
HAL Id: hal-04370956
https://hal.science/hal-04370956

Submitted on 3 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Constrained Pseudoconvex Optimization
Problems with Deep Learning-Based Neurodynamic

Optimization
Dawen Wu, Abdel Lisser

To cite this version:
Dawen Wu, Abdel Lisser. Solving Constrained Pseudoconvex Optimization Problems with Deep
Learning-Based Neurodynamic Optimization. Mathematics and Computers in Simulation, 2024,
�10.1016/j.matcom.2023.12.032�. �hal-04370956�

https://hal.science/hal-04370956
https://hal.archives-ouvertes.fr

Solving Constrained Pseudoconvex Optimization Problems with Deep

Learning-Based Neurodynamic Optimization

Dawen Wua (dawen.wu@centralesupelec.fr), Abdel Lissera (abdel.lisser@l2s.centralesupelec.fr)

a Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette,

France

Corresponding Author:

Dawen Wu

Address: Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190,

Gif-sur-Yvette, France

Tel: (+33) 750798387

Email: dawen.wu@centralesupelec.fr

Solving Constrained Pseudoconvex Optimization Problems with Deep
Learning-Based Neurodynamic Optimization

Dawen Wua,∗, Abdel Lissera

aUniversité Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France

Abstract

In this paper, we consider Constrained Pseudoconvex Nonsmooth Optimization Problems (CPNOPs),

which are a class of nonconvex optimization problems. Due to their nonconvexity, classical convex optimiza-

tion algorithms are unable to solve them, while existing methods, i.e., numerical integration methods, are

inadequate in terms of computational performance. In this paper, we propose a novel approach for solving

CPNOPs that combines neurodynamic optimization with deep learning. We construct an initial value prob-

lem (IVP) involving a system of ordinary differential equations for a CPNOP and use a surrogate model based

on a neural network to approximate the IVP. Our approach transforms the CPNOP into a neural network

training problem, leveraging the power of deep learning infrastructure to improve computational performance

and eliminate the need for traditional optimization solvers. Our experimental results show that our approach

is superior to numerical integration methods in terms of both solution quality and computational efficiency.

Keywords: Constrained Pseudoconvex Optimization Problems, Neurodynamic Optimization, Neural

Networks, Ordinary Differential Equations

1. Introduction1

Constrained nonlinear optimization problems involve finding the best solution among a set of possible2

solutions by minimizing or maximizing an objective function. These problems are prevalent in various fields3

such as engineering, physics, finance, and management, with a wide range of applications. They can be4

divided into two groups based on the nature of the objective or constraint functions: convex and nonconvex5

optimization problems. Convex optimization problems, which include linear programming and quadratic6

programming, are a special class of nonconvex optimization problems and have been studied extensively.7

Methods such as the primal-dual interior point method have been developed to solve them efficiently (Boyd8

et al., 2004; Nocedal & Wright, 2006). Nonconvex optimization problems, however, are more complex and9

commonly solved through gradient descent-based algorithms, which often struggle to converge to the global10

optimal solution (Jain et al., 2017; Jiang et al., 2019).11

In this paper, we focus on a specific type of constrained nonconvex optimization problem known as12

∗Corresponding author
Email address: dawen.wu@centralesupelec.fr, abdel.lisser@l2s.centralesupelec.fr (Abdel Lisser)

Preprint submitted to Mathematics and Computers in Simulation January 3, 2024

constrained pseudoconvex nonsmooth optimization problems (CPNOPs). A CPNOP has an objective func-13

tion that is both pseudoconvex, meaning that it is not strictly convex, and nonsmooth, meaning that it is14

not everywhere differentiable. Due to the pseudoconvexity and non-smoothness of the objective function,15

traditional convex optimization algorithms are not applicable to solve it.16

CPNOPs are typically solved by neurodynamic optimization, which involves constructing an initial value17

problem (IVP) consisting of a system of ordinary differential equations (ODEs) (Liu et al., 2012; Xu et al.,18

2020; Liu et al., 2022). The final state in the solution of this IVP represents the predicted solution of the19

CPNOP. These ODE systems are highly nonlinear and have no analytical solutions. Therefore, numerical20

integration methods, such as the Runge-Kutta method (Dormand & Prince, 1980) or the backward differen-21

tiation formula (Shampine & Reichelt, 1997), are often used to approximate their solutions numerically.22

Motivation. However, numerical integration methods can be computationally expensive and can pro-23

duce inaccurate solutions, particularly if the ODE system derived from the CPNOP is stiff. In addition,24

these methods are not well suited to solving CPNOPs as they require the calculation of all previous states25

to reach the desired final state, making them inefficient. Therefore, a more efficient and accurate approach26

is needed to solve CPNOPs.27

1.1. Related Works28

1.1.1. Neuraodynamic Optimization29

Neurodynamic optimization is a class of methods that model constrained optimization problems using30

ODE systems. This approach was first introduced by Hopfield & Tank (1985) to solve the traveling salesman31

problem. Since then, neurodynamic optimization has been applied to a wide range of optimization problems,32

including linear and quadratic programming problems (Xia & Wang, 2000), general convex programming33

problems (Xia & Feng, 2007), biconvex optimization problems (Che & Wang, 2018), global optimization34

problems (Che & Wang, 2019), and stochastic optimization problems (Tassouli & Lisser, 2023). These35

methods typically use the Lyapunov stability theorem to prove that the constructed ODE system has a36

global convergence property. This means that any state solution of the ODE system converges to an optimal37

solution of the target problem.38

In particular, neurodynamic optimization for solving pseudoconvex optimization problems has received39

widespread attention in recent years. Researchers have applied it to many applications, including portfolio40

optimization, energy efficiency optimization, and production planning (Liu et al., 2012; Yang et al., 2019).41

Various neurodynamic methods have been proposed to solve pseudoconvex problems with different types42

of constraints, such as linear equation constraints (Guo et al., 2011), bound constraints (Liu et al., 2012),43

convex inequality constraints (Bian et al., 2018), and quasiconvex constraints (Liu et al., 2022).44

1.1.2. Deep Learning for Solving Differential Equations45

Another line of research included in our work is the use of deep learning to solve differential equations.46

