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In this paper, we consider Constrained Pseudoconvex Nonsmooth Optimization Problems (CPNOPs), which are a class of nonconvex optimization problems. Due to their nonconvexity, classical convex optimization algorithms are unable to solve them, while existing methods, i.e., numerical integration methods, are inadequate in terms of computational performance. In this paper, we propose a novel approach for solving CPNOPs that combines neurodynamic optimization with deep learning. We construct an initial value problem (IVP) involving a system of ordinary differential equations for a CPNOP and use a surrogate model based on a neural network to approximate the IVP. Our approach transforms the CPNOP into a neural network training problem, leveraging the power of deep learning infrastructure to improve computational performance and eliminate the need for traditional optimization solvers. Our experimental results show that our approach is superior to numerical integration methods in terms of both solution quality and computational efficiency.

Introduction

Constrained nonlinear optimization problems involve finding the best solution among a set of possible solutions by minimizing or maximizing an objective function. These problems are prevalent in various fields such as engineering, physics, finance, and management, with a wide range of applications. They can be divided into two groups based on the nature of the objective or constraint functions: convex and nonconvex optimization problems. Convex optimization problems, which include linear programming and quadratic programming, are a special class of nonconvex optimization problems and have been studied extensively.

Methods such as the primal-dual interior point method have been developed to solve them efficiently [START_REF] Boyd | Convex optimization[END_REF][START_REF] Nocedal | Numerical optimization[END_REF]. Nonconvex optimization problems, however, are more complex and commonly solved through gradient descent-based algorithms, which often struggle to converge to the global optimal solution [START_REF] Jain | Non-convex optimization for machine learning[END_REF][START_REF] Jiang | Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis[END_REF].

In this paper, we focus on a specific type of constrained nonconvex optimization problem known as constrained pseudoconvex nonsmooth optimization problems (CPNOPs). A CPNOP has an objective function that is both pseudoconvex, meaning that it is not strictly convex, and nonsmooth, meaning that it is not everywhere differentiable. Due to the pseudoconvexity and non-smoothness of the objective function, traditional convex optimization algorithms are not applicable to solve it.

CPNOPs are typically solved by neurodynamic optimization, which involves constructing an initial value problem (IVP) consisting of a system of ordinary differential equations (ODEs) [START_REF] Liu | A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization[END_REF][START_REF] Xu | A neurodynamic approach to nonsmooth constrained pseudoconvex optimization problem[END_REF][START_REF] Liu | A one-layer recurrent neural network for nonsmooth pseudoconvex optimization with quasiconvex inequality and affine equality constraints[END_REF]. The final state in the solution of this IVP represents the predicted solution of the CPNOP. These ODE systems are highly nonlinear and have no analytical solutions. Therefore, numerical integration methods, such as the Runge-Kutta method [START_REF] Dormand | A family of embedded runge-kutta formulae[END_REF] or the backward differentiation formula [START_REF] Shampine | The matlab ode suite[END_REF], are often used to approximate their solutions numerically. Motivation. However, numerical integration methods can be computationally expensive and can produce inaccurate solutions, particularly if the ODE system derived from the CPNOP is stiff. In addition, these methods are not well suited to solving CPNOPs as they require the calculation of all previous states to reach the desired final state, making them inefficient. Therefore, a more efficient and accurate approach is needed to solve CPNOPs.

Related Works

Neuraodynamic Optimization

Neurodynamic optimization is a class of methods that model constrained optimization problems using ODE systems. This approach was first introduced by [START_REF] Hopfield | neural" computation of decisions in optimization problems[END_REF] to solve the traveling salesman problem. Since then, neurodynamic optimization has been applied to a wide range of optimization problems, including linear and quadratic programming problems [START_REF] Xia | A recurrent neural network for solving linear projection equations[END_REF], general convex programming problems [START_REF] Xia | A new neural network for solving nonlinear projection equations[END_REF], biconvex optimization problems [START_REF] Che | A two-timescale duplex neurodynamic approach to biconvex optimization[END_REF], global optimization problems [START_REF] Che | A collaborative neurodynamic approach to global and combinatorial optimization[END_REF], and stochastic optimization problems [START_REF] Tassouli | A neural network approach to solve geometric programs with joint probabilistic constraints[END_REF]. These methods typically use the Lyapunov stability theorem to prove that the constructed ODE system has a global convergence property. This means that any state solution of the ODE system converges to an optimal solution of the target problem.

