create this table to reflect the sharp contrast between Θ 3 Z and all other homotopy and homology cobordism groups. One can access the most recent information about the orders of Θ n from the article of Isaksen, Wang, and Xu [START_REF] Daniel | More stable stems[END_REF].

Order Dimension Θ n Θ n Z n = 3 < ∞ < ∞ n = 3 = 1 = ∞
From now on, we will aim to approach all results that arise around the homology cobordism group Θ 3 Z from a broad, comprehensive, and historical perspective. Our additional purpose is to present various open problems of homology 3-spheres in the context of homology cobordism. Finally, we will discuss the knot concordance group C and the rational homology cobordism group Θ 3

Q by eleborating their most recent algebraic structure, relating them to Θ 3 Z , and posing several open problems. Most of the problems raised in this survey are well-known in the field in general. We hope that our efforts will have a positive impact, and motivate on readers to investigate and study the homology cobordism group Θ 3 Z in the future.

2. The Structure of Θ 3 Z 2.1. Subgroups and Summands of Θ 3 Z . The celebrated work of Donaldson was a cornerstone in the history of low-dimensional topology [START_REF] Donaldson | An application of gauge theory to four-dimensional topology[END_REF]. Motivated by his article, Fintushel and Stern studied the gauge theory of orbifolds, produced the gauge theoretical R-invariant for Seifert fibered homology spheres, and provided the first existence of an infinite subgroup in the homology cobordism group.

Theorem F (Theorem 1.2, [START_REF]Pseudofree orbifolds[END_REF]). The group Θ 3 Z has a Z subgroup generated by the Poincaré homology sphere Σ(2, 3, 5).

The extended version of Donaldson's diagonalization theorem [START_REF]The orientation of Yang-Mills moduli spaces and 4-manifold topology[END_REF] recovers Theorem F as follows: One can use Σ(2, 3, 5) to construct a closed 4-manifold whose non-diagonalizable intersection form is nE 8 for arbitrary value of n. This obstructs the existence of any homology cobordism between S 3 and a finite number of self connected sums of Σ(2, 3, 5).

Converting the ideas on end-periodic 4-manifolds in the work of Taubes [START_REF] Henry | Gauge theory on asymptotically periodic 4-manifolds[END_REF] to cylindrical end 4-manifolds and using the Fintushel-Stern R-invariant, Furuta showed the first existence of an infinitely generated subgroup [START_REF] Furuta | Homology cobordism group of homology 3-spheres[END_REF].

Theorem G (Theorem 2.1, [START_REF] Furuta | Homology cobordism group of homology 3-spheres[END_REF]). The group Θ 3 Z has a Z ∞ subgroup 8 in Θ 3 Z generated by the family of Brieskorn spheres {Σ(2, 3, 6n -1)} ∞ n=1 . The eminent article of Floer [START_REF] Floer | An instanton-invariant for 3-manifolds[END_REF] changed the flow of the history of low-dimensional topology dramatically. Given a homology 3-sphere Y , his theory of instanton homology can be defined over the Yang-Mills equations on Y × R. This novel invariant is an infinite dimensional analogue of the Morse homology.

The next achievement about the algebraic structure of Θ 3 Z was owed to Frøyshov [START_REF] Frøyshov | Equivariant aspects of Yang-Mills Floer theory[END_REF]. His approach relied on the equivariant structure on Floer's instanton (Yang-Mills) homology and he constructed the h-invariant, a surjective group homomorphism h : Θ 3 Z Z.

Theorem H (Theorem 3, [START_REF] Frøyshov | Equivariant aspects of Yang-Mills Floer theory[END_REF]). The group Θ 3 Z has a Z summand generated by the Poincaré homology sphere Σ(2, 3, 5).

Ozsváth and Szabó developed the theory of Heegaard Floer homology in a series of prominent articles [START_REF] Ozsváth | Absolutely graded Floer homologies and intersection form for fourmanifolds with boundary[END_REF]OS04c,[START_REF] Ozsváth | Holomorphic disks and topological invariants for closed three-manifolds[END_REF]. Since then it has been used to answer various problems in lowdimensional topology and several new versions emerged successively, see the comprehensive surveys of Ozsváth and Szabó [START_REF] Ozsváth | Heegaard diagrams and holomorphic disks, Different faces of geometry[END_REF] and Juhász [START_REF] Juhász | A survey of Heegaard Floer homology, New ideas in low dimensional topology[END_REF]. Later, Hendricks and Manolescu introduced involutive Heegaard Floer homology [START_REF] Hendricks | Involutive Heegaard Floer homology[END_REF] and this new theory exploits the conjugation symmetry on a Heegaard Floer complex of the Heegaard Floer homology. Also, it is conjecturally a Z 4equivariant version of Seiberg-Witten Pin(2)-equivariant Floer homology established by Manolescu [START_REF]Pin(2)-equivariant Seiberg-Witten Floer homology and the triangulation conjecture[END_REF].

The most recent impressive progress about deciphering the algebraic complexity of the group Θ 3 Z was achieved by Dai, Hom, Stoffregen, and Truong [START_REF] Dai | An infinite-rank summand of the homology cobordism group[END_REF]. Using the machinery of involutive Heegaard Floer homology, they defined a new family of powerful and sensitive set of invariants

f = {f k } k∈N , a surjective group homomorphism f : Θ 3 Z Z ∞ . 9
Theorem I (Theorem 1.1, [START_REF] Dai | An infinite-rank summand of the homology cobordism group[END_REF]). The group Θ 3 Z has a Z ∞ summand generated by the family of Brieskorn spheres {Σ(2n + 1, 4n + 1, 4n + 3)} ∞ n=1 . Their proof subsumes several approaches and techniques that consecutively appeared in the literature of involutive Heegaard Floer homology [START_REF] Hendricks | A connected sum formula for involutive Heegaard Floer homology[END_REF], [START_REF] Dai | Involutive Heegaard Floer homology and plumbed three-manifolds[END_REF], [START_REF] Dai | On homology cobordism and local equivalence between plumbed manifolds[END_REF], and [START_REF] Hendricks | Applications of involutive Heegaard Floer homology[END_REF]. Moreover, involutive Floer theoretic invariants have provided a major change for the understanding of the structure of Θ 3 Z and its subgroups. For details of constructions and ideas, one can consult the survey of Hom [START_REF]Homology cobordism, knot concordance, and Heegaard Floer homology[END_REF].

Relying on all these previous results, one may expect that there is no torsion part in the decomposition of Θ 3 Z , see Section 2.4 for details. In particular, Problem A and Problem O are complementary, and Problem C is a special case of Problem A. The author believes that the following problem will have a negative answer.

Problem A. Is Θ 3

Z is isomorphic to Z ∞ ? Most instanton, Seiberg-Witten, and Floer theoretical invariants of homology 3-spheres are sensitive to a preorder given by the negative-definite cobordisms. Thus, the further understanding of the structure of the homology cobordism group will be possible by realizing Θ 3 Z as a partiallyordered group, rather than just a group. See, for instance, the recent work of Nozaki, Sato, and Taniguchi [NST19, Section 1.3].

Problem B. Study the structure of Θ 3

Z as an ordered group by forming filtrations, and completely describe subgroups and quotients.

A Recovery: More about Subgroups of Θ 3

Z . A 4-manifold with boundary is called a homology 4-ball if it shares the same homology groups of the 4-ball in integer coefficients. An easy algebraic topology argument indicates that a homology 3-sphere is homology cobordant to S 3 if and only if it bounds a homology 4-ball.

The Fintushel-Stern R-invariant leads to a powerful obstruction for homology 3-spheres to bound homology 4-balls, and hence contractible 4-manifolds. It is easily computable due to the short-cut of Neumann and Zagier [START_REF] Walter | A note on an invariant of Fintushel and Stern[END_REF]. The non-zero values of the R-invariant provide the proofs of items (1) and (3) in Theorem J. Further, these claims can be deduced by using the Ozsváth-Szabo d-invariant [START_REF] Ozsváth | Absolutely graded Floer homologies and intersection form for fourmanifolds with boundary[END_REF]. See the papers of Tweedy [START_REF] Tweedy | Heegaard Floer homology and several families of Brieskorn spheres[END_REF] and Karakurt and the author [KS ¸20] for sample computations, which both depended on Floer homology of plumbings [OS03c], Némethi's lattice homology [START_REF] Némethi | On the Ozsváth-Szabó invariant of negative definite plumbed 3-manifolds[END_REF], and lattice point counting technique of Can and Karakurt [START_REF] Mahir | Calculating Heegaard-Floer homology by counting lattice points in tetrahedra[END_REF]. 10 However, the item (2) in Theorem J is a consequence of the non-vanishing of the Neumann-Siebenmann invariant μ [START_REF] Walter | An invariant of plumbed homology spheres[END_REF][START_REF] Siebenmann | On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3spheres[END_REF]. The homology cobordism invariance of μ for Seifert fibered homology spheres was first proved by Saveliev [START_REF]Notes on homology cobordisms of plumbed homology 3-spheres[END_REF], see also the paper of Dai and Stoffregen [START_REF] Dai | On homology cobordism and local equivalence between plumbed manifolds[END_REF] for a generalization of this result. Saveliev provided another proof for the item (2) in [START_REF] Saveliev | Dehn surgery along torus knots[END_REF] by using Furuta's 10/8 + 2 theorem [START_REF] Furuta | Monopole equation and the 11 8 -conjecture[END_REF]. Note that Furuta's result was a partial solution for Matsumoto's 11/8 conjecture [START_REF] Matsumoto | On the bounding genus of homology 3-spheres[END_REF]. In this article, he also introduced a homology cobordism invariant called the bounding genus. All other homology cobordism invariants behaved differently than μ seem to be vanished or not arbitrarily large for this family, so they do not give further information about their homology cobordism classes.

By following the work of Nozaki, Sato and Taniguchi [START_REF] Nozaki | Filtered instanton Floer homology and the homology cobordism group[END_REF] and Baldwin and Sivek [START_REF]Framed instanton homology and concordance[END_REF], the proofs of items (4) and (5) in Theorem J can be deduced respectively. Moreover, the items (6) and (7) in Theorem J are owed to the recent article of Daemi, Imori, Sato, Scaduto, and Taniguchi [DIS + 22]. Note that the arguments of the latter two articles essentially require the result of the first one. Here, τ ♯ -and s-invariants are new instanton Floer theoeric invariants of knots [BS22, DIS + 22], and h denotes the classical Frøyshov invariant which appeared in Theorem H, Γ stands for the new invariant of knots, and both invariants are again derived from instanton Floer homology.