The idea of using neural networks to approximate the solutions of differential equations was first introduced47

2

by Dissanayake & Phan-Thien (1994), where training was performed by minimizing a loss function based on48

the network’s satisfaction of the boundary conditions and the differential equations. Lagaris et al. (1998)49

showed that the network architecture could be designed to satisfy the boundary conditions, and this method50

was extended to systems with irregular boundaries (McFall & Mahan, 2009).51

With the advancement of deep learning, this approach has received renewed attention with the goal of52

solving high-dimensional nonlinear partial differential equations (PDEs) (Han et al., 2018; Huang et al.,53

2022). One notable approach is the use of physics-informed neural networks (PINNs) (Raissi et al., 2019a),54

which incorporate physical laws and boundary conditions into the network architecture and training process.55

PINNs have been applied to a variety of engineering problems, such as fluid mechanics (Samaniego et al.,56

2020; Cai et al., 2022). Variations of PINNs have been developed to address different problem scenarios (Lu57

et al., 2021b; Zhang et al., 2020; Liao & Zhang, 2022) or to improve computational performance (Jagtap &58

Karniadakis, 2021; Yu et al., 2022; Sharma & Shankar, 2022). Software packages have been developed to59

facilitate the application of these methods (Lu et al., 2021a; Chen et al., 2020).60

1.2. Contributions61

Our main contributions in this work are as follows:62

• We propose a novel approach that combines the advantages of neurodynamic optimization in modeling63

CPNOPs as ODE systems and the power of deep learning in approximating the solutions to these64

systems. By transforming the CPNOP into a neural network training problem, our solver eliminates65

the need for traditional optimization solvers or numerical integration methods.66

• We design a specialized training algorithm that takes advantage of the problem structure of CPNOPs67

to optimize the performance of our proposed model. The neural network is trained to simultaneously68

satisfy the ODE system and minimize the CPNOP objective function.69

• In our experimental results, we demonstrate that our proposed approach superiority over numerical70

integration methods in terms of solution quality and computational efficiency for solving CPNOPs. In71

addition, we show the performance of the proposed method in solving a large-scale CPNOP which is72

difficult to be solved by classical numerical integration methods.73

1.3. Outline74

The remainder of this paper is organized as follows: Section 2 provides essential background knowledge,75

including an introduction to CPNOPs and neurodynamic optimization. Section 3 presents our proposed76

neural network model and its application to optimization problems. The training process for the proposed77

neural network is described in Section 4. In Section 5, experimental results are presented and discussed,78

comparing our method to numerical integration techniques. Finally, Section 6 offers a summary and outlines79

future research directions.80

3

2. Preliminaries81

2.1. Constrained Pseudoconvex Nonsmooth Optimization Problem82

We consider the following optimization problem:83



min
x

f(x)

s.t.

x ∈ I = {x ∈ Rn|gi(x) ≤ 0, i = 1, . . . ,m},

x ∈ S = {x ∈ Rn|Ax = b},

(1)

where x = (x1, x2, . . . , xn)
T ∈ Rn are the decision variables, f : Rn → R is the objective function, g(x) =84

(g1(x), g2(x), . . . , gm(x))T : Rn → Rm is the function of the inequality constraints, and Ax = b is the equality85

constraints with A ∈ Rp×n and b ∈ Rp. n, m, and p denote the number of decision variables, inequality86

constraints, and equality constraints, respectively.87

In this paper, we consider the case where f(x) is pseudoconvex and nonsmooth, g(x) is convex and88

smooth, and A is of full row rank. We denote x∗ as the optimal solution of the problem.89

Assumption 1.90

• There exists a point x ∈ Rn such that x ∈ S ∩ int(I), where int(·) denotes the interior of the set.91

• The objective function f(x) is Lipschitz continuous and regular on S ∩ I.92

2.2. Neurodynamic Optimization93

Now let y : R→ Rn be a time-dependent function. In this context, y(t) represents the state of the system94

at time t, and dy
dt = Φ(y(t)) is an ODE system representing the dynamics of the system. A neurodynamic95

optimization method aims to construct an ODE system dy
dt = Φ(y(t)) for the control of y(t) such that y(t)96

settles down to an optimal solution of the considered CPNOP represented in equation (1).97

Definition 1 (State solution). Consider an ODE system dy
dt = Φ(y(t)), where Φ : Rn → Rn. Given an initial98

point y0 ∈ Rn, a vector value function y : R → Rn is called a state solution, if it satisfies the ODE system99

dy
dt = Φ(y(t)) and the initial condition y(0) = y0.100

Definition 2 (Global convergence). Let y(t) be a state solution of an ODE system dy
dt = Φ(y(t)), and let X ∗

101

be the set of optimal solutions of the CPNOP (1).102

The state solution of the ODE system is said to converge globally to X ∗, if y(t) satisfies

lim
t→∞

dist (y(t),X ∗) = 0,

where dist (y(t),X ∗) = infx∗∈X∗ |y(t) − x∗|, and ∥·∥ is the Euclidean norm. If the set X ∗ contains only one103

optimal solution x∗, then limt→∞ y(t) = x∗, and the ODE system is globally asymptotically stable at x∗.104

4

In this paper, a modified version of the one-layer neurodynamic approach (Liu et al., 2022) is used to105

model the CPNOP. We adapt the original approach to better fit the problem and improve its performance.106

The resulting ODE system is given by:107

dy

dt
∈ − θ(t)(I − U)

({
m∏
i=1

(1− µ (gi(y (t))))

}
∂f(y (t)) + ∂B(y (t))

)
−AT ρ(Ay (t)− b), (2)

where I ∈ Rn×n is the identity matrix, and U = AT
(
AAT

)−1
A. The components of this ODE system are108

described as follows:109

θ : R → R is a function that controls the convergence of the state solution y(t) to satisfy the equality110

constraints, given by111

θ(t) =

0, if t ≤ T0,

1, otherwise ,

(3)

where T0 = 1+∥Ay0 − b∥1 /λmin

(
AAT

)
, y0 ∈ Rn is an initial point of the ODE system, λmin

(
AAT

)
represents112

the smallest eigenvalue of the matrix AAT .113

B : Rn → R is defined as follows:114

B(y(t)) =

m∑
i=1

max {0, gi(y(t))} (4)

Since every gi(·) is convex, B(·) is also convex, which means that ∂B(·) always exists. To compute ∂B(·), we115

first define an activation function µ : R→ R as follows:116

µ(s) =

1, if s > 0,

0, if s ≤ 0.

