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CLASSICAL AND NEW PLUMBED HOMOLOGY SPHERES BOUNDING

A central problem in low-dimensional topology asks which homology 3-spheres bound contractible 4-manifolds. In this paper, we address this question for plumbed 3-manifolds and we present two new infinite families. We consider most of the classical examples around the nineteen-eighties by reproving that they all bound Mazur manifolds. Also, we show that several well-known families bound possibly different types of contractible 4-manifolds. To unify classical and new results in a fairly simple way, we modify Mazur's famous argument and introduce generalized Mazur manifolds.

Conjecture 1.2 (Three Fibers Conjecture 2 ). A Seifert fibered homology sphere with more than three singular fibers cannot bound a homology ball.

1 In this paper, we always work with integral homology 3-spheres, smooth contractible 4-manifolds, and smooth integral homology 4-balls, hence we drop the integral, smooth, 3-and 4-prefixes.

Introduction

Freedman's breakthrough work [START_REF] Hartley | The topology of four-dimensional manifolds[END_REF] expresses that every integral homology 3sphere bounds a topological contractible 4-manifold. However, the smooth analogue of this implication produces an unresolved problem in low-dimensional topology.

Problem 1.1 (Problem 4.2, [START_REF]Problems in low dimensional manifold theory[END_REF]). Which integral homology 3-spheres bound smooth contractible 4-manifolds or smooth integral homology 4-balls? 1

It is mysterious to give a complete answer to this problem. However, in the past four decades, a considerable amount of progress has been achieved by restricting to plumbed 3-manifolds, and especially Seifert fibered homology spheres with three singular fibers. In general, Seifert fibered homology spheres can be uniquely realized as the boundaries of negative-definite, unimodular plumbing graphs of 4-manifolds. These graphs have one node with adjacent branches and the number of branches corresponds to the number of singular fibers.

Several infinite families of Seifert fibered homology spheres with three singular fibers were known to be bound contractible manifolds. After Kirby's celebrated work [START_REF] Robion | A calculus for framed links in S 3[END_REF], the classical articles appeared subsequently: Akbulut and Kirby [START_REF] Akbulut | Mazur manifolds[END_REF], Casson and Harer [START_REF] Casson | Some homology lens spaces which bound rational homology balls[END_REF], Stern [START_REF] Stern | Some more Brieskorn spheres which bound contractible manifolds[END_REF], Fintushel and Stern [START_REF] Fintushel | An exotic free involution on S 4[END_REF], Maruyama [START_REF] Maruyama | Notes on homology 3-spheres which bound contractible 4-manifolds. I[END_REF], [START_REF]Notes on homology 3-spheres which bound contractible 4-manifolds. II[END_REF], and Fickle [START_REF] Henry | Knots, Z-homology 3-spheres and contractible 4-manifolds[END_REF]. In addition, some of these results were found independently of Kirby calculus, see Fukuhara [START_REF] Fukuhara | On the invariant for a certain type of involutions of homology 3-spheres and its application[END_REF] and Martin [START_REF] Martin | Some homology 3-spheres which bound acyclic 4-manifolds, Topology of low-dimensional manifolds[END_REF]. One can weaken Problem 1.1 to ask which homology spheres bound rational homology balls. Surprisingly, this slight version of the problem still remains hard. For affirmative answers, see [START_REF]A µ-invariant one homology 3-sphere that bounds an orientable rational ball, Four-manifold theory[END_REF], [START_REF] Akbulut | Brieskorn spheres bounding rational balls[END_REF], [Şav20] and [START_REF] Simone | Using rational homology circles to construct rational homology balls[END_REF].

When the number of singular fibers increases, there is a strong conjecture for Seifert fibered homology spheres bounding homology balls first indicated by Fintushel and Stern [START_REF]O(2) actions on the 5-sphere[END_REF], and explicitly stated by Kollár [START_REF] Kollár | Is there a topological Bogomolov-Miyaoka-Yau inequality?[END_REF]. Thus, the above plenty number of examples may seem sporadic.