Theorem J. The following homology 3-spheres individually generate Z subgroups in Θ 3 Z : (1) Σ(p, q, pqn -1) for each n ≥ 1, (2) Σ(p, q, pqn + 1) for each odd n ≥ 1, 11 (3) Σ(p n , q n , r n ) for each n ≥ 1 where p n q n + p n r nq n r n = 1, (4) For each n ≥ 1, S 3 1/n (K) where K is any knot in S 3 with h(S 3 1 (K)) < 0, 12 (5) For each n ≥ 1, S 3 1/n (K) where K is any knot in S 3 with τ ♯ (K) > 0, 13 (6) For each n ≥ 1, S 3 1/n (K) where K is any knot in S 3 with s(K) > 0, 14 (7) For each n ≥ 1, S 3 1/n (K) where K is any knot in S 3 with σ(K) ≤ 0 and 1 8 < Γ K -1 2 σ(K) . In particular, the R-invariant of Fintushel-Stern [START_REF]Pseudofree orbifolds[END_REF] is directly determined from a plumbing graph due to the short-cut of Neumann-Zagier [START_REF] Walter | A note on an invariant of Fintushel and Stern[END_REF]. Moreover, the μ-invariant of Seifert fibered homology spheres is same as the w-invariant of Fukumoto and Furuta [START_REF] Fukumoto | Homology 3-spheres bounding acyclic 4-manifolds[END_REF], see the work of Fukumoto, Furuta, and Ue [START_REF] Fukumoto | W -invariants and Neumann-Siebenmann invariants for Seifert homology 3-spheres[END_REF] and Saveliev [START_REF]Fukumoto-Furuta invariants of plumbed homology 3-spheres[END_REF] for details. Therefore, we have the following several identities between homology cobordism invariants for a single Seifert fibered space Σ = Σ(a 1 , . . . , a n ):

• R (Σ) = -2e -3,

• d (Σ) = d (Σ), • μ (Σ) = w (Σ) = -1 2 d (Σ) = -β (Σ) = -γ (Σ), • α (Σ) = 1 2 d (Σ) , if 1 2 d (Σ) = -μ (Σ) mod 2, 1 2 d (Σ) + 1, otherwise, , • µ (Σ) = μ (Σ) = α (Σ) = β (Σ) = γ ( 
Σ) mod 2. After Furuta's work, the first recovery of the existence of Z ∞ subgroups of Θ 3 Z was provided by Fintushel and Stern [FS90, Theorem 5.1] for the item (1) in Theorem K. Their approach can be applied to item (2) in Theorem K as well. These two results can be reproved successfully by using new gauge and instanton theoretic invariants of Daemi [START_REF] Daemi | Chern-Simons functional and the homology cobordism group[END_REF], Nozaki, Sato and Taniguchi [START_REF] Nozaki | Filtered instanton Floer homology and the homology cobordism group[END_REF], and Baldwin and Sivek [START_REF] Baldwin | Framed instanton homology and concordance[END_REF][START_REF]Framed instanton homology and concordance[END_REF]. However, the classical and involutive Heegaard Floer theoretical invariants cannot identify the linear independence of the item (1) in Θ 3 Z . The Seiberg-Witten and/or Heegaaard Floer originated invariants may detect the linear independence of subfamilies of the item (2) in Theorem K. In this regard, see the work of Stoffregen [START_REF] Stoffregen | Manolescu invariants of connected sums[END_REF] and Dai and Manolescu [START_REF] Dai | Involutive Heegaard Floer homology and plumbed three-manifolds[END_REF]. However, it is not easily doable in general, see the discussion in [KS ¸20] and [KS ¸22] and compare with [START_REF] Stoffregen | Manolescu invariants of connected sums[END_REF] and [START_REF] Dai | Involutive Heegaard Floer homology and plumbed three-manifolds[END_REF].

For the proofs of items (3), (4), (5), and (6) in Theorem K, one can see the articles of Nozaki, Sato and Taniguchi [START_REF] Nozaki | Filtered instanton Floer homology and the homology cobordism group[END_REF], Baldwin and Sivek [START_REF]Framed instanton homology and concordance[END_REF], and Daemi, Imori, Sato, Scaduto, and Taniguchi [DIS + 22]. The methodology of [START_REF] Nozaki | Filtered instanton Floer homology and the homology cobordism group[END_REF] and [DIS + 22] both refer to the equivariant instanton Floer theory with Chern-Simons filtration, while [START_REF] Baldwin | Framed instanton homology and concordance[END_REF][START_REF]Framed instanton homology and concordance[END_REF] uses the framed instanton homology. Notice that these articles all provide new invariants for homology 3-spheres and knots.

Theorem K. The following infinite families of homology 3-spheres generate

Z ∞ subgroups in Θ 3 Z : (1) {Σ(p, q, pqn -1)} ∞ n=1 , (2) {Σ(p n , q n , r n )} ∞ n=1 where p n q n + p n r n -q n r n = 1, (3) {S 3 1/n (K)} ∞ n=1 for any knot K in S 3 with h(S 3 1 (K)) < 0, (4) {S 3 1/n (K)} ∞ n=1 for any knot K in S 3 with τ ♯ (K) > 0, 17 (5) {S 3 1/n (K)} ∞ n=1 for any knot K in S 3 with s(K) > 0, (6) {S 3 1/n (K)} ∞ n=1 for any knot K in S 3 with σ(K) ≤ 0 and 1 8 < Γ K -1 2 σ(K)
. Since all current homology cobordism invariants are blind to detect the linear independence of {Σ(p, q, pqn + 1)} ∞ n=1,odd in Θ 3 Z , we curiously ask the following problem. On the other hand, they might be homology cobordant in Θ 3 Z . If so, this will also be a very interesting result.

Problem C. Does the family {Σ(p, q, pqn + 1)} ∞ n=1,odd generate a Z ∞ subgroup or a Z ∞ summand in Θ 3 Z ?
The R-and w-invariants were successfully generalized in the articles of Fintushel and Lawson [START_REF] Fintushel | Compactness of moduli spaces for orbifold instantons[END_REF] and Fukumoto [START_REF]w-invariants and the Fintushel-Stern invariants for plumbed homology 3-spheres[END_REF] respectively. Given a Seifert fibered sphere Y = Σ(a 1 , . . . , a n ), we respectively denote these invariants by R(Y, e) and w(Y, m) and call the generalized R-invariant and the generalized w-invariant where e is an integer depending on Euler number and some other constraints, and m is a tuple of integers. The generalized R-and w-invariants are strictly powerful than the classical R-and w-invariants, and provide more sensitive obstructions for the existence of homology cobordisms between homology 3-spheres. In particular, a combinotorial formula for the generalized R-invariant was found by Lawson [START_REF] Lawson | Invariants for families of Brieskorn varieties[END_REF] so that R (Σ, 1) = R (Σ). For sample computations, see Fukumoto's article [START_REF]w-invariants and the Fintushel-Stern invariants for plumbed homology 3-spheres[END_REF]Section 6]. Fukumoto also gave estimates for Matsumoto's bounding genera for homology 3-spheres using w-invariants [START_REF] Fukumoto | The bounded genera and w-invariants[END_REF].

Using Pin(2)-equivariant Seiberg-Witten Floer K-theory, Manolescu constructed the integervalued homology cobordism invariant κ Given any relatively coprime positive integers p, q and r, the Brieskorn sphere Σ(p, q, r + pq) can be obtained by the Brieskorn sphere Σ(p, q, r) by applying (-1)-surgery along the singular fiber of degree r. This topological operation is called Seifert fiber surgery, see the paper of Lidman and Tweedy [START_REF] Lidman | A note on concordance properties of fibers in Seifert homology spheres[END_REF] for a detailed exposition.

Performing the above type of Seifert fibered surgeries, the items (2) and (4) in Theorem L can be constructed from the items (1) and (3) in Theorem L respectively. We know that the d-invariant remains same under this special Seifert fiber surgery, consult the articles of Lidman and Tweedy [START_REF] Lidman | A note on concordance properties of fibers in Seifert homology spheres[END_REF], Karakurt, Lidman, and Tweedy [START_REF] Karakurt | Heegaard Floer homology and splicing homology spheres[END_REF], and Seetharaman, Yue, and Zhu [START_REF] Seetharaman | Patterns in the lattice homology of Seifert homology spheres[END_REF] for this result. Relying on the computations in [START_REF] Tweedy | Heegaard Floer homology and several families of Brieskorn spheres[END_REF] and [KS ¸20] again, we have the following result.

Theorem L. The following homology 3-spheres individually generate Z summands in Θ 3 Z :

(1) Σ(p, q, pqn -1) for each n ≥ 1, (2) Σ(p, q, +pqn -1 + pqm) for each n, m ≥ 1, (3) Σ(p n , q n , r n ) for each n ≥ 1 where p n q n + p n r nq n r n = 1, (4) Σ(p n , q n , r n + p n q n m) for each n, m ≥ 1 where p n q n + p n r nq n r n = 1.

In a similar fashion, we can pass to the Brieskorn sphere Σ(p, q, r + 2pq) from the Brieskorn sphere Σ(p, q, r) by applying twice (-1)-surgery along the singular fiber of degree r. In [SYZ21], Seetharaman, Yue, and Zhu also observed that the maximal monotone subroots carrying the Floer theoretic invariants do not change after performing the above type of Seifert fiber surgeries consecutively. Recently, in [KS ¸22], Karakurt and the author presented more families of homology 3-spheres generating infinite rank summands in Θ 3

Z by computing their connected Heegaard Floer homologies [START_REF] Hendricks | Applications of involutive Heegaard Floer homology[END_REF] effectively and using the invariants of Dai, Hom, Stoffregen, and Truong. Notice that the connected Heegaard Floer homology was introduced by Hendricks, Hom, and Lidman. Further, they proved that it is a homology cobordism invariant itself [START_REF] Hendricks | Applications of involutive Heegaard Floer homology[END_REF] unlike the classical or involutive Heegaard Floer homology.

Together with the above observation, we can conclude the following theorem. In particular, two collections of families in the items (1) and (2) in Theorem M, and the family of Dai, Hom, Stoffregen, and Truong in Theorem I are not homology cobordant to each other for any equal value of n, with a single exception, see the discussion in [ KS ¸22]. However, their spans in Θ 3 Z are not distinct, see [DS19, Section 6].

Theorem M ([DHST18, KS ¸22]). The following infinite families of homology 3-spheres generate

Z ∞ summands in Θ 3 Z : (1) {Σ(2n + 1, 3n + 2, 6n + 1)} ∞ n=1 , (2) {Σ(2n + 1, 3n + 1, 6n + 5)} ∞ n=1 , (3) {Σ(2n + 1, 4n + 1, 4n + 3 + 2m(2n + 1)(4n + 1))} ∞ n,m=1 , (4) {Σ(2n + 1, 3n + 2, 6n + 1 + 2m(2n + 1)(3n + 2))} ∞ n,m=1 , (5) {Σ(2n + 1, 3n + 1, 6n + 5 + 2m(2n + 1)(3n + 1))} ∞ n,m=1 . 2.2. The Trivial Element of Θ 3 Z .
A central problem in low-dimensional topology is to investigate the following interaction between 3-and 4-manifolds as an algebro-topological analog of the relation between S 3 and B 4 .

Problem E (Problem 4.2, [Kir78b]). Which homology 3-spheres bound contractible 4-manifolds or homology 4-balls?

There are plenty of examples of Brieskorn spheres that bound Mazur type contractible 4manifolds built with a single 0-, 1-, and 2-handle [START_REF] Mazur | A note on some contractible 4-manifolds[END_REF]. Following Kirby's celebrated work [START_REF] Robion | A calculus for framed links in S 3[END_REF], some classical articles appeared subsequently: Akbulut and Kirby [AK79], Casson and Harer [START_REF] Casson | Some homology lens spaces which bound rational homology balls[END_REF], Stern [START_REF] Stern | Some more Brieskorn spheres which bound contractible manifolds[END_REF], Fintushel and Stern [START_REF]An exotic free involution on S 4[END_REF], Maruyama [START_REF]Notes on homology 3-spheres which bound contractible 4-manifolds. I[END_REF][START_REF] Matsumoto | On the bounding genus of homology 3-spheres[END_REF], and Fickle [START_REF] Henry | Knots, Z-homology 3-spheres and contractible 4-manifolds[END_REF]. In addition, some of these results were found independently of Kirby calculus, see Fukuhara [START_REF] Fukuhara | On the invariant for a certain type of involutions of homology 3-spheres and its application[END_REF] and Martin [START_REF] Martin | Some homology 3-spheres which bound acyclic 4-manifolds, Topology of low-dimensional manifolds[END_REF]. Some of these families also bound Poénaru manifolds, contractible 4-manifolds built with a 0-handle, many 1-and 2-handles, see [Poé60, S ¸av20a, AS ¸22].