(5)

Then, the closed-form for ∂B(y(t)) can be given as follows:117

∂B (y(t)) =



0, if y(t) ∈ S ∩ int(I),∑
i∈I0(y(t))

µ (gi(y(t)))∇gi(y(t)), if y(t) ∈ S ∩ bd(I),

∑
i∈I0(y(t))

µ (gi(y(t)))∇gi(y(t)) +
∑

i∈I+(y(t))

∇gi(y(t)), if y(t) ∈ S\I,

(6)

where I0(y(t)) = {i ∈ {1, 2, . . . , k}|gi(y(t)) = 0}, I+(y(t)) = {i ∈ {1, 2, . . . , k}|gi(y(t)) > 0}, and bd(·) de-118

notes the boundary of the set.119

5

ρ : Rp → Rp is an activation function defined as ρ(s) = (ρ̃ (s1) , ρ̃ (s2) , . . . , ρ̃ (sp))
T
, where120

ρ̃ (si) =


1 if si > 0,

0 if si = 0,

−1 if si < 0.

(7)

Theorem 1 (Liu et al. (2022)). Let Assumption 1 hold. Given any initial point y0 ∈ Rn, the corresponding121

state solution y(t) of the ODE system (2) globally converges to an optimal solution of the CPNOP (1).122

3. Surrogate Model123

3.1. Initial Value Problem Setup124

In this work, we model the CPNOP in equation (1) using the ODE system outlined in equation (2). As125

stated in Theorem 1, given any initial point y0, the state solution y(t) approaches an optimal solution x∗ as126

time t goes to infinity, i.e., limt→∞ y(t) = x∗.127

To determine the state solution, we must first specify an IVP by choosing an initial point and a time128

range. For simplicity, we set the initial point to be the all-zero vector, i.e., y0 = 0. The time range is defined129

as the interval [0, T], where T is a positive number given in advance.130

We introduce the following definition:131

Definition 3 (Final state). Given a state solution y(t) and a time range [0, T], the state at the end of the132

time range, i.e., y(T), is called the final state.133

The final state y(T) holds significance as it approximates the optimal solution x∗, i.e.,134

y(T) ≈ x∗. (8)

The goal of this study is to effectively and accurately determine the final state of a given time range.135

3.2. Neural Network Based Surrogate Model136

We propose a neural network based surrogate model to approximate the solution of the constructed IVP.137

The structure of the model is shown in Figure 1 (left). The equation below describes the surrogate model:138

ŷ(t;w) =
(
1− e−t

)
N(t;w), t ∈ [0, T], (9)

where N(t;w) is a fully connected neural network with trainable parameters w, and (1− e−t) is an auxiliary139

function that ensures that the initial condition ŷ(t = 0;w) = 0 is satisfied.140

The auxiliary function (1− e−t) is a modified version of the Lagaris method Lagaris et al. (1998), where141

the exponential form has been shown to improve convergence in previous studies Mattheakis et al. (2020).142

6

Predicted final state
Predicted state solution

Figure 1: Left: The structure of the surrogate model. Right: The surrogate model as an approximate state solution on the
time range [0, T].

In our experiments, we also observed similar benefits from using this function, likely because it reduces the143

influence of the neural network further from the initial time.144

Approximate State Solution. The surrogate model is designed to approximate the state solution of145

the IVP constructed in Section 3.1. This is represented by the following relationship:146

ŷ(t;w) ≈ y(t), t ∈ [0, T]. (10)

Predicted Soltuion to the CPNOP. In particular, we denote the final state of the surrogate model147

as:148

x̂(w) = ŷ(t = T ;w), (11)

which serves as a prediction of the optimal solution of CPNOP. By combining equation (8) and equation (10)149

at t = T , we have150

x̂(w) ≈ y(T) ≈ x∗. (12)

Figure 1 (right) shows our proposed surrogate model as an approximate state solution, thus providing a151

prediction for the CPNOP. The CPNOP being considered in this figure has four variables. The colored lines152

represent the surrogate model, a 4-dimensional vector-valued function that approximates the state solution153

of the IVP. The red stars represent the final state, which is a 4-dimensional real vector that serves as the154

predicted optimal solution to the CPNOP.155

4. Model Training156

4.1. Loss Function157

We define the loss function for the proposed surrogate model as follows:158

L(t, w) =
∥∥∥∥∂ŷ(t;w)∂t

− Φ(ŷ(t;w))

∥∥∥∥ , (13)

7

Surrogate model Loss computation

CPNOP

Incorporate

Model output

ODE
system

Differential
operator

Neural
network

Input

Loss

Figure 2: Incorporating the CPNOP into the loss function

where Φ(·) refers to the ODE system outlined in equation (2), which corresponds to a CPNOP to be solved.159

∂ŷ(t;w)
∂t is the derivative of the model output ŷ(t;w) with respect to the input time t. This derivative can160

be calculated analytically using automatic differentiation tools such as PyTorch or JAX (Paszke et al., 2019;161

Bradbury et al., 2018).162

In Figure 2, we show how the CPNOP is integrated into the loss computation, rather than being a163

component of the surrogate model structure. The surrogate model itself is an empty framework with no164

goal of solving a particular CPNOP. By reformulating CPNOP as an ODE system and embedding it in165

the loss function, we train the neural network to let the surrogate model satisfy the ODE system. This166

approach is similar to that used in PINN (Raissi et al., 2019b), where physical rules are encoded as PDEs167

and incorporated into the loss function for training.168

The goal of training the surrogate model is to minimize the following objective function:169

