
HAL Id: hal-04370938
https://hal.science/hal-04370938

Submitted on 3 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neuro-PINN: A hybrid framework for efficient nonlinear
projection equation solutions

Dawen Wu, Abdel Lisser

To cite this version:
Dawen Wu, Abdel Lisser. Neuro-PINN: A hybrid framework for efficient nonlinear projection equation
solutions. International Journal for Numerical Methods in Engineering, 2023, �10.1002/nme.7377�.
�hal-04370938�

https://hal.science/hal-04370938
https://hal.archives-ouvertes.fr

Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

Neuro-PINN: A Hybrid Framework for Efficient Nonlinear
Projection Equation Solutions

Dawen Wu* | Abdel Lisser

Université Paris-Saclay, CNRS,
CentraleSupélec, Laboratoire des Signaux et
Systèmes, Gif-sur-Yvette, France
Correspondence
*Corresponding author name. Email:
dawen.wu@centralesupelec.fr

Summary

Nonlinear projection equations (NPEs) provide a unified framework for solving
various constrained nonlinear optimization and engineering problems. This paper
presents a deep learning approach for solving NPEs by incorporating neurodynamic
optimization and physics-informed neural networks (PINNs). First, we model the
NPE as a system of ordinary differential equations (ODEs) using neurodynamic op-
timization, and the objective becomes solving this ODE system. Second, we use a
modified PINN to serve as the solution for the ODE system. Third, the neural network
is trained using a dedicated algorithm to optimize both the ODE system and the NPE.
Unlike conventional numerical integration methods, the proposed approach predicts
the end state without computing all the intermediate states, resulting in a more ef-
ficient solution. The effectiveness of the proposed framework is demonstrated on a
collection of classical problems, such as variational inequalities and complementar-
ity problems.
KEYWORDS:
Nonlinear projection equation, Physics-informed neural network, Neurodynamic optimization, Ordinary
differential equation

1 INTRODUCTION

Nonlinear optimization problems are prevalent across a wide range of fields, such as engineering, physics, and economics.
Solving these problems requires finding an optimal solution that satisfies a defined set of constraints while optimizing the objec-
tive function1. Nonlinear projection equations (NPEs) are a useful tool for formulating these problems and serve as a unifying
framework for treating various nonlinear optimization problems, including nonlinear complementarity problems, variational
inequalities, and equilibrium point problems2,3.

The NPEs are typically addressed by neurodynamic optimization, which models the problem as a system of ordinary dif-
ferential equations (ODEs)4,5,6. The constructed ODE system must be shown to have the global convergence property, i.e., the
state solution of the system converges to the optimal solution of the NPE, regardless of the initial point. The NPE problem is
then transformed into solving the state solution of the ODE system. However, the ODE system is typically highly nonlinear and
has no analytical solutions. Therefore, numerical integration methods such as Runge-Kutta (RK) methods are commonly used
to solve the state solution7.

Motivation. Despite the usefulness of numerical integration methods, they are not efficient enough for solving the NPE
problems. This inefficiency is due to the fact that the state solution of the ODE system only provides a solution to the NPE at
the end state. To reach the end state, numerical integration methods require the computation of all intermediate states starting

2 Dawen Wu, Abdel Lisser

from the initial state, making the process computationally intensive. Therefore, there is a need for a more efficient algorithm to
solve the NPE problem.

1.1 Related Works
Neurodynamic optimization. Over the past few decades, numerous neurodynamic approaches have been developed to

solve various constrained optimization problems, including linear and quadratic programming8,9, general convex program-
ming10,11,12, biconvex optimization13, non-smooth optimization14, and pseudoconvex optimization problems15. In particular, a
projection neurodynamic model for solving NPEs was introduced and found to have global convergence to the exact solution
under mild conditions4. The model also showed both asymptotic and exponential stability without the need for a smooth non-
linear mapping. To further improve the performance, a bi-projection neurodynamic model was developed to efficiently solve
quadratic optimization problems5. In addition, a collaborative approach combining the projection neurodynamic model with
particle swarm optimization was introduced for global optimization problems6.