In particular, neurodynamic optimization for solving pseudoconvex optimization problems has received widespread attention in recent years. Researchers have applied it to many applications, including portfolio optimization, energy efficiency optimization, and production planning [START_REF] Liu | A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization[END_REF][START_REF] Yang | Energy efficiency optimization in mimo interference channels: A successive pseudoconvex approximation approach[END_REF].

Various neurodynamic methods have been proposed to solve pseudoconvex problems with different types of constraints, such as linear equation constraints [START_REF] Guo | A one-layer recurrent neural network for pseudoconvex optimization subject to linear equality constraints[END_REF], bound constraints [START_REF] Liu | A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization[END_REF], convex inequality constraints [START_REF] Bian | Neural network for nonsmooth pseudoconvex optimization with general convex constraints[END_REF], and quasiconvex constraints [START_REF] Liu | A one-layer recurrent neural network for nonsmooth pseudoconvex optimization with quasiconvex inequality and affine equality constraints[END_REF].

Deep Learning for Solving Differential Equations

Another line of research included in our work is the use of deep learning to solve differential equations.

The idea of using neural networks to approximate the solutions of differential equations was first introduced by [START_REF] Dissanayake | Neural-network-based approximations for solving partial differential equations[END_REF], where training was performed by minimizing a loss function based on the network's satisfaction of the boundary conditions and the differential equations. [START_REF] Lagaris | Artificial neural networks for solving ordinary and partial differential equations[END_REF] showed that the network architecture could be designed to satisfy the boundary conditions, and this method was extended to systems with irregular boundaries [START_REF] Mcfall | Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions[END_REF].

With the advancement of deep learning, this approach has received renewed attention with the goal of solving high-dimensional nonlinear partial differential equations (PDEs) [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF][START_REF] Huang | Partial differential equations meet deep neural networks: A survey[END_REF]. One notable approach is the use of physics-informed neural networks (PINNs) (Raissi et al., 2019a), which incorporate physical laws and boundary conditions into the network architecture and training process.

PINNs have been applied to a variety of engineering problems, such as fluid mechanics [START_REF] Samaniego | An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications[END_REF][START_REF] Cai | Physics-informed neural networks (pinns) for fluid mechanics: A review[END_REF]. Variations of PINNs have been developed to address different problem scenarios [START_REF] Lu | Physicsinformed neural networks with hard constraints for inverse design[END_REF][START_REF] Zhang | Learning in modal space: Solving timedependent stochastic pdes using physics-informed neural networks[END_REF][START_REF] Liao | Solving flows of dynamical systems by deep neural networks and a novel deep learning algorithm[END_REF] or to improve computational performance [START_REF] Jagtap | Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations[END_REF][START_REF] Yu | Gradient-enhanced physics-informed neural networks for forward and inverse pde problems[END_REF][START_REF] Sharma | Accelerated training of physics informed neural networks (pinns) using meshless discretizations[END_REF]. Software packages have been developed to facilitate the application of these methods (Lu et al., 2021a;[START_REF] Chen | Neurodiffeq: A python package for solving differential equations with neural networks[END_REF].

Contributions

Our main contributions in this work are as follows:

• We propose a novel approach that combines the advantages of neurodynamic optimization in modeling CPNOPs as ODE systems and the power of deep learning in approximating the solutions to these systems. By transforming the CPNOP into a neural network training problem, our solver eliminates the need for traditional optimization solvers or numerical integration methods.

• We design a specialized training algorithm that takes advantage of the problem structure of CPNOPs to optimize the performance of our proposed model. The neural network is trained to simultaneously satisfy the ODE system and minimize the CPNOP objective function.

• In our experimental results, we demonstrate that our proposed approach superiority over numerical integration methods in terms of solution quality and computational efficiency for solving CPNOPs. In addition, we show the performance of the proposed method in solving a large-scale CPNOP which is difficult to be solved by classical numerical integration methods.

Outline

The remainder of this paper is organized as follows: Section 2 provides essential background knowledge, including an introduction to CPNOPs and neurodynamic optimization. Section 3 presents our proposed neural network model and its application to optimization problems. The training process for the proposed neural network is described in Section 4. In Section 5, experimental results are presented and discussed, comparing our method to numerical integration techniques. Finally, Section 6 offers a summary and outlines future research directions.