E(w) =

∫ T

0

L(t, w)dt, (14)

which is an integral of the loss function over the pre-given time range [0, T]. The loss value L(t, w) represents170

the error of the model at time t, and the objective function E(w) represents the total error of the model over171

the time range [0, T].172

However, it is computationally intractable to compute E(w) due to the integral part. Therefore, in173

practice, we train the model by minimizing the following batch loss:174

L(T, w) = 1

|T|
∑
t∈T
L(t, w), (15)

where T is a set of collocation time points, and |T| is the size of the set. In this study, we specifically adopt175

a uniform distribution over the interval [0, T] for sampling collocation time points. While there is existing176

8

Algorithm 1 A deep learning-based solver for CPNOP

Input: A CPNOP as defined in (1); A time range [0, T]
Output: Predicted optimal solution to the CPNOP

1: function CPNOP solver:
2: Derive the ODE system, Φ(·), according to the CPNOP. ▷ By equation (2).
3: Instantiate a surrogate model ŷ(t;w). ▷ By equation (9).
4: Set ϵbest ← ϵ(x̂(w)) ▷ Initialize ϵbest.
5: while iteration ≤ maximum iteration do
6: Sample a batch of times T ∼ U(0, T) uniformly from the interval [0, T]. ▷ Data generation.
7: Compute the batch loss L(T, w). ▷ Forward propagation.
8: Update w by ∇wL(T, w). ▷ Backward propagation.
9: Project x̂(w) onto the feasible set I by x̂(w)← Peq(x̂(w)). ▷ To satisfy equality constraints.

10: Calculate the epsilon value ϵtemp ← ϵ(x̂(w)).
11: if ϵtemp < ϵbest then
12: ϵbest ← ϵtemp. ▷ Update ϵbest.
13: x̂best ← x̂(w). ▷ Update x̂best.
14: end if
15: end while
16: return x̂best

17: end function

research in PINNs exploring more sophisticated collocation point sampling methods to enhance computational177

efficiency (e.g., Tang et al. (2023); Nabian et al. (2021); Wu et al. (2023); Fang et al. (2023)), our practical178

experience indicates that the straightforward approach of uniform distribution yields comparable results.179

4.2. Evaluation Metric180

We propose a metric to evaluate the performance of the predicted optimal solution x̂(w). This metric,181

known as the epsilon value, is defined as follows:182

ϵ(x̂(w)) =

f(x̂(w)), if x̂(w) ∈ S ∩ I,

+∞, otherwise ,

(16)

where f(·), S, and I are given in equation (1). If x̂(w) is within the feasible set, the epsilon value is set to the183

objective value corresponding to x̂(w), i.e., f(x̂(w)). Otherwise, the epsilon value is set to +∞ to indicate184

that the prediction is not within the feasible set.185

Since it is difficult to strictly satisfy the equality constraints, we use the following technique to project186

the prediction into S:187

Peq(x̂(w)) = x̂(w)−AT
(
AAT

)−1
(Ax̂(w)− b). (17)

4.3. Pipeline188

Algorithm 1 outlines the steps for solving a CPNOP using our proposed surrogate model approach. The189

algorithm starts by constructing an IVP from the given CPNOP and a pre-specified time range of [0, T]. A190

neural network is then initialized as a surrogate model to serve as an approximate state solution for this IVP.191

9

The parameters of the network are then optimized by performing gradient descent on the designed batch loss192

function, as defined in equation (15), in order to improve the accuracy of the approximation.193

A key aspect of the proposed algorithm is the use of the evaluation metric, as defined in equation (16),194

to assess the performance of the model at each training iteration. The variables ϵbest and ϵtemp represent195

the lowest and current epsilon values achieved by the model, respectively. After each update of the network196

parameters, the algorithm compares ϵtemp with ϵbest. Suppose ϵtemp is less than ϵbest, indicating that the197

model found a better prediction. In this case, the algorithm updates ϵbest = ϵtemp and saves the current198

best prediction x̂(w). This design is similar to traditional optimization algorithms that check for optimality199

conditions (e.g., KKT conditions) at each iteration.200

5. Experiments201

Our proposed approach was evaluated on the Google Colab Pro+ platform, using PyTorch 1.12.1 with202

CUDA 11.2 for the neural network and JAX 0.4.1 (Bradbury et al., 2018) for modeling the ODE system.203

Section 5.1 presents a standard CPNOP, where we demonstrate the complete process of solving the204

problem using the proposed method and provide a detailed comparison between our approach and numerical205

integration methods. In Section 5.2, we showcase a large-scale CPNOP, which cannot be addressed by206

classical numerical integration techniques, and illustrate how our proposed method effectively tackles this207

challenge. Finally, Section 5.3 discusses the advantages and limitations of the proposed approach.208

5.1. Comparing CPNOP Solutions: Our Approach vs. Numerical Integration209

Example 1: Consider the following specific instance of a CPNOP:210

min
x

f(x) =
x1 + x2 + e|x2−1| − 40

(x1 + x2 + x3)2 + 3

s.t.

g1(x) = −3x1 + 2x2 − 5 ≤ 0

g2(x) = x2
1 + x2 − 3 ≤ 0

h(x) = x1 + 2x2 + x3 − 2 = 0

(18)

According to Theorem 7 in Liu et al. (2012), the objective function in this instance is pseudoconvex. It is211

also non-smooth due to the presence of the absolute value function |x2 − 1|.212

IVP Construction. We modeled this specific instance using the ODE system outlined in equation (2).213

We set the initial point to y0 = 0 and the time range to the interval [0, 10] to construct an IVP for this214

ODE system. The true state solution of this IVP is denoted as y(t), which is unknown and has no analytical215

solution. Our experiments showed that this particular instance of CPNOP results in a stiff ODE system,216

which leads to poor computational efficiency and accuracy when using traditional numerical integration217

methods.218

10

0 2 4 6 8 10
t

−1

0

1

2

ȳ(
t)

ȳ1(t)
ȳ2(t)
ȳ3(t)

0 2 4 6 8 10
t

−1

0

1

2

ȳ(
t)

0 2 4 6 8 10
t

−1

0

1

2

ȳ(
t)

0 2 4 6 8 10
t

−1

0

1

2

ȳ(
t)

0 2 4 6 8 10
t

−1

0

1

2

ŷ(
t;
w
)

0 2 4 6 8 10
t

−1

0

1

2

ŷ(
t;
w
)

0 2 4 6 8 10
t

−1

0

1

2
ŷ(
t;
w
)

ŷ1(t;w)
ŷ2(t;w)
ŷ3(t;w)

0 2 4 6 8 10
t

−1

0

1

2

ŷ(
t;
w
)

Figure 3: Comparison of solution processes between our approach and RK45. The top panel shows the evolution of ŷ(t;w) =
(ŷ1(t;w), ŷ2(t;w), ŷ3(t;w))T obtained by our approach at 0, 100, 1000, and 10000 TIs (from left to right). The bottom panel
shows the evolution of ȳ(t) = (ȳ1(t), ȳ2(t), ȳ3(t))T obtained by RK45 at 0, 1000, 5000, and 10000 CPs (from left to right).