The main obstruction comes from Fintushel-Stern R-invariant [START_REF]Pseudofree orbifolds[END_REF]. Together with the short-cut of Neumann and Zagier [START_REF] Walter | A note on an invariant of Fintushel and Stern[END_REF], we know that Seifert fibered homology spheres with the node different than minus one weight do not bound homology balls. This condition is even enough for the obstruction from bounding rational homology balls [START_REF] Issa | On Seifert fibered spaces bounding definite manifolds[END_REF].

From the perspective of 4-dimensional handlebodies, the simplest contractible manifolds after the 4-ball B 4 are Mazur manifolds [START_REF] Mazur | A note on some contractible 4-manifolds[END_REF]. They are contractible manifolds obtained by attaching a single 1-and 2-handle to B 4 . In this paper, we provide a modification of Mazur's argument by increasing the number of 1-and 2-handles through the eyes of knot theory. In the original construction, we change the role of the unknot with any ribbon knot; therefore, we call the resulting spaces generalized Mazur manifolds, see Section 2 for details.

We first notice that Conjecture 1.2 cannot be generalized for plumbed homology spheres that are not Seifert fibered. The first examples were provided by Maruyama [START_REF]Notes on homology 3-spheres which bound contractible 4-manifolds. II[END_REF], independently refound by Akbulut and Karakurt [START_REF] Akbulut | Heegaard Floer homology of some Mazur type manifolds[END_REF]. These manifolds are not Seifert fibered3 unless n = 1 and they can be realized as the boundary of a plumbing graph with two nodes and five branches, and are reproven via our approach.

Theorem 1.3 (Maruyama, Akbulut-Karakurt). Let X(n) be Maruyama plumbed 4-manifold in the left-hand side of Figure 1. Then for each n ≥ 1, its boundary ∂X(n) is a homology sphere which bounds a Mazur manifold with one 0-handle, one 1-handle and one 2-handle.
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Next, we present a new infinite family with the same number of nodes and branches, which are not Seifert fibered 3 again unless n = 1.

Theorem 1.4. Let X (n) be the companion of Maruyama plumbed 4-manifold in the right-hand side of Figure 1. Then for each n ≥ 1, its boundary ∂X (n) is a homology sphere which bounds a Mazur manifold with one 0-handle, one 1-handle and one 2-handle.

We exhibit one more new infinite family by increasing the complexity of the graph whose plumbing has three nodes and seven branches.

Theorem 1.5. Let W (n) be Ramanujam plumbed 4-manifold in Figure 2. Then for each n ≥ 1, its boundary ∂W (n) is a homology sphere which bounds a generalized Mazur manifold with one 0-handle, two 1-handles and two 2-handles.

The case n = 1 of our theorem interestingly appeared as a counter-example in the influential article of Ramanujam [START_REF] Ramanujam | A topological characterisation of the affine plane as an algebraic variety[END_REF] before the Kirby calculus was introduced. 

3 -2 -1 -3 -1 -2 -2 -2 -2 -n -1 -2 -2 n -1 Figure 2. Ramanujam plumbed 4-manifold W (n).
This was the first example of a complex affine surface that is contractible and not analytically isomorphic to C 2 . This also provided the exhibition of the first exotic algebraic structure on C 3 since W (1) × C 2 is not diffeomorphic to C 3 . For further directions about this subject, see papers [START_REF] Mandelbaum | Four-dimensional topology: an introduction[END_REF], [START_REF] Zaidenberg | Lectures on exotic algebraic structures on affine spaces[END_REF] and [START_REF] Seidel | The symplectic topology of Ramanujam's surface[END_REF]. To the author's knowledge, this was also the first example of plumbed homology spheres bounding contractible manifolds. We reprove most of the classical results about Seifert fibered homology spheres bounding contractible manifolds. Such spheres coincide with Brieskorn homology spheres Σ(p, q, r) which are the links of singularities x p + y q + z r = 0. The following families were from the lists of Casson and Harer [START_REF] Casson | Some homology lens spaces which bound rational homology balls[END_REF]. The special cases of their list also independently exhibited in the papers of Martin [Mar79] and Maruyama [START_REF] Maruyama | Notes on homology 3-spheres which bound contractible 4-manifolds. I[END_REF].