Preliminaries

Constrained Pseudoconvex Nonsmooth Optimization Problem

We consider the following optimization problem:

                   min x f (x) s.t. x ∈ I = {x ∈ R n |g i (x) ≤ 0, i = 1, . . . , m}, x ∈ S = {x ∈ R n |Ax = b}, (1) 
where x = (x 1 , x 2 , . . . , x n ) T ∈ R n are the decision variables, f : R n → R is the objective function, g(x) = (g 1 (x), g 2 (x), . . . , g m (x)) T : R n → R m is the function of the inequality constraints, and Ax = b is the equality constraints with A ∈ R p×n and b ∈ R p . n, m, and p denote the number of decision variables, inequality constraints, and equality constraints, respectively.

In this paper, we consider the case where f (x) is pseudoconvex and nonsmooth, g(x) is convex and smooth, and A is of full row rank. We denote x * as the optimal solution of the problem.

Assumption 1.

• There exists a point x ∈ R n such that x ∈ S ∩ int(I), where int(•) denotes the interior of the set.

• The objective function f (x) is Lipschitz continuous and regular on S ∩ I.

Neurodynamic Optimization

Now let y : R → R n be a time-dependent function. In this context, y(t) represents the state of the system at time t, and dy dt = Φ(y(t)) is an ODE system representing the dynamics of the system. A neurodynamic optimization method aims to construct an ODE system dy dt = Φ(y(t)) for the control of y(t) such that y(t)

settles down to an optimal solution of the considered CPNOP represented in equation ( 1).

Definition 1 (State solution). Consider an ODE system dy dt = Φ(y(t)), where Φ : R n → R n . Given an initial point y 0 ∈ R n , a vector value function y : R → R n is called a state solution, if it satisfies the ODE system dy dt = Φ(y(t)) and the initial condition y(0) = y 0 .

Definition 2 (Global convergence). Let y(t) be a state solution of an ODE system dy dt = Φ(y(t)), and let X * be the set of optimal solutions of the CPNOP (1).

The state solution of the ODE system is said to converge globally to X * , if y(t) satisfies

lim t→∞ dist (y(t), X * ) = 0,
where dist (y(t), X * ) = inf x * ∈X * |y(t) -x * |, and ∥•∥ is the Euclidean norm. If the set X * contains only one optimal solution x * , then lim t→∞ y(t) = x * , and the ODE system is globally asymptotically stable at x * .

In this paper, a modified version of the one-layer neurodynamic approach [START_REF] Liu | A one-layer recurrent neural network for nonsmooth pseudoconvex optimization with quasiconvex inequality and affine equality constraints[END_REF]) is used to model the CPNOP. We adapt the original approach to better fit the problem and improve its performance.

The resulting ODE system is given by:

dy dt ∈ -θ(t)(I -U ) m i=1 (1 -µ (g i (y (t)))) ∂f (y (t)) + ∂B(y (t)) -A T ρ(Ay (t) -b), (2) 
where I ∈ R n×n is the identity matrix, and U = A T AA T -1 A. The components of this ODE system are described as follows:

θ : R → R is a function that controls the convergence of the state solution y(t) to satisfy the equality constraints, given by

θ(t) =      0, if t ≤ T 0 , 1, otherwise , (3) 
where T 0 = 1+∥Ay 0 -b∥ 1 /λ min AA T , y 0 ∈ R n is an initial point of the ODE system, λ min AA T represents the smallest eigenvalue of the matrix AA T .

B : R n → R is defined as follows:

B(y(t)) = m i=1 max {0, g i (y(t))} (4) 
Since every g i (•) is convex, B(•) is also convex, which means that ∂B(•) always exists. To compute ∂B(•), we first define an activation function µ : R → R as follows:

µ(s) =      1, if s > 0, 0, if s ≤ 0.
(5)

Then, the closed-form for ∂B(y(t)) can be given as follows:

∂B (y(t)) =                  0, if y(t) ∈ S ∩ int(I), i∈I 0 (y(t)) µ (g i (y(t))) ∇g i (y(t)), if y(t) ∈ S ∩ bd(I), i∈I 0 (y(t)) µ (g i (y(t))) ∇g i (y(t)) + i∈I + (y(t)) ∇g i (y(t)), if y(t) ∈ S\I, (6) 
where I 0 (y(t)) = {i ∈ {1, 2, . . . , k}|g i (y(t)) = 0}, I + (y(t)) = {i ∈ {1, 2, . . . , k}|g i (y(t)) > 0}, and bd(•) denotes the boundary of the set.