Experimental Setup of Our Approach. To solve the instance presented in equation (18), we instan-219

tiated a surrogate model as follows: ŷ(t;w) = (1− e−t)N(t;w), where t ∈ [0, 10], N(t;w) is a fully-connected220

neural network with one hidden layer of 100 neurons and the Tanh activation function. We then trained221

this surrogate model using Algorithm 1, with a maximum of 10,000 iterations, the Adam optimizer with a222

learning rate of 0.001, and a batch size of 128.223

Experimental Setup of RK45. We performed a comparison of our proposed approach with the224

Runge-Kutta (RK) method, which is a commonly used technique among numerical integration methods. In225

particular, we chose the RK45 solver, which can be accessed via the Scipy library (Virtanen et al., 2020), as226

a representative implementation of the RK method. We opted to present only a comparison with RK45 in227

Figure 3 and Table 1, as experimental observations indicate that the approximate state solutions obtained228

from different numerical integration methods do not show significant differences. We set the number of229

collocation points to 10,000, which were uniformly distributed over the time range of [0, 10]. The approximate230

state solution obtained by RK45 is denoted as ȳ(t). Both ŷ(t;w) and ȳ(t) aim to be as close as possible to231

the true state solution y(t) over the interval [0, 10].232

Solution Process of Our Approach. In the top panel of Figure 3, we show the evolution of ŷ(t;w) as233

it approximates y(t). Our proposed approach achieves this by training the neural network with the parameters234

w. As the network parameters w are updated at each training iteration (TI), a new ŷ(t;w) is generated. The235

upper left corner of Figure 3 shows the initial approximation, while the upper right corner of the figure shows236

the final approximation after 10,000 training iterations, which is a more accurate approximation for the IVP237

and closer to y(t).238

Solution Process of RK45. In the bottom panel of Figure 3, we show the evolution of ȳ(t) as it239

approaches y(t). RK45 achieves this by incrementally advancing the collocation point (CP) from the initial240

time t = 0 to the final time t = 10. The bottom panel of the figure illustrates how the approximation of ȳ(t)241

11

improves as the number of CPs increases, with the plot of ȳ(t) at 0, 1000, 5000, and 10,000 CPs corresponding242

to the solved time ranges [0, 0], [0, 1], [0, 5], and [0, 10], respectively.243

Our approach RK45

TI Solution epsilon CP Solution epsilon

0 [1.014 0.114 0.757] -5.562 0 [0.333 0.667 0.333] -7.872
10 [1.014 0.114 0.757] -5.562 10 [0.333 0.667 0.333] -7.872
100 [-0.462 1.764 -1.067] -11.963 100 [0.333 0.667 0.333] -7.872
1000 [-0.462 1.764 -1.067] -11.963 1000 [0.333 0.667 0.333] -7.872
3000 [-0.377 1.909 -1.441] -11.962 3000 [-0.505 1.69 -0.876] -11.895
5000 [-0.377 1.909 -1.441] -11.962 5000 [-0.446 1.816 -1.185] -11.986
7000 [-0.446 1.831 -1.216] -11.992 7000 [-0.42 1.838 -1.257] -11.987
9999 [-0.446 1.831 -1.216] -11.992 9999 [-0.415 1.846 -1.276] -11.984

Table 1: Evaluation of solution quality between our approach and RK45. The solution represents the predicted optimal solution
for the CPNOP instance given in equation (18). The epsilon value serves as the evaluation metric, as defined in equation (16).

Comparison of Solution Quality. In Table 1, we present a comparison of the predicted optimal244

solutions for the CPNOP instance obtained using our approach and RK45, along with their corresponding245

epsilon values, where a lower epsilon indicates a better solution. The solution of our approach is represented246

by the final state of the surrogate model, i.e., ŷ(t = 10, w), where each TI corresponds to a different value of247

ŷ(t = 10, w). The solution of RK45 is given by ȳ(t = 10 ∗ (CP/10000)), which is the final state of a solved248

time range. For example, when CP = 5000, the corresponding solved time range is [0, 5], and the solution of249

RK45 at this CP is the final state of this time range, i.e., ȳ(t = 5).250

The results in Table 1 suggest the following:251

• Our approach converges faster than RK45. In other words, our approach is able to find a satisfactory252

solution at an early stage of the solution process. For example, at the 100th TI, our solution has an253

epsilon value of -11.963, while the solution of RK45 only reaches an epsilon value of -7.872 at the 100th254

CP.255

• Our approach yields a more accurate final solution than RK45. At the end of the solution process, i.e.,256

at TI=10000 for our approach or CP=10000 for RK45, our solution reaches an epsilon value of -11.992,257

which is superior to that of RK45.258

Comparison of Computational Efficiency. In Table 2, we evaluate the computational efficiency of259

our approach in comparison to a selection of popular numerical integration methods, such as RK45, RK23,260

DOP853, Radau, BDF, and LSODA, which are available through the Scipy library. The results are presented261

in terms of the CPU time required to solve the CPNOP, with lower values indicating superior efficiency.262

The results in Table 2 indicate that our approach is significantly more efficient than the numerical inte-263

gration methods. Specifically, our approach took only 80 seconds to complete 10,000 TIs, while the fastest264

numerical integration method (RK45) took more than 7 minutes to complete 10,000 collocation points. Some265

numerical integration methods, such as LSODA, and BDF, even failed to complete the task. Combined with266

12

Our approach Numerical integration methods

TI Runtime CP
RK45
Runtime

RK23
Runtime

DOP853
Runtime

Radau
Runtime

BDF
Runtime

LSODA
Runtime

10 202ms 10 811ms 433ms 1.77s 1.06s Fail 458ms
100 893ms 100 980ms 1.23s 2.3s 1.33s Fail 1.47s
1000 8.47s 1000 11s 13.2s 3min 25s >2h Fail 20min 20s
5000 40s 5000 3min 31s 5min 5s 29min 43s >2h Fail Fail
10000 80s 10000 7min 45s 12min 15s 49min 55s >2h Fail Fail

Table 2: Evaluation of computational efficiency between our approach and various numerical integration methods. ms, s and h
denote milliseconds, seconds and hours, respectively.