Theorem N. The following homology 3-spheres bound Mazur manifolds with one 0-handle, one 1-handle and one 2-handle. Further, Σ(2, 7, 47) and Σ(3, 5, 49) bound homology 4-balls.

• Σ(2, 3, 13), Σ(2, 3, 25), Σ(2, 7, 19), Σ(3, 5, 19).

• Σ(p, ps -1, ps + 1) for p even and s odd,

• Σ(p, ps ± 1, ps ± 2) for p odd and s arbitrary,

• Σ(2, 2s ± 1, 2.2(2s ± 1) + 2s ∓ 1) for s odd,

• Σ(3, 3s ± 1, 2.3(3s ± 1) + 3s ∓ 2) for s arbitrary,

• Σ(3, 3s ± 2, 2.3(3s ± 2) + 3s ∓ 1) for s arbitrary.

It would be interesting to compare the existence of homology 3-spheres bounding contractible 4manifolds and homology 4-balls, so we may address the following problem. The possible candidates for Seifert fibered spheres are two examples of Fickle: Σ(2, 7, 47) and Σ(3, 5, 49). They are known to bound only homology 4-balls.

Problem F. Is there any Seifert fibered sphere Σ(a 1 , . . . , a n ) which bound a homology 4-ball but not a contractible 4-manifold?

Note that Problem F is known for Σ(2, 3, 5)# -Σ(2, 3, 5). 19 It cannot bound a contractible 4-manifold, see Taubes' article [Tau87, Proposition 1.7]. However, the isomorphism of González-Acuña in Theorem C guarantees that every homology 3-sphere bounding homology n-ball automatically bounds contractible n-manifold unless n = 3.

When the number of fibers increases, there is a bold conjecture, which was first indicated by Fintushel-Stern, explicitly stated by Lawson [START_REF]Compactness results for orbifold instantons[END_REF], and later highlighted by Kollár [Kol08,Conjecture 20]. This problem is closely related to the Montgomery-Yang problem motivated by the previous results in both algebraic geometry and gauge theory. The problem expects that every pseudo-free circle action on the 5-dimensional sphere has at most 3 non-free orbits [START_REF] Kollár | Is there a topological Bogomolov-Miyaoka-Yau inequality?[END_REF]Conjecture 6]. Note that some computational verifications of this conjecture was provided in the paper of Lawson [START_REF]Compactness results for orbifold instantons[END_REF].

Problem G (Three Fibers Conjecture). Is there any Seifert fibered sphere Σ(a 1 , . . . , a n ) with n > 3 which bounds a homology 4-ball? Problem G cannot be generalized for plumbed homology 3-spheres that are not Seifert fibered. 20 The first examples were given by Maruyama [START_REF] Matsumoto | On the bounding genus of homology 3-spheres[END_REF], independently obtained by Akbulut and Karakurt [AK14, Theorem 1.4]. In [S ¸av20a], we presented two more family of plumbed homology 3-spheres bounding contractible 4-manifolds.

Theorem O (Theorem 1, [START_REF] Matsumoto | On the bounding genus of homology 3-spheres[END_REF]; Theorem 1.4-5, [S ¸av20a]). Let X(n), X ′ (n), and W (n) be Maruyama, the companion of Maruyama, and Ramanujam plumbed 4-manifold, shown in Figure 1. Then for each n ≥ 1, boundaries ∂X(n) and ∂X ′ (n) bound Mazur manifolds with one 0-handle, one 1-handle and one 2-handle. Further, the boundary of ∂W (n) bounds a Poénaru manifold with one 0-handle, two 1-handles and two 2-handles for n ≥ 1.
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Figure 1. The plumbing graphs of X(n), X ′ (n), and W (n).

Note that W (1) is known as Ramanujam surface, the famous homology plane constructed by Ramanujam [START_REF] Ramanujam | A topological characterisation of the affine plane as an algebraic variety[END_REF]. It is the first example of an algebraic complex smooth surface sharing the same of homology of the complex plane C 2 but not analytically isomorphic to C 2 . We call a nontrivial homology 3-sphere a Kirby-Ramanujam spheres if it bounds both a homology plane and a Mazur/Poénaru type contractible 4-manifold. In [AS ¸22], Aguilar and the author found several infinite families of Kirby-Ramanujam spheres in the light of Problem E.

In [START_REF] Akbulut | A fake compact contractible 4-manifold[END_REF], Akbulut introduced very crucial geometric objects called corks. These are defined to be contractible smooth 4-manifolds together with involutions on the boundary 3-manifolds, which extend to self-homeomorphisms but not to self-diffeomorphisms of the ambient manifolds. As they generate all exotic phenomena for simply-connected 4-manifolds via cork twists [START_REF] Curtis | A decomposition theorem for h-cobordant smooth simply-connected compact 4-manifolds[END_REF][START_REF] Matveyev | A decomposition of smooth simply-connected h-cobordant 4-manifolds[END_REF], they draw a special interest in low-dimensional topology. Corks have recently been studied extensively using Heegaard Floer homology by Dai, Hedden and Mallick [START_REF] Dai | Corks, involutions, and Heegaard Floer homology[END_REF], and they introduced an algebraic object called homology bordism group of involutions Θ τ Z as a modification of the homology cobordism group Θ 3 Z . However, the following question remains a very interesting open problem: Problem H. Is there any Seifert fibered space Σ(a 1 , . . . , a n ) bounding a cork? Seifert fibered spaces cannot appear as the boundaries homology planes due to Orevkov [START_REF] Yu | Acyclic algebraic surfaces bounded by Seifert spheres[END_REF]. However, the splice of Seifert manifolds along their singular fibers are shown to bound homology planes [AS ¸22]. Since they also bound contractible 4-manifolds, we can pose the following problem. If such a homology 3-sphere exists, then after possibly applying cork twists, we can glue these contractible 4-manifolds along their common boundary. This gives a homotopy 4-sphere so that it is homeomorphic to the 4-sphere S 4 by Freedman [START_REF] Freedman | The topology of four-dimensional manifolds[END_REF]. Therefore, this 4-manifold would be a new potential candidate counterexample to the smooth Poincaré Conjecture in dimension 4.

Problem I. Is there any homology 3-sphere bounding both a cork and a contractible homology plane?

Using the surgery descriptions of Σ(p, q, pq ∓ 1) in terms of torus knots, one can prove the following theorem as an immediate corollary of the main results of Gordon [START_REF] Gordon | Knots, homology spheres, and contractible 4-manifolds[END_REF] and Lidman, Karakurt, and Tweedy [START_REF] Karakurt | Heegaard Floer homology and splicing homology spheres[END_REF]. For the constructive part, an alternative direct proof can be given by finding the plumbing graphs of splices explicitly [START_REF] Eisenbud | Three-dimensional link theory and invariants of plane curve singularities[END_REF] and doing Kirby calculus. The obstruction of knots bounding smooth disks requires the result of Lidman and Tweedy [START_REF] Lidman | A note on concordance properties of fibers in Seifert homology spheres[END_REF].

Theorem P. Let K(pq ∓ 1) denote the singular fiber in Σ(p, q, pq ∓ 1). Then K(pq ∓ 1) is not smoothly slice in Σ(p, q, pq ∓ 1), and Σ(p, q, pq ∓ 1) does not bound a contractible 4-manifold. However, the following splicing homology 3-spheres bound Poénaru manifolds with one 0-handle, p 1-handles, and p 2-handles: Σ(p, q, pq -1) ⊲⊳ K(pq-1) K(pq+1) Σ(p, q, pq + 1). Independent results of Hirsch, Rokhlin, and Wall around the 1960s indicate that every homology 3-sphere is smoothly embedded in S 5 , see [START_REF] Hirsch | The imbedding of bounding manifolds in euclidean space[END_REF], [START_REF]The embedding of non-orientable three-manifolds into five-dimensional euclidean space[END_REF] and [START_REF] Wall | All 3-manifolds imbed in 5-space[END_REF]. Making the target space smaller, we may ask which homology 3-spheres can be embedded in S 4 . In the topological category, the problem has a complete answer thanks to Freedman's celebrated article [START_REF] Freedman | The topology of four-dimensional manifolds[END_REF]: every homology 3-sphere is topologically embedded in S 4 . Adding an extra smoothness condition, we can state another wide open problem in low-dimensional topology.

Problem J (Problem 3.20, [START_REF]Problems in low dimensional manifold theory[END_REF]). Which homology 3-spheres can be smoothly embedded in S 4 ? Another simple algebraic topology observation indicates that a homology 3-sphere smoothly embedded in S 4 splits S 4 into two homology 4-balls. Therefore, homology cobordism invariants provide obstructions for the smooth embeddings of homology 3-spheres in S 4 .

One can wonder about the reverse direction of the above observation. Studying branched coverings of cross sectional slices of knotted 2-spheres S 2 in S 4 , McDonald provided the first examples of homology 3-spheres which are smoothly embedded in a homology 4-ball but not any homotopy 4-sphere [START_REF] Mcdonald | Surface slices and homology spheres[END_REF]. His examples are certain double cyclic branched coverings of spuns of torus knots. We may address this implication to Seifert fibered manifolds and ask: Problem K. Is there any Seifert fibered sphere which bounds a homology 4-ball but cannot be smoothly embedded in S 4 ? 2.3. Generators of Θ 3 Z . The first result concerning the generators of Θ 3 Z was owed to Freedman and Taylor.

Theorem Q (Corollary 1B, [START_REF] Michael | Λ-splitting 4-manifolds[END_REF]). The group Θ 3 Z is generated by homology 3-spheres which are boundaries of 4-manifolds having the homology of S 2 × S 2 .

A homology 3-sphere Y is called irreducible 21 if every embedded 2-sphere S 2 in Y is the boundary of an embedded B 3 . Livingston showed that irreducible homology 3-spheres are generic enough to generate the homology cobordism group.

Theorem R (Theorem 3.2, [START_REF] Livingston | Homology cobordisms of 3-manifolds, knot concordances, and prime knots[END_REF]). Every class in Θ 3 Z admits has an irreducible representative. We call a homology 3-sphere Y hyperbolic if Y is a geodesically complete Riemannian 3-manifold of constant sectional curvature -1. The geodesically completeness requires that at any point p ∈ Y , the geodesic exponential map exp p on T p Y is the entire tangent space at p. Myers proved that every homology cobordism class admits a hyperbolic representative.

Theorem S (Theorem 5.1, [START_REF] Myers | Homology cobordisms, link concordances, and hyperbolic 3-manifolds[END_REF]). Every class in Θ 3 Z admits has a hyperbolic representative. A pair (Y, ξ) is called Stein fillable if there is a Stein domain (X, J, φ) where φ is bounded below, Y is an inverse image of an regular value of φ, and ξ = ker(-dφ • J) is an induced contact structure. Mukherjee showed that the generator set of Θ 3 Z can be chosen as Stein fillable homology 3-spheres [START_REF] Mukherjee | A note on embeddings of 3-manifolds in symplectic 4-manifolds[END_REF].

Theorem T (Theorem 1.5, [START_REF] Mukherjee | A note on embeddings of 3-manifolds in symplectic 4-manifolds[END_REF]). The group Θ 3 Z is generated by Stein fillable homology 3spheres.

In contrast to the above positive directional results, various computations of homology cobordism invariants of homology 3-spheres lead to the following observation of Frøyshov [START_REF]Mod 2 instanton Floer homology[END_REF], Stoffregen [START_REF] Stoffregen | Manolescu invariants of connected sums[END_REF], Lin [START_REF] Lin | The surgery exact triangle in Pin(2)-monopole Floer homology[END_REF], and Nozaki, Sato, and Taniguchi [START_REF] Nozaki | Filtered instanton Floer homology and the homology cobordism group[END_REF].