ρ : R p → R p is an activation function defined as ρ(s) = (ρ (s 1 ) , ρ (s 2 ) , . . . , ρ (s p ))

T , where

ρ (s i ) =            1 if s i > 0, 0 if s i = 0, -1 if s i < 0. (7)
Theorem 1 [START_REF] Liu | A one-layer recurrent neural network for nonsmooth pseudoconvex optimization with quasiconvex inequality and affine equality constraints[END_REF]). Let Assumption 1 hold. Given any initial point y 0 ∈ R n , the corresponding state solution y(t) of the ODE system (2) globally converges to an optimal solution of the CPNOP (1).

Surrogate Model

Initial Value Problem Setup

In this work, we model the CPNOP in equation ( 1) using the ODE system outlined in equation ( 2). As stated in Theorem 1, given any initial point y 0 , the state solution y(t) approaches an optimal solution x * as time t goes to infinity, i.e., lim t→∞ y(t) = x * .

To determine the state solution, we must first specify an IVP by choosing an initial point and a time range. For simplicity, we set the initial point to be the all-zero vector, i.e., y 0 = 0. The time range is defined as the interval [0, T ], where T is a positive number given in advance.

We introduce the following definition:

Definition 3 (Final state). Given a state solution y(t) and a time range [0, T ], the state at the end of the time range, i.e., y(T ), is called the final state.

The final state y(T ) holds significance as it approximates the optimal solution x * , i.e.,

y(T ) ≈ x * . ( 8 
)
The goal of this study is to effectively and accurately determine the final state of a given time range.

Neural Network Based Surrogate Model

We propose a neural network based surrogate model to approximate the solution of the constructed IVP.

The structure of the model is shown in Figure 1 (left). The equation below describes the surrogate model:

ŷ(t; w) = 1 -e -t N(t; w), t ∈ [0, T ], (9) 
where N(t; w) is a fully connected neural network with trainable parameters w, and (1 -e -t ) is an auxiliary function that ensures that the initial condition ŷ(t = 0; w) = 0 is satisfied.

The auxiliary function (1 -e -t ) is a modified version of the Lagaris method [START_REF] Lagaris | Artificial neural networks for solving ordinary and partial differential equations[END_REF], where the exponential form has been shown to improve convergence in previous studies [START_REF] Mattheakis | Hamiltonian neural networks for solving equations of motion[END_REF]. In our experiments, we also observed similar benefits from using this function, likely because it reduces the influence of the neural network further from the initial time.

Approximate State Solution. The surrogate model is designed to approximate the state solution of the IVP constructed in Section 3.1. This is represented by the following relationship:

ŷ(t; w) ≈ y(t), t ∈ [0, T ]. ( 10 
)
Predicted Soltuion to the CPNOP. In particular, we denote the final state of the surrogate model as:

x(w) = ŷ(t = T ; w), (11) 
which serves as a prediction of the optimal solution of CPNOP. By combining equation ( 8) and equation ( 10)

at t = T , we have x(w) ≈ y(T ) ≈ x * . ( 12 
)
Figure 1 (right) shows our proposed surrogate model as an approximate state solution, thus providing a prediction for the CPNOP. The CPNOP being considered in this figure has four variables. The colored lines represent the surrogate model, a 4-dimensional vector-valued function that approximates the state solution of the IVP. The red stars represent the final state, which is a 4-dimensional real vector that serves as the predicted optimal solution to the CPNOP.

Model Training

Loss Function

We define the loss function for the proposed surrogate model as follows: where Φ(•) refers to the ODE system outlined in equation ( 2), which corresponds to a CPNOP to be solved.

L(t, w) = ∂ ŷ(t; w) ∂t -Φ(ŷ(t; w)) , (13 
∂ ŷ(t;w) ∂t
is the derivative of the model output ŷ(t; w) with respect to the input time t. This derivative can be calculated analytically using automatic differentiation tools such as PyTorch or JAX [START_REF] Paszke | PyTorch: An imperative style, high-performance deep learning library[END_REF][START_REF] Bradbury | JAX: composable transformations of Python+NumPy programs[END_REF].

In Figure 2, we show how the CPNOP is integrated into the loss computation, rather than being a component of the surrogate model structure. The surrogate model itself is an empty framework with no goal of solving a particular CPNOP. By reformulating CPNOP as an ODE system and embedding it in the loss function, we train the neural network to let the surrogate model satisfy the ODE system. This approach is similar to that used in PINN [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF], where physical rules are encoded as PDEs and incorporated into the loss function for training.