0 100 200 300 400
Iteration

50

100

150

M
.S

.E
.
lo

ss

0 100 200 300 400
Iteration

0

2000

4000

6000

8000

10000

C
o
n
st

ra
in

ts

eq_vio
ieq_vio

0 100 200 300 400
Iteration

5000

10000

15000

O
b
je

ct
iv

e
(A) (B) (C)

Figure 4: Performance of the proposed neural network method for Example 2: (A) Loss value, (B) Objective value, and (C)
Constraint violation metrics. eq vio and ieq vio are defined in (20) and (21), respectively.

the quality of the solutions reported in Table 1, it is clear that our approach is able to produce faster and267

better solutions for the CPNOP instance in equation (18) than the numerical integration methods.268

5.2. Large-Scale CPNOP269

Example 2: Consider the following large-scale CPNOP:270

min
x

f(x) =

999∑
i=1

(
x2
i −

x2
i

xi+1

)
s.t.

gi(x) = x2
10(i−1)+1 + x2

10(i−1)+2 + . . .+ x2
10(i−1)+10 − 20 ≤ 0,

i = 1, 2, . . . , 100.

h(x) = Ax− b = 0

(19)

This large-scale CPNOP is a modification from (Bian et al., 2018), which has 1000 variables, 100 inequality271

nonlinear constraints, and 1 equality constraint. The objective function f(x) is pseudoconvex, and the272

inequality constraints are nonlinear and convex. In the equality constraint, b = 16, and the vector A can be273

accessed from the link 1.274

1https://drive.google.com/file/d/1duUyhCtW0qViVfX0VwBQcoiv9QTWvBeO/view?usp=share_link

13

https://drive.google.com/file/d/1duUyhCtW0qViVfX0VwBQcoiv9QTWvBeO/view?usp=share_link

IVP Construction. We construct an IVP by specifying the time range [0, 10] and an initial point y0,275

which can be accessed from the link 2. We use a fully connected neural network with four hidden layers, each276

containing 150 neurons, to solve this problem. Other training settings are consistent with Section 5.1.277

Difficulty in Solving with Numerical Integration. The large-scale nature of Example 2 leads to278

an IVP with 1000 state variables, making it difficult to solve using classical numerical integration methods279

due to low efficiency. We attempted to solve the problem using methods such as RK45, but they took over280

an hour without providing effective predictions.281

Constraint Violation Metrics. We define two metrics to describe the degree to which the predictions282

satisfy the equality and inequality constraints:283

eq vio(xpred) = ∥Axpred − b∥ , (20)

284

ieq vio(xpred) =
∥∥g(xpred)

+
∥∥ , (21)

where g(xpred)
+ = min{0, g(xpred)}.285

Effectiveness of the Proposed Method in Solving Large-Scale CPNOP. Figure 4 shows the286

performance of our neural network method in solving Example 2. We can draw the following conclusions287

from the experimental results:288

• As shown in Figure 4-(A), the loss function decreased from 175 to 20, indicating that the proposed289

model effectively solved the constructed IVP, even for large-scale optimization problems. The model290

provided an acceptable predicted state solution.291

• The proposed method progressively approaches the optimal solution. As shown in Figure 4-(B), the292

objective value decreased from 17,000 to 2,500. Although the obtained predicted value is not the optimal293

solution under the current experimental settings, it is already very close and provides a meaningful upper294

bound for the original problem.295

• The proposed method effectively finds feasible solutions to the problem. As shown in Figure 4-(C), after296

only 500 iterations, the equality constraint violation metric eq vio decreased from an initial 18,000 to 12,297

and the inequality constraint violation metric ieq vio decreased from an initial 15,000 to 0. Furthermore,298

the projection transformation (17) can adjust the predicted values to satisfy the equality constraints,299

reducing the eq vio metric to zero.300

5.3. Discussion301

Advantages. In comparison to numerical integration methods for solving CPNOPs, our approach302

presents three distinct computational benefits:303

2https://drive.google.com/file/d/1V098TrlLgPH-WHrlgkX7njVLy-J9FBc2/view?usp=share_link

14

https://drive.google.com/file/d/1V098TrlLgPH-WHrlgkX7njVLy-J9FBc2/view?usp=share_link

• Our method predicts the final state at each TI, whereas numerical integration techniques only offer a304

prediction upon completion of the entire solution process. This results in faster convergence and more305

efficient computation, as demonstrated in Tables 1 and 2.306

• By transforming the CPNOP into a neural network training problem, our approach allows us to capi-307

talize on deep learning infrastructure and methodologies, enhancing computational performance.308

• As evidenced in Section 5.2, our method is capable of solving large-scale CPNOPs, while classical309

numerical integration techniques demand significantly more computational time and still fail to deliver310

a feasible predictions311

Limitations. While our approach has demonstrated some advantages, it also has some limitations that312

must be acknowledged. One limitation is that it requires more complicated tuning of the hyperparameters to313

achieve optimal performance, unlike numerical integration methods, which are generally more straightforward314

and require minimal tuning. In addition, when dealing with a complex instance of CPNOP, such as those315

with many variables and constraints, it may be necessary to use a more advanced neural network architecture316

and allocate more resources to training in order to achieve a high-quality solution.317