Theorem U. There exist several infinite families of homology 3-spheres that are not homology cobordant to any Seifert fibered homology sphere.

In [START_REF] Hendricks | Surgery exact triangles in involutive Heegaard Floer homology[END_REF], Hendricks, Hom, Stoffregen, and Zemke established a surgery exact triangle formula for the involutive Heegaard Floer homology. As an application, they provided a homology 3-sphere not homology cobordant to any linear combination of Seifert fibered spheres, [HHSZ20, Theorem 1.1]. This manifold is obtained by integral Dehn surgery on a combination of torus knots and a cable of a torus knot: S 3 +1 (-T 6,7 #T 6,13 # -T 2,3;2,5 ). Hence, Seifert fibered manifolds are not generic enough to generate Θ 3 Z : Theorem V (Theorem 1.1, [START_REF] Hendricks | Surgery exact triangles in involutive Heegaard Floer homology[END_REF]). The Seifert fibered spheres cannot generate the group Θ 3 Z . Therefore, Θ 3 SF is a proper subgroup of Θ 3 Z . Further, Θ 3 Z /Θ 3 SF has a Z subgroup. Here, Θ 3 SF denotes the subgroup of Θ 3 Z generated by Seifert fibered spheres. Note that S 3 = Σ(1, q, r). By using Kirby calculus, Nozaki, Sato, and Taniguchi proved that the example of Hendricks, Hom, Stoffregen, and Zemke is a graph homology 3-sphere, see [NST19, Appendix A]. Therefore, we can ask the following question as to the next step of obstructions: Problem N. Do surgeries on knots in S 3 generate Θ 3 Z ?

2.4. Torsion of Θ 3 Z . In their seminal articles, Matumoto [START_REF] Matumoto | Triangulation of manifolds, Algebraic and geometric topology[END_REF] and Galewski and Stern [GS80] reduced the triangulation conjecture to a problem about the interplay between 3-and 4-manifolds up to homology cobordism. Since then Θ 3 Z has been a very attractive object in low-dimensional topology. A splitting would provide a homology 3-sphere Y such that µ(Y ) = 1 and Y is 2-torsion in the homology cobordism group.

Theorem X ([Mat78, GS80]

). For n ≥ 5, there exist non-triangulable topological n-manifolds if and only if the following exact sequence does not split Z . Independently, Birman (in an unpublished note), Galewski and Stern [START_REF] Galewski | Orientation-reversing involutions on homology 3-spheres[END_REF], and Hsiang and Pao [START_REF] Wu | The homology 3-spheres with involutions[END_REF] partially answered this question affirmatively for homology 3-spheres with orientation-reversing involutions. Finally, Casson showed that the µ-invariant must be zero for such a homology 3-sphere Y in general [START_REF] Akbulut | Casson's invariant for oriented homology 3-spheres[END_REF].

Next, Saveliev [START_REF]Fukumoto-Furuta invariants of plumbed homology 3-spheres[END_REF] proved that Z 2 torsion in the homology cobordism group cannot be generated by Seifert fibered spaces (plumbing homology 3-spheres in general) with non-trivial Rokhlin invariants. He showed that such a Seifert manifold must be of infinite order by extending the previous work of Fukumoto, Furuta, and Ue [START_REF] Fukumoto | W -invariants and Neumann-Siebenmann invariants for Seifert homology 3-spheres[END_REF].

Finally, Manolescu [START_REF]Pin(2)-equivariant Seiberg-Witten Floer homology and the triangulation conjecture[END_REF] constructed Pin(2)-equivariant Seiberg-Witten Floer homology and provided three sensitive invariants of homology 3-spheres. They are called α, β, and γ invariants of Θ 3 Z . Specifically, the Manolescu β-invariant has the following three crucial properties:

(

1) β(-Y ) = -β(Y ), (2) 
-β(Y ) = µ(Y ) mod 2 where µ is the Rokhlin invariant, (3) β is an invariant of Θ 3 Z . The existence of the Manolescu β-invariant guaranteed that the exact sequence (⋆) does not split and leads to the disproof of the triangulation conjecture, see [START_REF]Problems in low dimensional manifold theory[END_REF]Problem 4.4] and [START_REF]Lectures on the triangulation conjecture[END_REF][START_REF]Pin(2)-equivariant Seiberg-Witten Floer homology and the triangulation conjecture[END_REF][START_REF]Homology cobordism and triangulations[END_REF]. For this achievement, the homology cobordism invariance of the Manolescu βinvariant is particularly critical because beforehand there exist invariants satisfying properties both (1) and (2) but not (3); for instance, the Casson invariant λ. Therefore, it cannot be used for the rejection of the triangulation conjecture for high-dimensional manifolds; however, it is sufficient for disproval of the conjecture for the particular case of n = 4. See the book of Akbulut and McCarthy [START_REF] Akbulut | Casson's invariant for oriented homology 3-spheres[END_REF] for details. For an alternative disproof of the triangulation conjecture for high-dimensional manifolds using a similar strategy, see F. Lin's monograph [START_REF]A Morse-Bott approach to monopole Floer homology and the triangulation conjecture[END_REF].

Since the Manolescu β invariant provides an integral lift of the Rokhlin invariant µ, he also ruled out the existence of Z 2 torsion in Θ 3 Z for the following type of homology 3-spheres: ]). Let Y be a homology 3-sphere such that µ(Y ) = 1. Then Y cannot represent Z 2 torsion in Θ 3 Z . In other words, Y #Y cannot bound a homology 4-ball.

Theorem Y (Corollary 1.2, [ Man16b 
Currently, we do not know whether there exists a non-trivial homology 3-sphere Y with a vanishing µ-invariant so that Y #Y bounds a contractible 4-manifold or a homology 4-ball. Also, we have no further obstructions for other types of torsion in Θ 3 Z . Hence we curiously state the following problem:

Problem O. Does the group Θ 3 Z contain any torsion Z n for n ≥ 2? Modulo torsion, is Θ 3 Z free abelian?

Only for the Z 2 type torsion, there are some new candidates found in the recent work of Boyle and Chen [START_REF] Boyle | Negative amphichiral knots and the half-Conway polynomial[END_REF]. These examples originate from cyclic double branched coverings of S 3 along certain non-slice strongly negative amphichiral knots of determinant 1.

3. Two Relatives of Θ 3 Z Finally, we discuss the close and crucial relationship between the knot concordance group C, the homology cobordism group Θ 3 Z , and the rational homology cobordism group Θ 3 Q . 3.1. The Elder: The Knot Concordance Group C. A knot K is a smooth embedding of a circle S 1 into S 3 . The knot concordance group C is defined as C = {oriented knots up to isotopy}/ ∼ where the equivalence relation concordance ∼ is given for two arbitrary knots K 0 and K 1 as

K 0 ∼ K 1 ⇐⇒      There exists a cylinder C such that • C ⊂ S 3 × [0, 1], • ∂C = -(K 0 ) ∪ K 1 . S 3 × {0} S 3 × {1} C ≃ S 1 × [0, 1] K0 K1
Fox and Milnor introduced the group C in their celebrated article [START_REF] Fox | Singularities of 2-spheres in 4-space and cobordism of knots[END_REF]. The summation is induced by connected sum of knots. The concordance class of the unknot gives the zero element. Inverse elements are found by mirroring knots and taking their orientations reversal.

Knots concordant with the unknot are said to be slice knots. Equivalently, slice knots are the knots that bound smoothly embedded disks in B 4 . Ribbon knots can be defined by restricting of the handle decomposition of the smooth disks; they are the ones that bound such disks without 2-handles. Clearly, every ribbon knot is a slice. However, the opposite is one of the most famous long-standing problems in knot theory proposed by Fox [START_REF] Fox | A quick trip through knot theory, Topology of 3-manifolds and related topics[END_REF]:

Problem P (Slice-Ribbon Conjecture). Is every slice knot is ribbon?

There are candidates for a counterexample to the slice-ribbon conjecture, provided by Gompf, Scharlemann and Thompson [START_REF] Gompf | Fibered knots and potential counterexamples to the property 2R and slice-ribbon conjectures[END_REF] and Abe and Tagami [START_REF] Abe | Fibered knots with the same 0-surgery and the slice-ribbon conjecture[END_REF]. On the other hand, this conjecture was confirmed for 2-bridge knots by Lisca [START_REF] Lisca | Lens spaces, rational balls and the ribbon conjecture[END_REF][START_REF]Sums of lens spaces bounding rational balls[END_REF] and for most pretzel and Montesinos knots by Greene and Jabuka [START_REF] Greene | The slice-ribbon conjecture for 3-stranded pretzel knots[END_REF] and Lecuona [Lec12,[START_REF]On the slice-ribbon conjecture for pretzel knots[END_REF][START_REF]A note on graphs and rational balls[END_REF][START_REF]Complementary legs and rational balls[END_REF].

In his celebrated work [START_REF]Ribbon concordance of knots in the 3-sphere[END_REF], Gordon defined the notion of ribbon concordance as an analogue of ribbon knots so that the Morse function induced by the concordance S 3 × [0, 1] [0, 1] has no critical points of index 2. Furthermore, Gordon conjectured that the ribbon concordance is a partial order; this was recently proved by Agol [START_REF] Agol | Ribbon concordance of knots is a partial order[END_REF]. Zemke [START_REF] Zemke | Knot Floer homology obstructs ribbon concordance[END_REF] initiated an approach to the study of ribbon concordance using knot Floer homology, which was generalized to 3-manifolds by Daemi, Lidman, Vela-Vick, and Wong [START_REF] Daemi | Ribbon homology cobordisms[END_REF]. Their formalism also provides important links to Thurston geometries.

A careful analysis of the classical articles of Fox and Milnor [Fox62, FM66], Murasugi [START_REF] Murasugi | On a certain numerical invariant of link types[END_REF], Robertello [START_REF] Robertello | An invariant of knot cobordism[END_REF], Levine [START_REF]Knot cobordism groups in codimension two[END_REF] and Tristam [START_REF] Tristram | Some cobordism invariants for links[END_REF] ensured the existence of infinitely generated Z ∞ and Z ∞ 2 summands of the knot concordance group so that we pose the following first question regarding the algebraic structure of C: [START_REF] Levine | Invariants of knot cobordism[END_REF]. First, Casson and Gordon [START_REF] Casson | On slice knots in dimension three, Algebraic and geometric topology[END_REF] proved that φ is not an isomorphism. Next, Jiang [START_REF] Ju | A simple proof that the concordance group of algebraically slice knots is infinitely generated[END_REF] improved their result by showing that Ker(φ) has a Z ∞ subgroup. Finally, Livingston exhibited that Ker(φ) has a Z ∞ 2 subgroup [START_REF]Infinite order amphicheiral knots[END_REF]. The following question remains open: Problem R. Does Levine's homomorphism φ split? An affirmative answer to Problem R will provide elements of order 4 in C. Furthermore, it will guarantee that elements of order 2 do not arise only from negative amphicheiral knots, see [START_REF] Soo | An endomorphism of the Khovanov invariant[END_REF] for more details. Furthermore, obstructions to elements of order 4 were found by Livingston and Naik [START_REF] Livingston | Obstructing four-torsion in the classical knot concordance group[END_REF]. Therefore, Problem R is closely related to the remaining finite part of the knot concordance group.

Problem Q. Is the group C isomorphic to Z ∞ ⊕ Z ∞ 2 ? Levine's eminent articles provide a surjective homomorphism φ : C Z ∞ ⊕ Z ∞ 2 ⊕ Z ∞ 4 [Lev69b,

Problem S. Does the group Θ 3

Z contain any torsion Z n for n > 2?