The goal of training the surrogate model is to minimize the following objective function: However, it is computationally intractable to compute E(w) due to the integral part. Therefore, in practice, we train the model by minimizing the following batch loss:

E(w) = T 0 L(t, w)dt, (14) 
L(T, w) = 1 |T| t∈T L(t, w), ( 15 
)
where T is a set of collocation time points, and |T| is the size of the set. In this study, we specifically adopt a uniform distribution over the interval [0, T ] for sampling collocation time points. While there is existing Algorithm 1 A deep learning-based solver for CPNOP Input: A CPNOP as defined in (1); A time range [0, T ] Output: Predicted optimal solution to the CPNOP 1: function CPNOP solver:

2:

Derive the ODE system, Φ(•), according to the CPNOP. ▷ By equation (2).

3:

Instantiate a surrogate model ŷ(t; w). ▷ By equation ( 9).

4:

Set ϵ best ← ϵ(x(w)) ▷ Initialize ϵ best .

5:

while iteration ≤ maximum iteration do 6:

Sample a batch of times T ∼ U (0, T ) uniformly from the interval [0, T ]. ▷ Data generation.

7:

Compute the batch loss L(T, w). ▷ Forward propagation.

8:

Update w by ∇ w L(T, w). ▷ Backward propagation.

9:

Project x(w) onto the feasible set I by x(w) ← P eq (x(w)). ▷ To satisfy equality constraints.

10:

Calculate the epsilon value ϵ temp ← ϵ(x(w)). 2023)), our practical experience indicates that the straightforward approach of uniform distribution yields comparable results.

Evaluation Metric

We propose a metric to evaluate the performance of the predicted optimal solution x(w). This metric, known as the epsilon value, is defined as follows:

ϵ(x(w)) =      f (x(w)), if x(w) ∈ S ∩ I, +∞, otherwise , (16) 
where f (•), S, and I are given in equation ( 1). If x(w) is within the feasible set, the epsilon value is set to the objective value corresponding to x(w), i.e., f (x(w)). Otherwise, the epsilon value is set to +∞ to indicate that the prediction is not within the feasible set.

Since it is difficult to strictly satisfy the equality constraints, we use the following technique to project the prediction into S:

P eq (x(w)) = x(w) -A T AA T -1 (Ax(w) -b). ( 17 
)

Pipeline

Algorithm 1 outlines the steps for solving a CPNOP using our proposed surrogate model approach. The algorithm starts by constructing an IVP from the given CPNOP and a pre-specified time range of [0, T ]. A neural network is then initialized as a surrogate model to serve as an approximate state solution for this IVP.

The parameters of the network are then optimized by performing gradient descent on the designed batch loss function, as defined in equation ( 15), in order to improve the accuracy of the approximation.

A key aspect of the proposed algorithm is the use of the evaluation metric, as defined in equation ( 16), to assess the performance of the model at each training iteration. The variables ϵ best and ϵ temp represent the lowest and current epsilon values achieved by the model, respectively. After each update of the network parameters, the algorithm compares ϵ temp with ϵ best . Suppose ϵ temp is less than ϵ best , indicating that the model found a better prediction. In this case, the algorithm updates ϵ best = ϵ temp and saves the current best prediction x(w). This design is similar to traditional optimization algorithms that check for optimality conditions (e.g., KKT conditions) at each iteration.

Experiments

Our proposed approach was evaluated on the Google Colab Pro+ platform, using PyTorch 1.12.1 with CUDA 11.2 for the neural network and JAX 0.4.1 [START_REF] Bradbury | JAX: composable transformations of Python+NumPy programs[END_REF] for modeling the ODE system.

Section 5.1 presents a standard CPNOP, where we demonstrate the complete process of solving the problem using the proposed method and provide a detailed comparison between our approach and numerical integration methods. In Section 5.2, we showcase a large-scale CPNOP, which cannot be addressed by classical numerical integration techniques, and illustrate how our proposed method effectively tackles this challenge. Finally, Section 5.3 discusses the advantages and limitations of the proposed approach.