Physics-informed neural networks. Another avenue of research explored in this paper is the use of deep learning to
solve differential equations. In the 1990s, Lagaris et al. used neural networks (NNs) to serve as solutions to both ordinary and
partial differential equations (ODEs and PDEs), embedding boundary conditions directly into the network architecture16,17. The
advent of deep learning has reinvigorated interest in using such methods to tackle high-dimensional, nonlinear PDEs18,19. A
key contribution in this area is the development of Physics-Informed Neural Networks (PINNs)20, which integrate differential
equations and data errors into the loss function. The versatile architecture and efficient training algorithms of PINNs have enabled
numerous successes in a wide range of computational challenges in physics and engineering21,22,23,24,25. This expanding research
landscape is driven by a combination strategy that adapts PINNs to exploit the structural properties of the target problem.
As a result, a variety of PINN variants have emerged to address different problem scenarios26,27 and improve computational
efficiency28,29,30,31. Apart from collocation-based PINN approaches, many studies use deep energy methods to solve PDEs,
where the energy of the system is used as a loss function to train the NN model32,33,34. Many packages have been developed to
support the use of deep learning for solving PDEs35,36.

1.2 Key Contributions
This paper presents several key contributions:

• We propose a deep learning approach to NPEs that combines neurodynamic optimization with PINNs. Our approach
reformulates an NPE problem as an NN training problem, thereby eliminating the need for numerical methods to solve
NPEs.

• To improve the performance of our proposed approach, we design a specialized training algorithm that focuses on the end
state of the ODE system. In each training iteration, the algorithm uses an evaluation metric based on the NPE error to
assess the predictive accuracy of the NN model and retain the optimal result. Therefore, the NN model is not only trained
to solve the ODE system, but also to solve the NPE problem.

• In our experiments, we demonstrate the effectiveness of the proposed approach in solving large-scale NPE problems. We
compare our approach with the traditional RK method and PINN to validate its performance. In addition, we perform a hy-
perparameter sensitivity analysis to investigate the impact of different hyperparameter configurations on the performance
of our proposed approach.

1.3 Paper Outline
The remaining sections are organized as follows: Section 2 provides the necessary background, including an introduction to the
NPE problem, neurodynamic optimization, and the RK method. In Section 3, we present our NN model for the NPE problem.
Section 4 details the design of the loss function and the training algorithm for the proposed NN model. Section 5 presents the
experimental results, and we compare our approach with the RK method and PINN. Finally, Section 6 summarizes the main
results of the paper and outlines possible directions for future research.

Dawen Wu, Abdel Lisser 3

2 PRELIMINARIES

Section 2.1 introduces the NPEs that this paper aims to solve, and discusses their equivalence to other nonlinear optimization
problems. Section 2.2 describes the neurodynamic approach to modeling NPEs as ODE systems. Section 2.3 introduces the RK
method, a classical numerical integration method for solving the ODE system.

2.1 Nonlinear Projection Equation
Definition 1 (Nonlinear projection equation). Consider a nonlinear mapping 𝐺 ∶ ℝ𝑛 → ℝ𝑛 and a feasible set Ω ⊂ ℝ𝑛. The
projection function 𝑃Ω ∶ ℝ𝑛 → Ω maps a point 𝑧 ∈ ℝ𝑛 onto Ω, such that:

𝑃Ω(𝑧) = argmin
𝑥∈Ω

‖𝑧 − 𝑥‖ (1)
where ‖ ⋅ ‖ denotes the Euclidean norm.

The NPE problem, denoted by 𝑁𝑃𝐸(Ω, 𝐺), is to find a vector 𝑥∗ ∈ Ω satisfying:
𝑃Ω(𝑥∗ − 𝐺(𝑥∗)) = 𝑥∗ (2)

Definition 2 (Nonlinear complementarity problem). Consider a nonlinear mapping 𝐺 ∶ ℝ𝑛 → ℝ𝑛. The nonlinear complemen-
tarity problem, denoted by 𝑁𝐶𝑃 (𝐺), is to find a vector 𝑥∗ ∈ ℝ𝑛 satisfying:

𝐺(𝑥∗) ≥ 0, 𝑥∗ ≥ 0, 𝐺(𝑥∗)𝑇𝑥∗ = 0. (3)

Definition 3 (Variational inequality). Consider a nonlinear mapping 𝐺 ∶ ℝ𝑛 → ℝ𝑛 and a feasible set Ω ⊂ ℝ𝑛. The variational
inequality problem, denoted by 𝑉 𝐼(Ω, 𝐺), is to find a vector 𝑥∗ ∈ Ω satisfying:

(𝑥 − 𝑥∗)𝑇 𝐺 (𝑥∗) ≥ 0, 𝑥 ∈ Ω. (4)

Proposition 1 (Harker & Pang2). Let Ω ⊂ ℝ𝑛 be a nonempty closed convex set. Then 𝑥∗ solves the problem 𝑁𝐶𝑃 (𝐺) if and
only if 𝑥∗ solves 𝑁𝑃𝐸(ℝ𝑛

+, 𝐺), where ℝ𝑛
+ = {𝑥 ∈ ℝ𝑛

|𝑥 ≥ 𝟎} represents the set of non-negative real vectors.
Proposition 2 (Harker & Pang2). Let Ω ⊂ ℝ𝑛 be a nonempty closed convex set. Then 𝑥∗ solves the problem 𝑉 𝐼(Ω, 𝐺) if and
only if 𝑥∗ solves 𝑁𝑃𝐸(Ω, 𝐺).