Theorem 1.6 (Fukuhara, Maruyama, Martin, Casson-Harer). Let p and s be integers such that p is odd.Then each Seifert fibered homology sphere Σ(p, ps + 1, ps + 2) and Σ(p, ps -2, ps -1) bounds a Mazur manifold with one 0-handle, one 1-handle and one 2-handle.

The Seifert fibered homology spheres Σ(2, 3, 13) and Σ(2, 3, 25) were known to be bound Mazur manifolds, see [START_REF] Akbulut | Mazur manifolds[END_REF] and [START_REF] Henry | Knots, Z-homology 3-spheres and contractible 4-manifolds[END_REF]. Fickle proved that Stern's examples [START_REF] Stern | Some more Brieskorn spheres which bound contractible manifolds[END_REF] bound Mazur manifolds as well. Our current perspective indicates that they also bound generalized Mazur manifolds.

Theorem 1.7. The following Seifert fibered homology spheres bound generalized Mazur manifolds with one 0-handle, two 1-handles and two 2-handles: Σ(2, 3, 13), Σ(2, 3, 25), Σ(2, 4n + 1, 20n + 7), Σ(3, 3n + 1, 21n + 8), Σ(2, 4n + 3, 20n + 13), and Σ(3, 3n + 2, 21n + 13) for each n ≥ 1. Therein, our approach simply unifies the proofs of classical and new examples of plumbed homology spheres bounding contractible manifolds. All these examples start with the only ribbon twist knots [START_REF] Casson | Cobordism of classical knots, À la recherche de la topologie perdue[END_REF], namely the unknot and the stevedore knot, except new manifolds presented in the paper. Their initial ribbon knot is the square knot. Note that the proofs of Σ(2, 3, 13) and Σ(2, 3, 25) varied from those found in [Şav20]. Here, we cannot use the surgery description of manifolds Σ(2, 3, 6n + 1) in terms of the twist knots. Using the similar additional handle attachments, one can reprove that Σ(2, 3, 7) and Σ(2, 3, 19) bound rational homology balls, compare with [AL18, Proposition 3]. Since the proofs are usually addressed to the dual approach, new contractible manifolds may or may not be diffeomorphic to classical ones. This is currently unknown to the author but is highly unlikely to be the case.

For homology spheres, bounding homology balls is equivalent to being homology cobordant to the 3-sphere S 3 . Therefore, they represent the trivial element in the homology cobordism group Θ 3 Z . On the other hand, the algebraic structure of Θ 3 Z is very complicated. The pioneering work of Dai, Hom, Stoffregen and, Truong refers that Θ 3 Z admits a Z ∞ summand [START_REF] Dai | An infinite-rank summand of the homology cobordism group[END_REF], for more examples see [START_REF] Karakurt | Almost simple linear graphs, homology cobordism and connected Heegaard Floer homology[END_REF]. For the crucial role of Θ 3

Z in topology, one may consult Saveliev's book [Sav02] and Manolescu's article [START_REF] Manolescu | Homology cobordism and triangulations[END_REF].

Organization. The structure of the paper is as follows. In Section 2, we give the preliminaries about the essential tools for the proof of theorems. In Section 3, we describe the blow down procedures for surgery diagrams of plumbed homology spheres. We first present the proof for Theorem 1.5. Just after, the proofs of Theorem 1.3 and Theorem 1.4 are given together. Based on the previous work [Şav20], we finally prove Theorem 1.6 and Theorem 1.7 jointly.
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Plumbings, Slice and Ribbon Knots, and Contractible Manifolds

Plumbings.