In [START_REF] Cochran | Knot concordance, Whitney towers and L 2 -signatures[END_REF][START_REF]Structure in the classical knot concordance group[END_REF], Cochran, Orr and Teichner introduced and studied the deep structure of C by forming a filtration of the group via an infinite sequence of subgroups . . . ⊂ F n+1 ⊂ F n.5 ⊂ F n ⊂ . . . ⊂ F 1.5 ⊂ F 1 ⊂ F 0.5 ⊂ F 0 ⊂ C where F 0 , F 0.5 , and F 1.5 respectively correspond to knots with trivial Arf invariant, knots in the kernel of φ, and knots having vanishing Casson-Gordon invariants. This filtration structure is highly non-trivial; in particular, Cochran, Harvey, and Leidy proved that each quotient

F n /F n.5 contains a Z ∞ ⊕ Z ∞ 2 subgroup [CHL09, CHL11
]. The group C and Θ 3 Z are related by the following maps

S 3 1/n : C Θ 3 Z , [K] [S 3 1/n (K)
]. These maps are not homomorphisms but send identity to identity, see classical work of González-Acuña [START_REF] Javier | Dehn's construction on knots[END_REF] and Gordon [START_REF] Gordon | Knots, homology spheres, and contractible 4-manifolds[END_REF].

The set of maps S 3 1/n was used by Peters to study the knot concordance with the help of the Heegaard Floer theoretic d-invariant [START_REF] Thomas | A concordance invariant from the Floer homology of ∓1 surgeries[END_REF]. The same technique was adapted in the work of Hendricks and Manolescu [START_REF] Hendricks | Involutive Heegaard Floer homology[END_REF] in the setup of involutive Heegaard Floer homology. This approach can be applied a priori to the other homology cobordism invariants.

Finally, we briefly mention key obstructive techniques originating from several theories of knots, 3-and 4-manifolds. Akbulut and Matveyev [START_REF] Akbulut | Exotic structures and adjunction inequality[END_REF] and Rudolph [START_REF] Rudolph | An obstruction to sliceness via contact geometry and "classical" gauge theory[END_REF] used contact geometry in the spirit of Eliashberg's work [START_REF] Eliashberg | Topological characterization of Stein manifolds of dimension > 2[END_REF]. The gauge theoretic methods of Donalson and Taubes [START_REF] Donaldson | An application of gauge theory to four-dimensional topology[END_REF][START_REF] Henry | Gauge theory on asymptotically periodic 4-manifolds[END_REF] were adapted by Cochran and Gompf [START_REF] Casson | Cobordism of classical knots, À la recherche de la topologie perdue[END_REF], Fintushel and Stern [START_REF]Pseudofree orbifolds[END_REF]. Casson-Gordon invariants [START_REF] Casson | On slice knots in dimension three, Algebraic and geometric topology[END_REF][START_REF] Casson | Cobordism of classical knots, À la recherche de la topologie perdue[END_REF] were applied successfully by Litherland [START_REF]Cobordism of satellite knots, Four-manifold theory[END_REF], Kirk and Livingston [KL99], Friedl [START_REF] Friedl | Eta invariants as sliceness obstructions and their relation to Casson-Gordon invariants[END_REF], Kim [START_REF] Kim | Polynomial splittings of Casson-Gordon invariants[END_REF], and Aceto, Golla, and Lecuona [START_REF] Aceto | Handle decompositions of rational homology balls and Casson-Gordon invariants[END_REF]. The knot Floer homology independently defined Ozsváth and Szabó [OS04b] and Rasmussen [START_REF] Andrew | Floer homology and knot complements[END_REF] has been used extensively, see for example Ozsváth and Szabó [START_REF] Ozsváth | Knot Floer homology and the four-ball genus[END_REF] and Ozsváth, Szabó, and Stipsicz [START_REF] Ozsváth | Concordance homomorphisms from knot Floer homology[END_REF]. Furthermore, Khovanov homology and Lee's refinement [START_REF] Khovanov | A categorification of the Jones polynomial[END_REF][START_REF] Soo | An endomorphism of the Khovanov invariant[END_REF] provided powerful invariants and techniques through the work of Rasmussen [START_REF] Rasmussen | Khovanov homology and the slice genus[END_REF], Kronheimer and Mrowka [START_REF]Gauge theory and Rasmussen's invariant[END_REF], Lipshitz and Sarkar [START_REF] Lipshitz | A refinement of Rasmussen's S-invariant[END_REF], and Piccirillo [START_REF] Piccirillo | The Conway knot is not slice[END_REF]. Recently, Dai, Hom, Stoffregen, and Truong produced involutive Floer theoretic invariants [START_REF]More concordance homomorphisms from knot Floer homology[END_REF], building on the work of Hendricks and Manolescu [START_REF] Hendricks | Involutive Heegaard Floer homology[END_REF]. Moreover, Khovanov-Rozansky homology [START_REF] Khovanov | Matrix factorizations and link homology[END_REF] was used by Lobb [START_REF] Lobb | A slice genus lower bound from sl(n) Khovanov-Rozansky homology[END_REF] and Lewark [Lew14] to provide quantum obstructions. Finally, instanton knot Floer homology [START_REF]Instanton homology, surgery, and knots, Geometry of low-dimensional manifolds[END_REF] has yielded crucial results led by Kronheimer and Mrowka [KM10, KM11], Hedden and Kirk [START_REF] Hedden | Instantons, concordance, and Whitehead doubling[END_REF], and Baldwin and Sivek [START_REF] Baldwin | Framed instanton homology and concordance[END_REF][START_REF]Framed instanton homology and concordance[END_REF].

For more details and further advancements, see survey of Gordon [START_REF]Some aspects of classical knot theory, Knot theory[END_REF], Livingston [START_REF] Soo | An endomorphism of the Khovanov invariant[END_REF], Hom [START_REF] Hom | A survey on Heegaard Floer homology and concordance[END_REF][START_REF]Homology cobordism, knot concordance, and Heegaard Floer homology[END_REF], and problem lists [Pr111, DFK + 16, HPR19].

The Younger: The Rational Homology Cobordism Group Θ 3

Q . Changing the role of integer coefficients with rational ones in the definition of Θ 3 Z , we obtain the rational homology cobordism group Θ 3 Q . Deciphering the trivial class of this group has been of special interest in low-dimensional topology, constituting the following problem attributed to Casson:

Problem T (Problem 4.5, [START_REF]Problems in low dimensional manifold theory[END_REF]). Which rational homology 3-spheres bound rational homology 4-balls?

From both constructive and obstructive perspectives, Problem T has been studied extensively with the help of the techniques introduced by Casson and Gordon [START_REF] Casson | On slice knots in dimension three, Algebraic and geometric topology[END_REF]. For each prime p and r ≥ 1, we have a group homomorphism

Σ p r : C Θ 3 Q , [K] [Σ p r (K)
]. The homomorphism of Casson and Gordon was used for the construction of concordance invariants. See the work of Manolescu and Owens [START_REF] Manolescu | A concordance invariant from the Floer homology of double branched covers[END_REF], Jabuka [START_REF] Jabuka | Concordance invariants from higher order covers[END_REF], Alfieri, Kang and Stipsicz [START_REF] Alfieri | Stipsicz, Connected Floer homology of covering involutions[END_REF], and Baraglia [START_REF] Baraglia | Knot concordance invariants from Seiberg-Witten theory and slice genus bounds in 4-manifolds[END_REF].

The work of Lisca [START_REF] Lisca | Lens spaces, rational balls and the ribbon conjecture[END_REF][START_REF]Sums of lens spaces bounding rational balls[END_REF] on the slice-ribbon conjecture for 2-bridge knots led to the classification of lens spaces and sums of lens spaces bounding rational homology 4-balls. Similarly, the articles of Greene and Jabuka [START_REF] Greene | The slice-ribbon conjecture for 3-stranded pretzel knots[END_REF] and Lecuona [Lec12,[START_REF]On the slice-ribbon conjecture for pretzel knots[END_REF][START_REF]A note on graphs and rational balls[END_REF][START_REF]Complementary legs and rational balls[END_REF] provided Seifert fibered rational homology 3-spheres bounding rational homology 4-balls. Recently, Aceto and Golla [START_REF] Aceto | Dehn surgeries and rational homology balls[END_REF] and Aceto, Golla, Larson, and Lecuona [START_REF] Aceto | Surgeries on torus knots, rational balls, and cabling[END_REF] classified surgeries on torus knots that bound rational balls. Also, Lokteva [START_REF] Lokteva | Surgeries on iterated torus knots bounding rational homology 4-balls[END_REF] extended their results to cables of torus knots. Furthermore, Maruyama [START_REF] Maruyama | Rational homology 3-spheres which bound rationally acyclic 4-manifolds[END_REF], Fintushel and Stern [START_REF] Fintushel | Constructing lens spaces by surgery on knots[END_REF], Casson and Harer [CH81], Etnyre and Tosun [START_REF] Etnyre | Homology spheres bounding acyclic smooth manifolds and symplectic fillings[END_REF], Simone [START_REF]Using rational homology circles to construct rational homology balls[END_REF][START_REF] Simone | Classification of torus bundles that bound rational homology circles[END_REF] and Lokteva [START_REF]Constructing rational homology 3-spheres that bound rational homology 4-balls[END_REF] constructed various rational homology 3-spheres bounding rational homology 4-balls by using Kirby calculus and knot theory; see also [START_REF] Lisca | Lens spaces, rational balls and the ribbon conjecture[END_REF][START_REF]Sums of lens spaces bounding rational balls[END_REF][START_REF] Lecuona | On the slice-ribbon conjecture for Montesinos knots[END_REF][START_REF] Aceto | Surgeries on torus knots, rational balls, and cabling[END_REF] for the construction of certain spaces.

Several theories extended to rational homology 3-spheres and their invariants can be extensively used for powerful obstructions. Consult the articles by Owens and Strle [START_REF] Owens | Rational homology spheres and the four-ball genus of knots[END_REF], Simone [START_REF] Simone | Classification of torus bundles that bound rational homology circles[END_REF], Choe and Park [START_REF] Heon | Spherical 3-manifolds bounding rational homology balls[END_REF], and Greene and Owens [GO22] using Donaldson's diagonalization theorem and Heegaard Floer homology; Casson and Gordon [START_REF] Casson | Cobordism of classical knots, À la recherche de la topologie perdue[END_REF], Fintushel and Stern [START_REF] Fintushel | Rational homology cobordisms of spherical space forms[END_REF], Matić [START_REF] Matić | SO(3)-connections and rational homology cobordisms[END_REF], Ruberman [START_REF] Daniel Ruberman | Rational homology cobordisms of rational space forms[END_REF], Yu [START_REF] Zhen | A note on an invariant of Fintushel and Stern[END_REF], and Mukawa [START_REF] Mukawa | Rational homology cobordisms of Seifert fibred rational homology three spheres[END_REF] using Casson-Gordon invariants and gauge theory; Wahl [START_REF] Wahl | Smoothings of normal surface singularities[END_REF][START_REF]On rational homology disk smoothings of valency 4 surface singularities[END_REF], Stipsicz, Szabó, and Wahl [START_REF] András | Rational blowdowns and smoothings of surface singularities[END_REF], and Bhupal and Stipsicz [BS11] using singularity theory; Baraglia and Hekmati using Seiberg-Witten-Floer theory [START_REF] Baraglia | Equivariant Seiberg-Witten-Floer cohomology[END_REF][START_REF]Brieskorn spheres, cyclic group actions and the Milnor conjecture[END_REF].