According to the literature2, NPEs can be viewed as a unified framework for many nonlinear optimization problems. For
example, the Karush-Kuhn-Tucker (KKT) conditions for linear and quadratic programming problems can be represented as linear
complementarity problems, and the KKT conditions for convex constraint nonlinear optimization problems can be transformed
into nonlinear complementarity problems37. Both are recast as NPEs according to Proposition 1. The equilibrium point of a
stochastic Nash game is expressed as a variational inequality38, which is reformulated as an NPE by Proposition 2.

2.2 Neurodynamic Optimization
Assumption 1.

• The function 𝐺(⋅) is locally Lipschitz continuous.
• The feasible set Ω is a box-constrained set, defined as Ω = {𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑛) ∈ ℝ𝑛

| 𝑙𝑖 ≤ 𝑥𝑖 ≤ ℎ𝑖}, where 𝑙𝑖 and ℎ𝑖
denote the lower and upper bounds of 𝑥𝑖 respectively. In this case, the projection function 𝑃Ω(⋅) in equation (1) is reduced
as follows:

𝑃Ω(𝑥) =
(

𝑃 1
Ω(𝑥1), 𝑃

2
Ω(𝑥2),… , 𝑃 𝑛

Ω(𝑥𝑛)
)𝑇 , (5)

where 𝑃 𝑖
Ω(𝑥𝑖), 𝑖 ∈ {1, 2,… , 𝑛} is defined as:

𝑃 𝑖
Ω(𝑥𝑖) =

⎧

⎪

⎨

⎪

⎩

𝑙𝑖 if 𝑥𝑖 < 𝑙𝑖,
𝑥𝑖 if 𝑙𝑖 ≤ 𝑥𝑖 ≤ ℎ𝑖,
ℎ𝑖 if 𝑥𝑖 > ℎ𝑖.

(6)

4 Dawen Wu, Abdel Lisser

Let 𝑦 ∶ ℝ → ℝ𝑛 be a time-dependent function, where 𝑦(𝑡) represents the state at time 𝑡. The aim of neurodynamic optimization
is to design a first-order ODE system, 𝑑𝑦

𝑑𝑡
, to govern 𝑦(𝑡). In this paper, we employ the projection neurodynamic model introduced

by4 to model the NPE, where the ODE system is defined as follows:
𝑑𝑦
𝑑𝑡

= −𝐺
(

𝑃Ω(𝑦)
)

+ 𝑃Ω(𝑦) − 𝑦. (7)
To simplify the discussion, we define:

Φ(𝑦) = −𝐺
(

𝑃Ω(𝑦)
)

+ 𝑃Ω(𝑦) − 𝑦. (8)
Thus, the ODE system (7) can be written as 𝑑𝑦

𝑑𝑡
= Φ(𝑦).

Definition 4 (State solution). Consider an ODE system 𝑑𝑦
𝑑𝑡

= Φ(𝑦), where Φ ∶ ℝ𝑛 → ℝ𝑛 and an initial condition 𝑦(𝑡0) = 𝑦0.
A vector value function 𝑦 ∶ ℝ → ℝ𝑛 is the state solution, if it satisfies the ODE system 𝑑𝑦

𝑑𝑡
= Φ(𝑦) and the initial condition

𝑦(0) = 𝑦0.
𝑦(𝑡) is called the state at time 𝑡. Given a time range [𝑡0, 𝑇], 𝑦(𝑇) is called the end state on the interval.

Theorem 1 (Xia & Feng4). Consider an NPE problem, 𝑁𝑃𝐸(Ω, 𝐺), and let Assumption 1 hold. Given any initial condition,
𝑦(𝑡0) = 𝑦0, the state solution of the ODE system of Eq. (7) converges to the optimal solution of 𝑁𝑃𝐸(Ω, 𝐺) as time 𝑡 goes to
infinity, i.e,

lim
𝑡→∞

𝑦(𝑡) = 𝑥∗, (9)
where 𝑥∗ is a satisfied point of 𝑁𝑃𝐸(Ω, 𝐺).