A plumbing graph G is a weighted tree such that each vertex v i is decorated by an integer e i . A plumbing graph G gives rise to a simply connected smooth 4-manifold with boundary X(G) = X which is obtained by plumbing together a collection of D 2 -bundles over S 2 . Thus, the Euler number of D 2 -bundle corresponding to the vertex v i is given by e i , see the recipe in [Sav02, Section 1.1.9]. Let Y (G) = Y be the 3-manifold which is the boundary of X. Then Y is said to be a plumbed 3-manifold.

The straight lines between any two vertices resulted in the plumbing process form edges and a linear plumbing graph having at least one edge is called a branch. Vertices with at least three adjacent branches are called nodes. Plumbing graphs are generally characterized by the number of nodes and branches respectively.

Let |G| denote the number of vertices of a plumbing graph G. The second homology group H 2 (X, Z) of the plumbed 4-manifold X is generated by vertices of G and the intersection form on H 2 (X, Z) is given by the adjacency matrix

I = (a ij ) i,j∈{1,...,|G|} where a ij =        e i , if v i = v j , 1, if v i
and v j are connected by one edge, 0, otherwise.

The plumbed 3-manifold Y is called a plumbed homology sphere if and only if the determinant of the intersection matrix I is ±1. In this case, the corresponding plumbing graph is said to be unimodular. When the signature of I is equal to the minus of number of vertices, a plumbing graph is called negative-definite.

Slice and Ribbon Knots, and Contractible Manifolds.

A knot K ⊂ S 3 is said to be a slice knot if K bounds a slice disk, i.e. smoothly properly embedded disk D ⊂ B 4 . A slice disk having the only index 0 and 1 critical points with respect to the Morse function inherited from the radial function on B 4 is called a ribbon disk and its boundary is said to be a ribbon knot. Equivalently, a knot K ⊂ S 3 is a ribbon knot if it can be built by attaching bands amongst components of an unlink. The minimal number of bands to produce a ribbon disk for a ribbon knot is called fusion number, see [START_REF] Miyazaki | On the relationship among unknotting number, knotting genus and Alexander invariant for 2-knots[END_REF]. Now we highlight Mazur's famous argument [START_REF] Mazur | A note on some contractible 4-manifolds[END_REF] in detail. Attaching a single 1-handle B 1 × B 3 to a 0-handle B 4 gives S 1 × B 3 . If we attach a 2-handle B 2 × B 2 to S 1 × B 3 along a knot J in S 1 × S 2 that normally generates the fundamental group of S 1 × B 3 , then we produce a Mazur manifold -a contractible 4-manifold W with one 0-handle, one 1-handle and one 2-handle. We have the following three observations in the original construction:

(1) The boundary of S 1 × B 3 is clearly S 1 × S 2 , which is also 0-surgery on the unknot in S 3 , (2) The unknot in S 3 bounds a smooth disk D embedded in B 4 and the tubular neighborhood of D, ν(D), is diffeomorphic to D × B 2 , (3) The 4-manifold S 1 × B 3 is also the disk exterior B 4 -ν(D). In the following lemma, we change the role of the unknot in Mazur's argument with any ribbon knot. We call the resulting contractible 4-manifold bounded by a homology sphere a generalized Mazur manifold.

Lemma 2.1. Let Y be the 3-manifold obtained by 0-surgery on a ribbon knot in S 3 with the fusion number n. Then any homology sphere obtained by an integral surgery on a knot in Y bounds a generalized Mazur manifold with one 0-handle, n + 1 1-handles, and n + 1 2-handles.