Large-Scale CPNOP. We believe that the proposed neural network approach may open new possi-318

bilities for solving large-scale CPNOPs. Traditional solvers, when applied to large-scale problems, often face319

inefficiencies due to memory limitations or iterative solving processes. In contrast, the method proposed here320

potentially circumvents these issues by transforming the problem into training a neural network. Training321

large-scale neural networks is a relatively common and well-researched task in the field of deep learning.322

However, one challenge with the neural network method is the lack of guaranteed convergence. This is due323

to the fact that neural network training generally involves non-convex optimisation, where continuous loss324

reduction cannot be guaranteed. Nevertheless, we can use the neural network prediction as a starting point325

to warm start a traditional solver, thereby obtaining the convergent solution.326

6. Conclusion327

In this paper, we presented a novel approach for solving CPNOPs that combines neurodynamic optimiza-328

tion with deep learning techniques, specifically using deep learning-based differential equation solvers such329

as PINN. Our results demonstrated that this approach leads to faster convergence and superior solutions330

compared to traditional numerical integration methods. Our work establishes a link between CPNOPs and331

deep learning, opening up new possibilities in the field of nonlinear constrained programming.332

However, it is important to note that the approach is still in its early stages and has limitations, such333

as potential reliability and robustness issues. In future work, we plan to improve the performance of our334

approach by exploring advanced deep learning-based PDE solvers and alternative neurodynamic optimization335

approaches, and to apply the method to other types of nonlinear programming problems.336

15

Bibliography337

Bian, W., Ma, L., Qin, S., & Xue, X. (2018). Neural network for nonsmooth pseudoconvex optimization with338

general convex constraints. Neural Networks, 101 , 1–14.339

Boyd, S., Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge university press.340

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,341

A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: composable transformations of342

Python+NumPy programs. URL: http://github.com/google/jax.343

Cai, S., Mao, Z., Wang, Z., Yin, M., & Karniadakis, G. E. (2022). Physics-informed neural networks (pinns)344

for fluid mechanics: A review. Acta Mechanica Sinica, (pp. 1–12).345

Che, H., & Wang, J. (2018). A two-timescale duplex neurodynamic approach to biconvex optimization. IEEE346

Transactions on Neural Networks and Learning Systems, 30 , 2503–2514.347

Che, H., & Wang, J. (2019). A collaborative neurodynamic approach to global and combinatorial optimiza-348

tion. Neural Networks, 114 , 15–27.349

Chen, F., Sondak, D., Protopapas, P., Mattheakis, M., Liu, S., Agarwal, D., & Giovanni, M. D. (2020).350

Neurodiffeq: A python package for solving differential equations with neural networks. Journal of Open351

Source Software, 5 , 1931. URL: https://doi.org/10.21105/joss.01931. doi:10.21105/joss.01931.352

Dissanayake, M. W. M. G., & Phan-Thien, N. (1994). Neural-network-based ap-353

proximations for solving partial differential equations. Communications in Numer-354

ical Methods in Engineering , 10 , 195–201. URL: https://onlinelibrary.wiley.355

com/doi/abs/10.1002/cnm.1640100303. doi:https://doi.org/10.1002/cnm.1640100303.356

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.1640100303.357

Dormand, J. R., & Prince, P. J. (1980). A family of embedded runge-kutta formulae. Journal of computational358

and applied mathematics, 6 , 19–26.359

Fang, Q., Mou, X., & Li, S. (2023). A physics-informed neural network based on mixed data sampling for360

solving modified diffusion equations. Scientific Reports, 13 , 2491.361

Guo, Z., Liu, Q., & Wang, J. (2011). A one-layer recurrent neural network for pseudoconvex optimization362

subject to linear equality constraints. IEEE Transactions on Neural Networks, 22 , 1892–1900.363

Han, J., Jentzen, A., & E, W. (2018). Solving high-dimensional partial differential equations using deep364

learning. Proceedings of the National Academy of Sciences, 115 , 8505–8510.365

Hopfield, J. J., & Tank, D. W. (1985). “neural” computation of decisions in optimization problems. Biological366

cybernetics, 52 , 141–152.367

16

http://github.com/google/jax
https://doi.org/10.21105/joss.01931
http://dx.doi.org/10.21105/joss.01931
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640100303
http://dx.doi.org/https://doi.org/10.1002/cnm.1640100303
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.1640100303

Huang, S., Feng, W., Tang, C., & Lv, J. (2022). Partial differential equations meet deep neural networks: A368

survey. arXiv preprint arXiv:2211.05567 , .369

Jagtap, A. D., & Karniadakis, G. E. (2021). Extended physics-informed neural networks (xpinns): A gen-370

eralized space-time domain decomposition based deep learning framework for nonlinear partial differential371

equations. In AAAI Spring Symposium: MLPS .372

Jain, P., Kar, P. et al. (2017). Non-convex optimization for machine learning. Foundations and Trends® in373

Machine Learning , 10 , 142–363.374

Jiang, B., Lin, T., Ma, S., & Zhang, S. (2019). Structured nonconvex and nonsmooth optimization: algorithms375

and iteration complexity analysis. Computational Optimization and Applications, 72 , 115–157.376

Lagaris, I., Likas, A., & Fotiadis, D. (1998). Artificial neural networks for solving ordinary and partial377

differential equations. IEEE Transactions on Neural Networks, 9 , 987–1000. doi:10.1109/72.712178.378

Liao, G., & Zhang, L. (2022). Solving flows of dynamical systems by deep neural networks and a novel deep379

learning algorithm. Mathematics and Computers in Simulation, 202 , 331–342.380

Liu, N., Wang, J., & Qin, S. (2022). A one-layer recurrent neural network for nonsmooth pseudoconvex381

optimization with quasiconvex inequality and affine equality constraints. Neural Networks, 147 , 1–9.382

Liu, Q., Guo, Z., & Wang, J. (2012). A one-layer recurrent neural network for constrained pseudoconvex383

optimization and its application for dynamic portfolio optimization. Neural Networks, 26 , 99–109.384

Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2021a). Deepxde: A deep learning library for solv-385

ing differential equations. SIAM Review , 63 , 208–228. URL: http://dx.doi.org/10.1137/19M1274067.386

doi:10.1137/19m1274067.387

Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., & Johnson, S. G. (2021b). Physics-388

informed neural networks with hard constraints for inverse design. SIAM Journal on Scientific389