A combination of the classical work of Casson and Harer [START_REF] Casson | Some homology lens spaces which bound rational homology balls[END_REF] and Litherland [START_REF] Litherland | Signatures of iterated torus knots, Topology of low-dimensional manifolds[END_REF] indicate that Ker(Σ p ) contains a Z ∞ subgroup for any prime p. In particular, Aceto and Larson showed that Ker(Σ 2 ) has a Z ∞ summand. Further, Aceto, Celoria, and Park [START_REF] Aceto | Rational cobordisms and integral homology[END_REF] proved that Coker(Σ p r ) contains a subgroup isomorphic to Z ∞ if p ≡ 3(mod4) and Z ∞ ⊕ Z ∞ 2 otherwise. Problem U. Describe other types of subgroups or summands of Ker(Σ p r ) and Coker(Σ p r ).

In particular, the linear independence of collections of rational homology 3-spheres in Θ 3 Q has been studied by Hedden, Livingston, and Ruberman [START_REF] Hedden | Topologically slice knots with nontrivial Alexander polynomial[END_REF] and Golla and Larson [GL21] using Heegaard Floer homology. See also the work of Mukawa [START_REF] Mukawa | Rational homology cobordisms of Seifert fibred rational homology three spheres[END_REF] in the machinery of gauge theory. Nevertheless, the detection of summands in the rational homology cobordism group is an open problem.

Problem V. Does the group Θ 3

Q contain a Q n summand for n ≥ 1? When Lisca classified connected sums of lens spaces bounding rational homology 4-balls [START_REF]Sums of lens spaces bounding rational balls[END_REF], and he found 2-torsion elements in Θ 3 Q . However, the existence of other types of torsion is currently unknown. Theorem Z. The following homology 3-spheres bound rational homology 4-balls but do not bound homology 4-balls. Therefore, they non-trivially lie in Ker(ψ) since they all have non-vanishing Rokhlin invariant:

(1) Σ(2, 3, 7), Σ(2, 3, 19), (2) Σ(2, 4n + 1, 12n + 5), Σ(3, 3n + 1, 12n + 5) for odd n ≥ 1, (3) Σ(2, 4n + 3, 12n + 7), Σ(3, 3n + 2, 12n + 7) for even n ≥ 2, (4) S 3 -1 (K n ) where K n is the twist knot for odd n ≥ 1. Furthermore, Ker(ψ) has a Z subgroup generated by any single homology 3-sphere listed above except those in (4) because they have non-zero μ-invariants. In particular, µ-invariants of Simone's examples in the item (4) are non-trivial. One can expect that Ker(ψ) might be larger than Z, including some linearly independent infinite subset of these homology 3-spheres. Thus, we ask the following problem, first posed by Akbulut and Larson [START_REF] Akbulut | Brieskorn spheres bounding rational balls[END_REF]:

Problem X. Does Ker(ψ) contain Z ∞ subgroup or Z ∞ summand?
It is worthwhile to note that all current homology cobordism invariants cannot detect the linear independence of Brieskorn spheres listed in Theorem Z in Θ 3 Z , see the discussion in Subsection 2.1.1. This is also true for Simone's family, see surgery formulae of the relevant homology cobordism invariants.

The existence of these homology 3-spheres has a nice application in symplectic geometry. Let (X, ω) be a symplectic 4-manifold. A Stein domain is a triple (X, J, φ) such that J is complex structure on X and φ : X R is a proper plurisubharmonic function. Here, φ provides compact level sets and a symplectic form: φ is smooth such that φ -1 ((-∞, c]) is compact for all c ∈ R and ω φ (v, w) = -d(dφ • J)(v, w) gives a symplectic form. The handle decompositions of Stein domains are completely characterized in the celebrated articles of Eliashberg [START_REF] Eliashberg | Topological characterization of Stein manifolds of dimension > 2[END_REF] and Gompf [START_REF] Gompf | Handlebody construction of Stein surfaces[END_REF]: A 4-manifold is a Stein domain if and only if it has a handle decomposition with 0-handles, 1-handles, and 2-handles; and the 2-handles are attached along Legendrian knots with framing tb -1, where tb denotes the Thurston-Bennequin number.

If we choose any homology 3-sphere listed in Theorem Z, then the handle decomposition of the corresponding rational ball must contain 3-handles by an algebraic topology argument. 23 Then, the above characterization indicates that such a rational homology 4-ball cannot be a Stein domain. Mazur manifolds are potential candidates of Stein domains, but this is not the case for all Mazur manifolds, see the impressive work of Mark and Tosun [START_REF] Mark | Obstructing pseudoconvex embeddings and contractible Stein fillings for Brieskorn spheres[END_REF].

In addition to the non-injectivity of ψ, we know that it is not surjective. In particular, Kim and Livingston proved that Coker(ψ) has a Z ∞ ⊕ Z ∞ 2 subgroup [START_REF] Kim | Nonsplittability of the rational homology cobordism group of 3manifolds[END_REF]. This was reproved by Aceto and Larson [START_REF] Aceto | Knot concordance and homology sphere groups[END_REF] as a consequence of a more general fact. They proved that ψ Θ 3 Z and L intersect trivially where L denotes the subgroup of Θ 3 Q generated by lens spaces. In particular, the structure of L has been studied in [START_REF] Aceto | Knot concordance and homology sphere groups[END_REF][START_REF] Aceto | Rational cobordisms and integral homology[END_REF]. Finally, we can ask:

Problem Y. Does Coker(ψ) contain a Z ∞ ⊕ Z ∞
2 summand? Does it have other types of subgroups or summands?

In the light of the results therein and in Section 2.2, we can also address the following explicit problem:

Problem Z. Do the Brieskorn spheres Σ(2, 3, 6n + 1) bound rational homology 4-balls (resp. homology 4-balls) for odd n ≥ 5 (resp. even n ≥ 6)?

The notion of rational homology cobordism can be generalized among all closed connected oriented 3-manifolds. Such a homology cobordism is said to be ribbon if the cobordism 4-manifold is built by attaching only 1-and 2-handles. This give rises to a preorder on the set of homeomorphism classes of closed connected oriented 3-manifolds. Daemi, Lidman, Vela-Vick, and Wong conjectured that this preorder is in fact a partial order. Inpendently, Friedl, Misev, and Zentner [START_REF] Friedl | Rational homology ribbon cobordism is a partial order[END_REF] and Huber [START_REF] Huber | Ribbon cobordisms as a partial order[END_REF] proved this conjecture affirmatively, relying on the result of Agol [START_REF] Agol | Ribbon concordance of knots is a partial order[END_REF].

Appendix: Examples of Homology 3-Spheres

In the wide world of closed connected oriented 3-manifolds, there is a simple characterization of homology 3-spheres Y thanks to Poincaré duality and universal coefficient theorem: H 1 (Y ; Z) = 0. Since the abelianization of π 1 (Y ) gives H 1 (Y ; Z) due to Hurewicz theorem, they are even easily recognized. In this appendix, we discuss several constructions of homology 3-spheres, our main references are Neumann and Raymond [START_REF] Walter | Seifert manifolds, plumbing, µ-invariant and orientation reversing maps, Algebraic and geometric topology[END_REF], Eisenbud and Neumann [START_REF] Eisenbud | Three-dimensional link theory and invariants of plane curve singularities[END_REF], Gompf and Stipsicz [GS99], Saveliev [START_REF]Invariants for homology 3-spheres[END_REF], and Akbulut [START_REF]4-manifolds[END_REF].

The first example of homology 3 spheres was given by Poincaré [START_REF] Poincaré | Cinquième complément à l'analysis situs[END_REF] as a counterexample to the first version of the Poincaré conjecture. This 3 manifold is known as Poincare homology sphere and the exposition of Kirby and Scharlemann can be seen for the eight equivalent descriptions of the Poincaré homology sphere [START_REF] Kirby | Eight faces of the Poincaré homology 3-sphere, Geometric topology[END_REF].

The next source for homology 3-spheres was found by Dehn [START_REF] Dehn | Die Gruppe der Abbildungsklassen[END_REF] by providing a passage from 1-manifolds -knots and links-to 3-manifolds via the topological operation called surgery. Consider the tubular neighborhood of K in S 3 , which is a solid torus ν(K) ≈ S 1 × D 2 . On the boundary torus ∂ν(K), there is a preferred longitude λ, i.e., a simple closed curve with lk(λ, K) = 0, and there is a canonical meridian µ with lk(µ, K) = 1.

A Dehn (p/q)-surgery along K in S 3 is constructed by following two steps. We first drill out the interior of ν(K) from S 3 and consider the knot exterior S 3 \ ν(K). Next, we glue another solid torus D 2 × S 1 to the knot exterior by a homeomorphism ϕ. The resulting closed 3-manifold S 3 p/q (K) is given by

S 3 p/q (K) = S 3 \ ν(K) ∪ ϕ D 2 × S 1 , ϕ(∂D 2 × { * }) = pµ + qλ. Since H 1 (S 3
p/q (K); Z) = Z p , the manifolds of the form S 3 1/n (K) are automatically homology 3spheres. In particular, Dehn showed that the Poincaré homology sphere can be obtained by (-1)surgery along the left-handed trefoil knot T (2, 3) in S 3 .

A framed knot in S 3 is a knot equipped with a smooth nowhere vanishing vector field normal to the knot. Thus a framing of a knot is naturally characterized by its Seifert surface [START_REF]Über das Geschlecht von Knoten[END_REF] and [START_REF] Frankl | Ein Knotensatz mit Anwendung auf die Dimensionstheorie[END_REF] so that the specified longitude is given by 0-framing. 24 The set of framings of a knot is identified with a fixed set of rationals using a Seifert surface, so each knot has a preferred welldefined framing. This process can be naturally generalized to framed links in S 3 , which are disjoint collections of knots in S 3 .

By the eminent results of Lickorish [START_REF] Lickorish | A representation of orientable combinatorial 3-manifolds[END_REF] and Wallace [START_REF] Wallace | Modifications and cobounding manifolds[END_REF], and Kirby [START_REF] Robion | A calculus for framed links in S 3[END_REF]: the map D provided by integral n-surgery D : {framed links in S 3 } {closed 3-manifolds}, L D(L) = S 3 n (L) is many-to-one. In particular, Kirby completely described when two elements can represent the same element in the kernel using Cerf theory [START_REF]La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie[END_REF], i.e., S 3 n (L 1 ) is homeomorphic to S 3 n (L 2 ) if and only if the framed links are related by sequences of two Kirby moves: blow-up and handle-slide. His notable contribution was generalized, ramified, and reproved by Fenn and Rourke [START_REF] Fenn | On Kirby's calculus of links[END_REF], César de Sá [START_REF] César De Sá | A link calculus for 4-manifolds[END_REF], Kaplan [Kap79], Rolfsen [START_REF]Rational surgery calculus: extension of Kirby's theorem[END_REF], Lu [START_REF] Lu | A simple proof of the fundamental theorem of Kirby calculus on links[END_REF], Matveev and Polyak [START_REF] Matveev | A geometrical presentation of the surface mapping class group and surgery[END_REF], and Martelli [START_REF] Martelli | A finite set of local moves for Kirby calculus[END_REF].

The next construction of homology 3-spheres was provided by Seifert [START_REF] Seifert | Topologie Dreidimensionaler Gefaserter Räume[END_REF]. Let e be an integer and let (a 1 , b 1 ), . . . , (a n , b n ) be pairs of relatively prime integers. The Seifert fibered space with base orbifold S 2 is a closed 3-manifold M (S 2 ; e, (a 1 , b 1 ), . . . , (a n , b n )) constructed by starting with S 1 -bundle over an n-punctured S 2 of Euler number n and filling the kth boundary component with (a k /b k )-framed solid torus for k = 1, . . . , n. The core circle of the (a k /b k ) Dehn filling is called a singular fiber, all other fibers are said to be regular fibers. The resulting manifold is a homology 3-sphere if and only if

a 1 . . . a n -e + n k=1 b k a k = ∓1. (1)
This equation results from the fundamental group [ST80, Pg. 398], and hence the first homology group calculations of Seifert fibered spaces, see [START_REF] Seifert | a textbook of topology[END_REF]Pg. 410]. 25 In particular, Poincaré homology sphere corresponds to the Seifert fibered space M (S 2 ; -2, (2, -1), (3, -2), (5, -4)).