Comparing CPNOP Solutions: Our Approach vs. Numerical Integration

Example 1: Consider the following specific instance of a CPNOP:

min x f (x) = x 1 + x 2 + e |x2-1| -40 (x 1 + x 2 + x 3 ) 2 + 3 s.t. g 1 (x) = -3x 1 + 2x 2 -5 ≤ 0 g 2 (x) = x 2 1 + x 2 -3 ≤ 0 h(x) = x 1 + 2x 2 + x 3 -2 = 0 (18)
According to Theorem 7 in [START_REF] Liu | A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization[END_REF], the objective function in this instance is pseudoconvex. It is also non-smooth due to the presence of the absolute value function |x 2 -1|.

IVP Construction. We modeled this specific instance using the ODE system outlined in equation ( 2).

We set the initial point to y 0 = 0 and the time range to the interval [0, 10] to construct an IVP for this ODE system. The true state solution of this IVP is denoted as y(t), which is unknown and has no analytical solution. Our experiments showed that this particular instance of CPNOP results in a stiff ODE system, which leads to poor computational efficiency and accuracy when using traditional numerical integration methods. Figure 3: Comparison of solution processes between our approach and RK45. The top panel shows the evolution of ŷ(t; w) = (ŷ 1 (t; w), ŷ2 (t; w), ŷ3 (t; w)) T obtained by our approach at 0, 100, 1000, and 10000 TIs (from left to right). The bottom panel shows the evolution of ȳ(t) = (ȳ 1 (t), ȳ2 (t), ȳ3 (t)) T obtained by RK45 at 0, 1000, 5000, and 10000 CPs (from left to right).

Experimental Setup of Our Approach. To solve the instance presented in equation ( 18), we instantiated a surrogate model as follows: ŷ(t; w) = (1 -e -t )N(t; w), where t ∈ [0, 10], N(t; w) is a fully-connected neural network with one hidden layer of 100 neurons and the Tanh activation function. We then trained this surrogate model using Algorithm 1, with a maximum of 10,000 iterations, the Adam optimizer with a learning rate of 0.001, and a batch size of 128.

Experimental Setup of RK45. We performed a comparison of our proposed approach with the Runge-Kutta (RK) method, which is a commonly used technique among numerical integration methods. In particular, we chose the RK45 solver, which can be accessed via the Scipy library [START_REF] Virtanen | & SciPy 1.0 Contributors[END_REF], as a representative implementation of the RK method. We opted to present only a comparison with RK45 in Figure 3 and Table 1, as experimental observations indicate that the approximate state solutions obtained from different numerical integration methods do not show significant differences. We set the number of collocation points to 10,000, which were uniformly distributed over the time range of [0, 10]. The approximate state solution obtained by RK45 is denoted as ȳ(t). Both ŷ(t; w) and ȳ(t) aim to be as close as possible to the true state solution y(t) over the interval [0, 10].

Solution Process of Our Approach. In the top panel of Figure 3, we show the evolution of ŷ(t; w) as it approximates y(t). Our proposed approach achieves this by training the neural network with the parameters w. As the network parameters w are updated at each training iteration (TI), a new ŷ(t; w) is generated. The upper left corner of Figure 3 shows the initial approximation, while the upper right corner of the figure shows the final approximation after 10,000 training iterations, which is a more accurate approximation for the IVP and closer to y(t).

Solution Process of RK45. In the bottom panel of Figure 3, we show the evolution of ȳ(t) as it approaches y(t). RK45 achieves this by incrementally advancing the collocation point (CP) from the initial time t = 0 to the final time t = 10. The bottom panel of the figure illustrates how the approximation of ȳ(t) the quality of the solutions reported in Table 1, it is clear that our approach is able to produce faster and better solutions for the CPNOP instance in equation ( 18) than the numerical integration methods.

Large-Scale CPNOP

Example 2: Consider the following large-scale CPNOP:

min x f (x) = 999 i=1 x 2 i - x 2 i x i+1 s.t. g i (x) = x 2 10(i-1)+1 + x 2 10(i-1)+2 + . . . + x 2 10(i-1)+10 -20 ≤ 0, i = 1, 2, . . . , 100. h(x) = Ax -b = 0 (19)
This large-scale CPNOP is a modification from [START_REF] Bian | Neural network for nonsmooth pseudoconvex optimization with general convex constraints[END_REF], which has 1000 variables, 100 inequality nonlinear constraints, and 1 equality constraint. The objective function f (x) is pseudoconvex, and the inequality constraints are nonlinear and convex. In the equality constraint, b = 16, and the vector A can be accessed from the link1 .