Proof. Let K ⊂ S 3 be a ribbon knot with the fusion number n that bounds a ribbon disk D ⊂ B 4 . Consider the ribbon disk exterior X = B 4 -ν(D). Since ν(D) is diffeomorphic to D × B 2 , we clearly have ∂X = Y . Further, the ribbon disk exterior X has a handle decomposition with one 0-handle, n + 1 1-handles, and n 2-handles, see [GS99, Section 6.2]. Now let J ⊂ Y be an arbitrary knot. An integral surgery on J ⊂ Y corresponds to attaching a 2-handle B 2 × B 2 to X along J, and produces a 4-manifold, say W . Here, we can place J in S 1 × D 2 ⊂ Y , so the framing of the additional 2-handle is fixed due to Akbulut's carving, see [START_REF] Akbulut | 4-manifolds[END_REF]Section 1.4]. Then W must be simplyconnected if the resulting 3-manifold is a homology sphere. In this case, the knot J normally generates π 1 (X) by van Kampen's theorem and vice versa. Note that W is also a homology ball, see for example [Şav20, Lemma 3.1]. Therefore, we conclude that W is a contractible 4-manifold built with one 0-handle, n + 1 1-handles, and n + 1 2-handles by using the classical theorems of Hurewicz and Whitehead.

Remark 2.2. Presumably, there would be handle cancellations in the handle decomposition of a ribbon disk exterior. Therefore, we may address contractible manifolds having fewer numbers of 1-and 2-handles. This is not the case for any ribbon knot in the Rolfsen's table with fewer than 11 crossings, see Kawauchi's exposition [Kaw96, Appendix F]. However, it happens for the generalized square knots T p,q # -(T p,q ) where T p,q is the (p, q)-torus knot [MZ19, Proposition 5.3] or for the (p, 1)-cable of a fusion number one ribbon knot or even its iterated cables, see [HKP20, Theorem 1.1].

Our next ingredient is the following trick of Akbulut and Larson coming from the proof of their main theorem [AL18, Theorem 1].

Definition 2.3. The Akbulut-Larson trick is an observation about describing the iterative procedure for passing from the surgery diagram of a homology sphere to a consecutive one by using a single blow-up with an isotopy, see Figure 3.

u p b l o w -1 -2 -3 = isotopy -1 -2 -3 -2 -1
Figure 3. The Akbulut-Larson trick.

Proofs of Theorems

In this section, we prove our all theorems using the background in Section 2. We shall start with the proof of Theorem 1.5.

Proof of Theorem 1.5. Due to the combinatorial approach in [EN85, Chapter 5.21], it can be easily checked that the determinant of intersection matrix associated to the plumbing graph for W (n) is ±1 according to the parity of n, so ∂W (n) is a homology sphere for each n ≥ 1. Also since the plumbing graph for W (n) has three nodes and seven branches, it is not a Seifert fibered homology sphere, see [EN85, Chapter 2.7].

Here, we use the dual approach by giving integral surgeries from its plumbing graph displayed in Figure 2. We actually show that ∂W (n) is obtained by (-1)surgery on a knot in Y where Y is 0-surgery on the square knot. Its surgery diagram corresponding to the first element of its plumbing graph appears in Figure 4. The dark black (-1)-framed component gives the necessary integral surgery to Y after applying blow downs several times. Then the general family is obtained by applying the Akbulut-Larson trick successively. Therefore, we finish the proof by using Lemma 2.1 since the blow down operation does not change the boundary 3-manifold.

Our next proof is about the boundary of Maruyama plumbed 4-manifold as well as its companion introduced in the paper.

Proof of Theorem 1.3 and Theorem 1.4. Following the recipe in [EN85, Chapter 5.21] again, it is straightforward to check that the determinant of intersection matrix associated to the plumbing graph for X (n) is -1 for each n ≥ 1, so ∂X (n) is a homology sphere.

Again we use the dual approach for describing the additional integral surgeries from their plumbing graphs shown in Figure 1. For the case n = 1, see the analogous proof of [Şav20, Theorem 1.2]. Assume that n ≥ 2. In particular, we prove that ∂X (n) is obtained by (-1)-surgery on a knot in Y where Y is 0-surgery on the unknot. In Figure 5, we draw the blow down sequences explicitly and we eventually reach the 3-manifold Y . Hence, the rest of proof is using Lemma and the fact that blow down operation keeps the homeomorphism type of boundary 3-manifold same.
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The proof for ∂X(n) is quite similar to the previous one and it is clearly displayed in Figure 6. For n = 1, one can again consult the proof of [Şav20, Theorem 1.2].

The discussion in the following remark is suggested by Marco Golla.