Due to Brieskorn [Bri66a,Bri66b], homology 3-spheres also originate from algebraic geometry as seen in the variety of certain complex analytical polynomials. Let p, q and r be relatively coprime positive integers. Let f : C 3 C be a complex analytical polynomial defined by f (x, y, z) = x p + y q + z r . Then the zero set of f is the complex surface V (f ) = {(x, y, z) ∈ C 3 | f (x, y, z) = 0} singular at the origin. If we transversally intersect this variety with the five-sphere S 5 ǫ of arbitrarily small radius ǫ, then the resulting closed 3-manifold is the Brieskorn sphere given by Σ(p, q, r) = V (f ) ⋔ S 5 ǫ ⊂ C 3 . The Poincaré homology sphere matches with the Brieskorn sphere Σ(2, 3, 5). For explicit descriptions of fundamental groups of Brieskorn spheres, see Milnor's paper [START_REF]On the 3-dimensional Brieskorn manifolds M (p, q, r), Knots, groups, and 3-manifolds[END_REF]. In particular, there is an orientation-preserving homemorphism between M (S 2 ; a 1 , a 2 , a 3 ) and Σ(a 1 , a 2 , a 3 ) [NR78, Theorem 4.1]. In general, it is possible to realize Seifert fibered homology 3-spheres as the links of the complex surface singularities of Brieskorn complete intersections V B (a 1 , . . . , a n ) = {b i1 z a 1 1 + . . . + b in z an n = 0, i = 1, . . . , n -2} ⊂ C n where B = (b ij ) is an (n -2) × n-matrix of complex numbers such that each of the maximal minors of B is non-zero, see [NR78, Theorem 2.1].

Let J be an index set. A plumbing graph G is a connected and weighted tree with vertices v j and weights e j for j ∈ J . We can construct a 4-manifold X(G) with a boundary Y (G) by using the plumbing graph. First, for each v j , we assign a D 2 -bundle over S 2 whose Euler number is e j . Next, we plumb two of these D 2 -bundles if there is an edge connecting the vertices, see [NR78, Theorem 5.1].

The fundamental classes of the zero-sections of D 2 -bundles generate the second homology group H 2 (X(G); Z). Thus, for each vertex of G, we have a generator of H 2 (X(G); Z). Hence, the intersection form on H 2 (X(G); Z) is naturally characterized by the corresponding intersection matrix I = (a ij ) whose data is given in the following way:

a ij =      e i , if v i = v j , 1, if v i
and v j is connected by one edge, 0, otherwise.

A plumbing graph G is called unimodular if det(I) = ±1. The unimodularity of the plumbing graph implies that Y (G) is a homology 3-sphere, so it is called a plumbed homology 3-sphere. We may characterize the negative definiteness of G, it requires that I is negative-definite, i.e., signature(I) = -|G|, where |G| denotes the number of vertices of G.

A Seifert fibered homology sphere M (S 2 ; e, (a 1 , b 1 ), . . . , (a n , b n )) can be realized as the boundary of a star-shaped plumbing graph. This graph is unique when it is negative-definite [Sav02b, Section 1.1]. The integer weights t ij in the graph are found by solving the equation (1) and expanding the continued fractions [t i1 , . . . , t im i ] as follows: for each i ∈ {1, . . . , n}, we have In this survey, we focus on the following three families of Brieskorn spheres. Assume that p and q are pairwise coprime, positive, and ordered integers such that 2 ≤ p < q:

a i /b i = [t i1 , t i2 , . . . , t im i ] = t i1 - 1 t i2 - 1 • • • - 1 t im i t
(1) {Σ(p, q, pqn -

1)} ∞ n=1 , (2) {Σ(p, q, pqn + 1)} ∞ n=1 , (3) {Σ(p n , q n , r n )} ∞ n=1 where p n q n + p n r n -q n r n = 1, (a) {Σ(2n, 4n -1, 4n + 1)} ∞ n=1 , (b) {Σ(2n + 1, 4n + 1, 4n + 3)} ∞ n=1 , (c) {Σ(2n + 1, 3n + 2, 6n + 1)} ∞ n=1 , (d) {Σ(2n + 1, 3n + 1, 6n + 5)} ∞
n=1 . Due to the classical result of Moser [START_REF] Moser | Elementary surgery along a torus knot[END_REF], the first two families can be obtained by (-1/n) surgeries along the left-handed torus knots T (p, q) and their mirrors right-handed torus knots T (p, q) in S 3 : Σ(p, q, pqn -1) = S 3 -1/n (T (p, q)), and Σ(p, q, pqn + 1) = S 3 -1/n (T (p, q)). The third family is called almost simple linear graphs and extensively studied in [START_REF]Pseudofree orbifolds[END_REF], [START_REF] Endo | Linear independence of topologically slice knots in the smooth condorcance group[END_REF], and [KS ¸20]. The families (1) and (3) are vast generalizations of the Poincaré homology sphere Σ(2, 3, 5) while the the family (2) is of Σ(2, 3, 7).

Note that there is a family of Brieskorn spheres realized as the boundaries of almost simple graphs which cannot be obtained by surgeries along any knots in S 3 . This surgery obstruction was due to Hom, Karakurt, and Lidman [START_REF] Hom | Surgery obstructions and Heegaard Floer homology[END_REF]. In particular, they showed that Σ(2n, 4n -1, 4n + 1) cannot be realized as knot surgeries for n ≥ 4.

Another classical way to produce homology 3-spheres is the method of cyclic branched coverings of S 3 branched over knots K, which dates back to work of Alexander [START_REF] Alexander | Note on Riemann spaces[END_REF] and Seifert [START_REF] Seifert | Topologie Dreidimensionaler Gefaserter Räume[END_REF]. Let X n (K) be the n-fold regular covering of the knot exterior X(K) = S 3 \ ν(K). Then the n-fold cyclic branched covering of S 3 over K is a closed 3-manifold Σ n (K) = X n (K) ∪ ϕ D 2 × S 1 , ϕ(μ) = µ where µ ⊂ ∂X(K) is the meridian of K and μ is the lift of µ to ∂X n (K). Note that Σ n (K) is a homology 3-sphere when

n k=1 ∆ K e 2πik n = 1
where ∆ K (t) is the Alexander polynomial of K normalized so that there are no negative powers of t and the constant term is positive. The Brieskorn sphere Σ(p, q, r) is an r-fold cyclic branched coverings of S 3 branched over the torus knots T (p, q), see [ Given two homology 3-spheres together with knots inside them, we can produce a new closed 3-manifold by following the agenda of Gordon [START_REF] Gordon | Knots, homology spheres, and contractible 4-manifolds[END_REF].

Let K 1 and K 2 be knots in homology 3-spheres Y 1 and Y 2 with the knot exteriors Y 1 \ ν(K 1 ) and Y 2 \ ν(K 2 ), and the longitude-meridian pairs (λ 1 , µ 1 ) and (λ 2 , µ 2 ) respectively. Consider the following integral 2 × 2 matrix A = a b c d with det(A) = -1. Gordon constructed closed 3manifolds obtained by gluing knot exteriors of homology 3-spheres along their boundary tori by matching longitude-meridian pairs with respect to the matrix A:

Y (K 1 , K 2 , A) = (Y 1 \ ν(K 1 )) ∪ A (Y 2 \ ν(K 2 )) .
Clearly, the resulting manifold is a homology 3-sphere whenever A = a ab + 1 1 b . Gordon studied the problem which Y (K 1 , K 2 , A) bound contractible 4-manifolds and provided several characterizations in terms of sliceness of knots.

The case A = 0 1 1 0 corresponds to switching longitude-meridian pairs of knots inside homology 3-spheres. This construction is of special interest and is known as the splice operation first introduced by Siebenmann [START_REF] Siebenmann | On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3spheres[END_REF]. Given the pairs (Y 1 , K 1 ) and (Y 2 , K 2 ), we will denote the splice of these manifolds along the given knots by

Y 1 ⊲⊳ K 1 K 2 Y 2 .
The concept of the splice became popular after the novel book of Eisenbud and Neumann [START_REF] Eisenbud | Three-dimensional link theory and invariants of plane curve singularities[END_REF] because the splice can be realized as a generalization of several other topological operations including cabling, connected sum, and disjoint union. The splice also has a very crucial role in singularity theory due to Neumann and Wahl [START_REF] Neumann | Casson invariant of links of singularities[END_REF]. For details, one can consult the recent survey of Cueto, Popescu-Pampu, and Stepanov [START_REF] Maria | The Milnor fiber conjecture of Neumann and Wahl, and an overview of its proof[END_REF].

We finally consider the graph 3-manifolds introduced by Waldhausen [START_REF] Waldhausen | Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II[END_REF]. A graph 3manifold is a closed 3-manifold such that it can be cut along a set of disjoint embedded tori T i and has a decomposition with each piece is Σ i × S 1 , where Σ i is a surface with boundary. In the light of JSJ (torus) decomposition theorem (Jaco and Shalen [START_REF] Jaco | Seifert fibered spaces in 3-manifolds[END_REF] and Johannson [START_REF] Johannson | Homotopy equivalences of 3-manifolds with boundaries[END_REF]), a graph homology 3-sphere is a prime homology 3-sphere whose JSJ decomposition contains only Seifert fibered pieces. See Neumann's paper [START_REF]Graph 3-manifolds, splice diagrams, singularities, Singularity theory[END_REF] and its appendix, and Saveliev's book [START_REF]Invariants for homology 3-spheres[END_REF] for further discussions.

Notes

1. The terms "h-cobordism" and "J-equivalence" were used interchangeably in these references.

2. The topological (resp. piecewise linear, and smooth) Poincaré conjecture asserts that every topological (resp. piecewise linear, and smooth) homotopy n-sphere is homeomorphic (resp. piecewise linear homeomorphic, and diffeomorphic) to S n . The topological and piecewise linear Poincaré conjectures were both proved for n ≥ 5 in aforementioned articles. The particular case of n = 4 for the topological 4. The smooth Poincaré conjecture is false in general. For precise expositions, consult the introduction of [START_REF] Wang | The triviality of the 61-stem in the stable homotopy groups of spheres[END_REF] and also see the papers of Isaksen [START_REF] Daniel | Stable stems[END_REF] and Isaksen, Wang, and Xu [START_REF]Stable homotopy groups of spheres[END_REF].

5. Similarly, "π-manifold" and "s-parallelizable" as well as "surgery" and "spherical modification" were different names for the same notion. An n-manifold M ⊂ R n+q is called a π-manifold if its normal bundle ν(M ) is trivial, i.e., ν(M ) is diffeomorphic to M × R q .

6. For the other reformulations of the Rokhlin invariant µ in terms of the characterization of a 4-manifold, see the recent ICM 2022 paper of Finashin, Kharlamov, and Viro [START_REF] Finashin | Rokhlin's signature theorems[END_REF].

7. Note that the homology cobordism group also appeared with notations Θ H 3 or H 3 in the literature of the 1970-80s.

8. In our convention, Z ∞ always stands for ∞ n=1 Z. 11. This result cannot be generalized to even values of n since Σ(2, 3, 13) and Σ(2, 3, 25) are known to bound contractible 4-manifolds.

12. Explicitly, the knot K can be taken as the mirrors K * n of the 2-bridge knots Kn corresponding to the rational number 2 4n-1 as hyperbolic examples. For the satellite type of examples, one can pick the (2, q)-cable of any knot K with odd q ≥ 3, see [START_REF] Nozaki | Filtered instanton Floer homology and the homology cobordism group[END_REF].