IVP Construction. We construct an IVP by specifying the time range [0, 10] and an initial point y 0 , which can be accessed from the link2 . We use a fully connected neural network with four hidden layers, each containing 150 neurons, to solve this problem. Other training settings are consistent with Section 5.1.

Difficulty in Solving with Numerical Integration. The large-scale nature of Example 2 leads to an IVP with 1000 state variables, making it difficult to solve using classical numerical integration methods due to low efficiency. We attempted to solve the problem using methods such as RK45, but they took over an hour without providing effective predictions.

Constraint Violation Metrics. We define two metrics to describe the degree to which the predictions satisfy the equality and inequality constraints:

eq vio(x pred ) = ∥Ax pred -b∥ , ( 20 
) ieq vio(x pred ) = g(x pred ) + , (21) 
where g(x pred ) + = min{0, g(x pred )}.

Effectiveness of the Proposed Method in Solving Large-Scale CPNOP. Figure 4 shows the performance of our neural network method in solving Example 2. We can draw the following conclusions from the experimental results:

• As shown in Figure 4-(A), the loss function decreased from 175 to 20, indicating that the proposed model effectively solved the constructed IVP, even for large-scale optimization problems. The model provided an acceptable predicted state solution.

• The proposed method progressively approaches the optimal solution. As shown in Figure 4-(B), the objective value decreased from 17,000 to 2,500. Although the obtained predicted value is not the optimal solution under the current experimental settings, it is already very close and provides a meaningful upper bound for the original problem.

• The proposed method effectively finds feasible solutions to the problem. As shown in Figure 4-(C), after only 500 iterations, the equality constraint violation metric eq vio decreased from an initial 18,000 to 12, and the inequality constraint violation metric ieq vio decreased from an initial 15,000 to 0. Furthermore, the projection transformation (17) can adjust the predicted values to satisfy the equality constraints, reducing the eq vio metric to zero.

Discussion

Advantages. In comparison to numerical integration methods for solving CPNOPs, our approach presents three distinct computational benefits:

• Our method predicts the final state at each TI, whereas numerical integration techniques only offer a prediction upon completion of the entire solution process. This results in faster convergence and more efficient computation, as demonstrated in Tables 1 and2.

• By transforming the CPNOP into a neural network training problem, our approach allows us to capitalize on deep learning infrastructure and methodologies, enhancing computational performance.

• As evidenced in Section 5.2, our method is capable of solving large-scale CPNOPs, while classical numerical integration techniques demand significantly more computational time and still fail to deliver a feasible predictions Limitations. While our approach has demonstrated some advantages, it also has some limitations that must be acknowledged. One limitation is that it requires more complicated tuning of the hyperparameters to achieve optimal performance, unlike numerical integration methods, which are generally more straightforward and require minimal tuning. In addition, when dealing with a complex instance of CPNOP, such as those with many variables and constraints, it may be necessary to use a more advanced neural network architecture and allocate more resources to training in order to achieve a high-quality solution.

Large-Scale CPNOP. We believe that the proposed neural network approach may open new possibilities for solving large-scale CPNOPs. Traditional solvers, when applied to large-scale problems, often face inefficiencies due to memory limitations or iterative solving processes. In contrast, the method proposed here potentially circumvents these issues by transforming the problem into training a neural network. Training large-scale neural networks is a relatively common and well-researched task in the field of deep learning.

However, one challenge with the neural network method is the lack of guaranteed convergence. This is due to the fact that neural network training generally involves non-convex optimisation, where continuous loss reduction cannot be guaranteed. Nevertheless, we can use the neural network prediction as a starting point to warm start a traditional solver, thereby obtaining the convergent solution.

Conclusion

In this paper, we presented a novel approach for solving CPNOPs that combines neurodynamic optimization with deep learning techniques, specifically using deep learning-based differential equation solvers such as PINN. Our results demonstrated that this approach leads to faster convergence and superior solutions compared to traditional numerical integration methods. Our work establishes a link between CPNOPs and deep learning, opening up new possibilities in the field of nonlinear constrained programming.