Remark 3.1. One may recognize that the upper part of the plumbing graph of X (n) behaves freely in the proof, so one might think that we obtain a two-parameter family of homology spheres, let say X (a, b) displayed in Figure 7. Then the determinant of its intersection matrix is (-1) a-b-1 (a -b -1) 2 . Thus, its boundary ∂X (a, b) is a homology sphere if and only if a = b or a = b + 2. However, in this case, X (b, b) and X (b + 2, b) are essentially same as our initial 4-manifold X (n).

We finally reshow the classical results about Seifert fibered homology spheres. Proof of Theorem 1.6 and Theorem 1.7. Using the procedure in [Sav02, Example 1.17], it can be simply shown that the Σ(2, 3, 13) and Σ(2, 3, 25) are the boundary of the negative-definite unimodular plumbing graphs shown in Figure 8, respectively.

n n -1 -2 -2 -2 -2 -1 blow down n + 1 times blow down -1 -1 0 -1 -1 -2 -2 -n -2 -n -1 -2 n n -n -3 -n -2 -2 -2 -2 -1 -1-3 blow down n times blow down
In Figure 9, we draw the additional (-2)-framed components to their surgery diagrams. Blowing down (-1)-framed dark black components 5-and 7-times respectively, we ultimately reach the 3-manifold Y where Y is 0-surgery on the stevedore knot. Applying Lemma 2.1, we finish the proofs of these cases. The explicit procedures for blow down sequences are left to readers as exercises.

The proof for Stern's families listed in Theorem 1.7 are identical within [Şav20]. One can consult the handle diagrams appeared in [Şav20, Theorem 1.2]. The outcome of the theorem is different due to Lemma 2.1, compare with [Şav20, Lemma 3.1].

Next, we consider families of Casson and Harer. For odd values of the integer p, recall that Σ(p, ps + 1, ps + 2) and Σ(p, ps -2, ps -1) are the boundaries of the negative-definite unimodular plumbing graphs displayed in Figure 10 from the left to the right [START_REF] Casson | Some homology lens spaces which bound rational homology balls[END_REF]. To complete the proof by applying Lemma 2.1, we similarly address the dual approach by giving integral surgeries from their plumbing graphs. In fact, we show that Σ(p, ps + 1, ps + 2) and Σ(p, ps -2, ps -1) are both obtained by (-1)-surgery on a knot in Y where Y is 0-surgery on the unknot. Assume p = 3 for both families, so that we consider Σ(3, 3s + 1, 3s + 2) and Σ(3, 3s -2, 3s -1). The case s = 1 for the second one results Σ The remaining elements are essentially same with the former family, and the proof of Σ(3, 3s + 1, 3s + 2) is already in [Şav20] with the same technique. Henceforth, we suppose that p ≥ 5 odd and s ≥ 1 for the former family, and p ≥ 5 odd and s ≥ 2 for the latter one. The surgery diagrams corresponding to their first elements of plumbing graphs show in Figure 11 
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 4 Figure 4. (-1)-surgery from ∂W (1) to Y .
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 5 Figure 5. (-1)-surgery from ∂X (n) to Y .
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 17 Figure 7. The two-parameter plumbed manifold X (a, b).
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 8910 Figure 8. The plumbing graphs of Σ(2, 3, 13) and Σ(2, 3, 25)

  and Figure12respectively. Again the extra dark black (-1)-framed components indicate the required surgeries to Y by following the blow down procedures. Then the whole families are obtained by applying the Akbulut-Larson trick successively.

Figure 11 .

 11 Figure 11. (-1)-surgery from Σ(p, p + 1, p + 2) to Y .

Figure 12 .

 12 Figure 12. (-1)-surgery from Σ(p, 2p -2, 2p -1) to Y .

Note that ∂X(1) = Σ(2, 5, 7) and ∂X (1) = Σ(3,

4, 5), compare with [AK79],[START_REF] Casson | Some homology lens spaces which bound rational homology balls[END_REF], and[Şav20].