Computing , 43 , B1105–B1132. URL: https://doi.org/10.1137/21M1397908. doi:10.1137/21M1397908.390

arXiv:https://doi.org/10.1137/21M1397908.391

Mattheakis, M., Sondak, D., Dogra, A. S., & Protopapas, P. (2020). Hamiltonian neural networks for solving392

equations of motion. arXiv preprint arXiv:2001.11107 , .393

McFall, K. S., & Mahan, J. R. (2009). Artificial neural network method for solution of boundary value394

problems with exact satisfaction of arbitrary boundary conditions. IEEE Transactions on Neural Networks,395

20 , 1221–1233.396

Nabian, M. A., Gladstone, R. J., & Meidani, H. (2021). Efficient training of physics-informed neural networks397

via importance sampling. Computer-Aided Civil and Infrastructure Engineering , 36 , 962–977.398

17

http://dx.doi.org/10.1109/72.712178
http://dx.doi.org/10.1137/19M1274067
http://dx.doi.org/10.1137/19m1274067
https://doi.org/10.1137/21M1397908
http://dx.doi.org/10.1137/21M1397908
http://arxiv.org/abs/https://doi.org/10.1137/21M1397908

Nocedal, J., & Wright, S. J. (2006). Numerical optimization. In Springer Series in Operations Research and399

Financial Engineering (pp. 1–664). Springer New York. doi:10.1201/b19115-11.400

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,401

N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-402

amkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). PyTorch: An impera-403

tive style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,404

F. d Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural Information Processing Sys-405

tems. Curran Associates, Inc. volume 32. URL: https://proceedings.neurips.cc/paper/2019/file/406

bdbca288fee7f92f2bfa9f7012727740-Paper.pdf. arXiv:1912.01703.407

Raissi, M., Perdikaris, P., & Karniadakis, G. (2019a). Physics-informed neural networks: A deep learning408

framework for solving forward and inverse problems involving nonlinear partial differential equations. Jour-409

nal of Computational Physics, 378 , 686–707. URL: https://www.sciencedirect.com/science/article/410

pii/S0021999118307125. doi:https://doi.org/10.1016/j.jcp.2018.10.045.411

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019b). Physics-informed neural networks: A deep learn-412

ing framework for solving forward and inverse problems involving nonlinear partial differential equations.413

Journal of Computational Physics, 378 , 686–707.414

Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V. M., Guo, H., Hamdia, K., Zhuang, X., &415

Rabczuk, T. (2020). An energy approach to the solution of partial differential equations in computational416

mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied417

Mechanics and Engineering , 362 , 112790.418

Shampine, L. F., & Reichelt, M. W. (1997). The matlab ode suite. SIAM journal on scientific computing ,419

18 , 1–22.420

Sharma, R., & Shankar, V. (2022). Accelerated training of physics informed neural networks (pinns) using421

meshless discretizations. arXiv preprint arXiv:2205.09332 , .422

Tang, K., Wan, X., & Yang, C. (2023). Das-pinns: A deep adaptive sampling method for solving high-423

dimensional partial differential equations. Journal of Computational Physics, 476 , 111868.424

Tassouli, S., & Lisser, A. (2023). A neural network approach to solve geometric programs with joint proba-425

bilistic constraints. Mathematics and Computers in Simulation, 205 , 765–777.426

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,427

Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J.,428

Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore,429

E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris,430

C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., & SciPy 1.0 Contributors (2020).431

18

http://dx.doi.org/10.1201/b19115-11
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://arxiv.org/abs/1912.01703
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.10.045

SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17 , 261–272.432

doi:10.1038/s41592-019-0686-2.433

Wu, C., Zhu, M., Tan, Q., Kartha, Y., & Lu, L. (2023). A comprehensive study of non-adaptive and residual-434

based adaptive sampling for physics-informed neural networks. Computer Methods in Applied Mechanics435

and Engineering , 403 , 115671.436

Xia, Y., & Feng, G. (2007). A new neural network for solving nonlinear projection equations. Neural437

Networks, 20 , 577–589.438

Xia, Y., & Wang, J. (2000). A recurrent neural network for solving linear projection equations. Neural439

Networks, 13 , 337–350.440

Xu, C., Chai, Y., Qin, S., Wang, Z., & Feng, J. (2020). A neurodynamic approach to nonsmooth constrained441

pseudoconvex optimization problem. Neural Networks, 124 , 180–192.442

Yang, Y., Pesavento, M., Chatzinotas, S., & Ottersten, B. (2019). Energy efficiency optimization in mimo443

interference channels: A successive pseudoconvex approximation approach. IEEE Transactions on Signal444

Processing , 67 , 4107–4121.445

Yu, J., Lu, L., Meng, X., & Karniadakis, G. E. (2022). Gradient-enhanced physics-informed neural networks446

for forward and inverse pde problems. Computer Methods in Applied Mechanics and Engineering , 393 ,447

114823.448

Zhang, D., Guo, L., & Karniadakis, G. E. (2020). Learning in modal space: Solving time-449

dependent stochastic pdes using physics-informed neural networks. SIAM Journal on Scientific450

Computing , 42 , A639–A665. URL: https://doi.org/10.1137/19M1260141. doi:10.1137/19M1260141.451

arXiv:https://doi.org/10.1137/19M1260141.452

19

http://dx.doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1137/19M1260141
http://dx.doi.org/10.1137/19M1260141
http://arxiv.org/abs/https://doi.org/10.1137/19M1260141

	Introduction
	Related Works
	Neuraodynamic Optimization
	Deep Learning for Solving Differential Equations

	Contributions
	Outline

	Preliminaries
	Constrained Pseudoconvex Nonsmooth Optimization Problem
	Neurodynamic Optimization

	Surrogate Model
	Initial Value Problem Setup
	Neural Network Based Surrogate Model

	Model Training
	Loss Function
	Evaluation Metric
	Pipeline

	Experiments
	Comparing CPNOP Solutions: Our Approach vs. Numerical Integration
	Large-Scale CPNOP
	Discussion

	Conclusion
	Bibliography