However, it is important to note that the approach is still in its early stages and has limitations, such as potential reliability and robustness issues. In future work, we plan to improve the performance of our approach by exploring advanced deep learning-based PDE solvers and alternative neurodynamic optimization approaches, and to apply the method to other types of nonlinear programming problems.
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 1 Figure 1: Left: The structure of the surrogate model. Right: The surrogate model as an approximate state solution on the time range [0, T ].
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 2 Figure 2: Incorporating the CPNOP into the loss function

  which is an integral of the loss function over the pre-given time range [0, T ]. The loss value L(t, w) represents the error of the model at time t, and the objective function E(w) represents the total error of the model over the time range [0, T ].
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 4 Figure 4: Performance of the proposed neural network method for Example 2: (A) Loss value, (B) Objective value, and (C) Constraint violation metrics. eq vio and ieq vio are defined in (20) and (21), respectively.

  PINNs exploring more sophisticated collocation point sampling methods to enhance computational efficiency (e.g., Tang et al. (2023); Nabian et al. (2021); Wu et al. (2023); Fang et al. (

	11:	if ϵ temp < ϵ best then	
	12:	ϵ best ← ϵ temp .	▷ Update ϵ best .
	13:	xbest ← x(w).	▷ Update xbest .
	14:	end if	
	15:	end while	
	16:	return xbest	
	17: end function	
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Table 2 :

 2 Evaluation of computational efficiency between our approach and various numerical integration methods. ms, s and h denote milliseconds, seconds and hours, respectively.

	Our approach	Numerical integration methods				
	TI	Runtime CP	RK45 Runtime	RK23 Runtime	DOP853 Runtime	Radau Runtime	BDF Runtime	LSODA Runtime
	10	202ms	10	811ms	433ms	1.77s	1.06s	Fail	458ms
	100	893ms	100	980ms	1.23s	2.3s	1.33s	Fail	1.47s
	1000	8.47s	1000	11s	13.2s	3min 25s	>2h	Fail	20min 20s
	5000	40s	5000	3min 31s 5min 5s	29min 43s >2h	Fail	Fail
	10000 80s	10000 7min 45s 12min 15s 49min 55s >2h	Fail	Fail

https://drive.google.com/file/d/1duUyhCtW0qViVfX0VwBQcoiv9QTWvBeO/view?usp=share_link

https://drive.google.com/file/d/1V098TrlLgPH-WHrlgkX7njVLy-J9FBc2/view?usp=share_link

improves as the number of CPs increases, with the plot of ȳ(t) at 0, 1000, 5000, and 10,000 CPs corresponding to the solved time ranges [0, 0], [0, 1], [0,5], and [0, 10], respectively. 1: Evaluation of solution quality between our approach and RK45. The solution represents the predicted optimal solution for the CPNOP instance given in equation ( 18). The epsilon value serves as the evaluation metric, as defined in equation ( 16).

Comparison of Solution Quality. In Table 1, we present a comparison of the predicted optimal solutions for the CPNOP instance obtained using our approach and RK45, along with their corresponding epsilon values, where a lower epsilon indicates a better solution. The solution of our approach is represented by the final state of the surrogate model, i.e., ŷ(t = 10, w), where each TI corresponds to a different value of ŷ(t = 10, w). The solution of RK45 is given by ȳ(t = 10 * (CP/10000)), which is the final state of a solved time range. For example, when CP = 5000, the corresponding solved time range is [0, 5], and the solution of RK45 at this CP is the final state of this time range, i.e., ȳ(t = 5).

The results in Table 1 suggest the following:

• Our approach converges faster than RK45. In other words, our approach is able to find a satisfactory solution at an early stage of the solution process. For example, at the 100th TI, our solution has an epsilon value of -11.963, while the solution of RK45 only reaches an epsilon value of -7.872 at the 100th CP.

• Our approach yields a more accurate final solution than RK45. At the end of the solution process, i.e., at TI=10000 for our approach or CP=10000 for RK45, our solution reaches an epsilon value of -11.992, which is superior to that of RK45.

Comparison of Computational Efficiency. In Table 2, we evaluate the computational efficiency of our approach in comparison to a selection of popular numerical integration methods, such as RK45, RK23, DOP853, Radau, BDF, and LSODA, which are available through the Scipy library. The results are presented in terms of the CPU time required to solve the CPNOP, with lower values indicating superior efficiency. 2 indicate that our approach is significantly more efficient than the numerical integration methods. Specifically, our approach took only 80 seconds to complete 10,000 TIs, while the fastest numerical integration method (RK45) took more than 7 minutes to complete 10,000 collocation points. Some numerical integration methods, such as LSODA, and BDF, even failed to complete the task. Combined with

The results in Table