13. The knot K can be chosen as either a knot having a transverse representative with positive self-linking number, or quasi-positive knot which is not smoothly slice, or an alternating knot with negative signature σ, under the convention σ(T (2, 3)) = -2, see [START_REF] Baldwin | Framed instanton homology and concordance[END_REF] and [START_REF]Framed instanton homology and concordance[END_REF].

14. The knot K can be chosen as either a quasi-positive knot which is not smoothly slice or an alternating knot with negative signature.

15. Under these conditions, Daemi, Imori, Sato, Scaduto, and Taniguchi provided two-parameter family of bridge knots Km,n = K(212mn -68n + 53, 106m -34) (m and n are fixed) such that (1/k)-surgery on the mirrors of Km,n are linearly independent in the homology cobordism group yet Km,n are torsion in the algebraic concordance group of knots.

16. Note that the involutive correction terms d and d in [START_REF] Hendricks | Involutive Heegaard Floer homology[END_REF] and Manolescu invariants α, β and γ in [START_REF]Pin(2)-equivariant Seiberg-Witten Floer homology and the triangulation conjecture[END_REF] are not homomorphisms. 17. Since positive knots in S 3 are quasi-positive and not smoothly slice due to Rasmussen [START_REF]Khovanov homology and the slice genus[END_REF], the work of Baldwin and Sivek also generalizes a result of Gompf and Cochran [CG88]: S 3 1/n (K) individually generates a Z subgroup in Θ 3 Z when K is a positive knot in S 3 .

18. There are two h-invariants of Frøyshov: the "old" one [START_REF] Frøyshov | Equivariant aspects of Yang-Mills Floer theory[END_REF] and the "new" one [START_REF]Monopole Floer homology for rational homology 3-spheres[END_REF]. To avoid ambiguity, we follow the notation that appeared in Manolescu's survey [START_REF]Four-dimensional topology[END_REF], called the "new" h-invariant δ-invariant.

19. In general, it is known for a homology 3-sphere which bounds a simply-connected 4-manifold with non-standard definite intersection form. Taubes attributed this result to Akbulut.

20. Note that ∂X(1) = Σ(2, 5, 7) and ∂X ′ (1) = Σ(3, 4, 5), compare with [AK79], [START_REF] Casson | Some homology lens spaces which bound rational homology balls[END_REF], and [S ¸av20a]. Therefore, they are not Seifert fibered unless n = 1.

21. A homology 3-sphere Y is said to be prime if it cannot be written as a connected sum of two homology 3-spheres nontrivially (i.e. either summand is not S 3 ). For homology 3-spheres, sometimes the terms of "prime" and "irreducible" can be used interchangeably unless Y = S 3 , see [Mil62, Lemma 1].

22. Note that these families of Brieskorn spheres all bound rational homology 4-balls for all values of n. Simone's family can be generalized in the sense that S 3 -1 (K) (resp. S 3 +1 (K)) bounds a rational homology 4-ball when K is an unknotting number one knot with a positive (resp. negative) crossing that can be switched to unknot K.

23. One can consult the paper of Akbulut and Larson [START_REF] Akbulut | Brieskorn spheres bounding rational balls[END_REF] for the handle diagram of a rational homology 4-ball including a 3-handle. This 4-manifold has the boundary Σ(2, 3, 7).

24. The existence of Seifert surfaces of an oriented knot K in an oriented 3-manifold M would be possible if and only if K is null-homologous, i.e., [K] = 0 ∈ H1(M ; Z), one can consult [START_REF] Rolfsen | Knots and links[END_REF].

25. Seifert called homology 3-spheres Poincaré spaces, see [START_REF] Seifert | a textbook of topology[END_REF]Pg. 402]. Note that the book [START_REF] Seifert | a textbook of topology[END_REF] includes an English translation of [START_REF] Seifert | Topologie Dreidimensionaler Gefaserter Räume[END_REF] and our citations all lie in that part.

Afterword

The recorded history of the n-dimensional homology cobordism group Θ n Z first appeared in the Ph.D. thesis of González-Acuña [START_REF]On homology spheres[END_REF] under the supervision of Ralph H. Fox at Princeton University in 1970. He introduced this notion to study homology n-spheres by building on the work of Kervaire and Milnor [KM63] about the n-dimensional homotopy cobordism group Θ n of homotopy n-spheres. González-Acuña proved that these groups Θ n and Θ n Z are isomorphic unless n = 3. Therefore, they are both finite except in the case of n = 3. This result was not published as an article but was referred in [GAn70a, Section 2]. Note that the only unknown value of the order of Θ n in [START_REF] Kervaire | Groups of homotopy spheres. I[END_REF] was the case of n = 3. This has not been clarified until the work of Perelman [START_REF] Perelman | The entropy formula for the Ricci flow and its geometric applications[END_REF][START_REF]Finite extinction time for the solutions to the Ricci flow on certain three-manifolds[END_REF][START_REF]Ricci flow with surgery on three-manifolds[END_REF].

The isomorphism argument of González-Acuña broke down when n = 3, if it was even known the order of Θ 3 at that time, see [GAn70b, Pg. 17, Remark and Section I.5]. Especially, the homology cobordism group Θ 3 Z was introduced to him by Denis Sullivan as noted in [GAn70b, Pg. VII]. Also, the first known proof of the homology cobordism invariance of the Rokhlin invariant µ was given [START_REF]On homology spheres[END_REF]. Further, the relation between the Arf invariant of knots and the Rokhlin invariant in terms of knot surgery was found [GAn70b, Theorem III.2]. Unfortunately, his results were only mentioned in Gordon's article [START_REF] Gordon | Knots, homology spheres, and contractible 4-manifolds[END_REF] and they have remained mysteries.

The main references for our survey are the great book of Saveliev [START_REF]Invariants for homology 3-spheres[END_REF] and the eminent ICM 2018 article of Manolescu [START_REF]Homology cobordism and triangulations[END_REF]. To extend their coherent frameworks, we list recent results not included in these resources. Further, we catalog all natural sources of homology 3-spheres in the appendix. In order to avoid distracting readers, we share our footnotes as endnotes.
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Manolescu's invariants

  α, β, γ [Man16b] and Hendricks-Manolescu's involutive d-invariants d, d [HM17] 16 can be read off from the values of the Ozsváth-Szabó d-invariant and the Neumann-Siebenmann μ-invariant, see articles Dai and Manolescu [DM19] and Stoffregen, [Sto20] for more details.

  [START_REF] Manolescu | On the intersection forms of spin four-manifolds with boundary[END_REF]. Recently, Ue proved that the behaviours of the κ invariant and the minus version of the μ invariant for Seifert fibered spheres are very similar[START_REF] Ue | Constraints on intersection forms of spin 4-manifolds bounded by Seifert rational homology 3-spheres in terms of μ and κ invariants[END_REF]: κ(Y ) + μ(Y ) = 0 or 2. Relying on the Seiberg-Witten Floer spectrum and Pin(2)-equivariant KOtheory and inspiring the construction of the Manolescu κ-invariant, J. Lin extracted new invariants κo k of Θ 3 Z where k ∈ Z 8[START_REF] Lin | Pin(2)-equivariant KO-theory and intersection forms of spin 4-manifolds[END_REF]. We list the following presumably difficult problem to understand behaviours of invariants more for Seifert fibered spheres by taking the risk of having negative answers. Problem D. For Seifert fibered spheres Y = Σ(a 1 , . . . , a n ), what are the possible relations between the following homology cobordism invariants? • μ(Y ), w(Y ; m), and κo k (Y ), • d(Y ) and R(Y ; e). 2.1.2. A Diversification: More about Summands of Θ 3 Z . Around the 2000s, two more epimorphisms of Θ 3 Z were found: Ozsváth-Szabó d-invariant [OS03a] and Frøyshov δ-invariant 18 [Frø10]. The latter invariant is also owed to Kronheimer and Mrowka [KM07]. The seminal articles of Kutluhan, Lee, and Taubes [KLT20d, KLT20e, KLT20c, KLT20a, KLT20b] yield that δ = -d/2.

  Problem L. Do graph homology 3-spheres generate the group Θ 3 Z ? Let Θ 3 G denote the subgroup of Θ 3 Z generated by graph homology 3-spheres. The previous problem is equivalent to asking whether Θ 3 G = Θ 3 Z or not. Nozaki, Sato, and Taniguchi proposed a strategy in [NST19, Conjecture 1.19] so that likely Θ 3 G Θ 3 Z . Hendricks, Hom, Stoffregen, and Zemke compared the subgroup Θ 3 SF with the whole group Θ 3 Z in another work and they were able to provide the existence of an infinitely generated subgroup in the quotient Θ 3 Z /Θ 3 SF spanned by the family of homology 3-spheres S 3 +1 (-T 2,3 # -2T 2n,2n+1 # -T 2n,4n+1 ) for odd n ≥ 3: Theorem W (Theorem 1.1, [HHSZ21]). The quotient Θ 3 Z /Θ 3 SF has a Z ∞ subgroup. The new immediate challenge would be to ask: Problem M. Does the quotient Θ 3 Z /Θ 3 SF contain a Z ∞ summand? Another curiosity about the possible generators of Θ 3Z is of course surgeries on knots in the 3-sphere. One can expect that these manifolds are not sufficient to provide a generating set for Θ 3 Z , see [NST19, Corollary 1.7]. However, the following problem still remains open.

-

  Z 2 -0. Prior to the work [Mat78, GS80], Casson asked whether every homology 3-sphere Y with an orientation reversing diffeomorphism satisfies µ(Y ) = 0, see [Kir78b, Problem 3.43]. If it were false, then Y #Y = Y # -Y would bound the homology 4-ball (Y \ B3 ) × [0, 1], giving an element of order 2 in Θ 3

Problem W . 3 Q

 .3 Does the group Θ 3 Q contain any n-torsion for n > 2? We have a natural group homomorphism ψ : Θ 3 Z Θ induced by inclusion. It is known that the map ψ is not injective. There exists homology 3-spheres listed in Theorem Z that represent non-trivial elements in Ker(ψ) by the work of Fintushel and Stern [FS84], Akbulut and Larson [AL18], the author [S ¸av20b], and Simone [Sim21]. 22

  9. In[START_REF] Rostovtsev | Almost ι-complexes as immersed curves[END_REF], Rostovtsev reinterpreted the homomorphisms of Dai, Hom, Stoffregen, and Truong by using the immersed curve machinery of Kotelskiy, Watson, and Zibrowius[START_REF] Kotelskiy | Immersed curves in Khovanov homology[END_REF]. In particular, he found a new epimorphism of Θ 3 Z independent of {f k } k∈N .10. These three articles all provide equivalent but different descriptions of Heegaard Floer homology groups of Seifert fibered homology spheres.

  Mil75, Lemma 1.1] and compare with [ST80, Pg. 405]. In general, Seifert fibered sphere Σ(a 1 , . . . , a n ) is a 2-fold cyclic branched coverings of S 3 branched over Montesinos knots K(a 1 , . . . , a n ), see [Mon73, Mon75].

  Poincaré conjecture was shown in the seminal article of Freedman [Fre82], also see the book of Behrens, Kalmár, Kim, Powell, and Ray [BKK + 21]. The piecewise linear Poincaré conjecture in dimension 4 is still an open problem and is equivalent to the smooth Poincaré conjecture in dimension 4 as a result of the articles of Cerf [Cer68] and Hirsch and Mazur [HM74], see Rudyak's books [Rud98, IV.4.27(iv)] and [Rud16, 6.7 Remark] for a detailed explanation. 3. See the introduction of [Lev85]. Also consult Milnor's survey [Mil11, Pg. 805], and the commentary of Ranicki and Webber on the correspondence of Kervaire and Milnor around the 1960s [RW15].
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