In particular, if 𝑁𝑃𝐸(Ω, 𝐺) contains only one satisfied point 𝑥∗, then the ODE system is globally asymptotically stable at 𝑥∗.
Initial value problem (IVP) construction. In practice, in order to use the neurodynamic approach to solve the NPE, we

need to construct an IVP consisting of three components: 1) the ODE system of Eq. (7), 2) an initial condition 𝑦(𝑡0) = 𝑦0, and
3) a time range 𝑡 ∈ [𝑡0, 𝑇]. 𝑦(𝑡) for 𝑡 ∈ [𝑡0, 𝑇] represents the state solution of this IVP over the time range [𝑡0, 𝑇], where the end
state, 𝑦(𝑇), is considered to be the predicted solution to the NPE. According to Theorem 1, the larger the time range [𝑡0, 𝑇], the
closer 𝑦(𝑇) is to the optimal solution 𝑥∗ of the NPE.

2.3 Runge-Kutta Method
Runge-Kutta (RK) methods are widely used numerical techniques for approximating the state solution of an ODE system.
They are particularly useful when exact analytical solutions are difficult or infeasible to obtain. The methodology involves
approximating the state solution over a series of discrete time points. In this paper, we concentrate on the fourth-order RK method,
commonly known as the RK method, which is one of the most accurate and popular methods in the family of RK methods.

The RK method takes as input an ODE system 𝑑𝑦
𝑑𝑡

= Φ(𝑦), an initial condition 𝑦(𝑡0) = 𝑦0, and a time range [𝑡0, 𝑇]. The
method sets 𝑁 collocation points that are equally spaced on the time range [𝑡0, 𝑇]. The RK method returns an approximate state
solution, denoted by 𝑦̄(𝑡), where 𝑡 is a time point within the finite set {𝑡0, 𝑡1,… , 𝑡𝑁 , 𝑡𝑇 }. The RK algorithm is stated as follows:

• Step 1: Initialize the step size ℎ =
(𝑇 − 𝑡0)
𝑁 + 1

, the initial time 𝑡 = 𝑡0, and set the initial state 𝑦̄(𝑡0) = 𝑦0.
• Step 2: For 𝑖 = 1, 2,… , 𝑁 + 1 do Steps 3 and 4.
• Step 3: Set

𝐾1 = ℎΦ (𝑦̄(𝑡)) ,

𝐾2 = ℎΦ
(

𝑦̄(𝑡) +
𝐾1

2

)

,

𝐾3 = ℎΦ
(

𝑦̄(𝑡) +
𝐾2

2

)

,

𝐾4 = ℎΦ
(

𝑦̄(𝑡) +𝐾3
)

.

(10)

• Step 4: Set
𝑦̄(𝑡 + ℎ) = 𝑦̄(𝑡) +

𝐾1 + 2𝐾2 + 2𝐾3 +𝐾4

6
, (11)

and 𝑡 = 𝑡 + ℎ.

Dawen Wu, Abdel Lisser 5

NN as approximate state solution
to ODE system

NN provides prediction
to NPE

When When

Fully connected network Fully connected network

End state

Figure 1 Neural network (NN) solution for the ODE system and the NPE. Left: When 𝑡 ∈ [𝑡0, 𝑇], the model 𝑦̂(𝑡;𝑤) itself is
considered to be an approximate state solution of the ODE system. Right: When 𝑡 = 𝑇 , the end state of the model, 𝑦̂(𝑡 = 𝑇 ;𝑤),
is a predicted solution to the NPE.

When applying the RK method to the NPE problem, the approximate end state 𝑦̄(𝑇) is considered as the predicted solution
of the NPE problem. Specifically, we have:

𝑦̄(𝑇) ≈ 𝑦(𝑇) ≈ 𝑥∗, (12)
where 𝑦̄(𝑇) ≈ 𝑦(𝑇) indicates that the end state obtained by the RK method is an approximation of the true end state, and
𝑦(𝑇) ≈ 𝑥∗ indicates that the true end state is the predicted solution of the NPE problem according to Theorem 1.

3 NEURAL NETWORK MODEL

Model description. We propose a neural network (NN) model to solve the NPE problem. Our model can be expressed by
the following equation:

𝑦̂(𝑡;𝑤) = 𝑦0 +
(

1 − 𝑒−(𝑡−𝑡0)
)N(𝑡;𝑤), 𝑡 ∈ [𝑡0, 𝑇], (13)

where N(𝑡;𝑤) represents a fully connected NN with trainable parameters 𝑤, and [𝑡0, 𝑇] is a given time range. We use the
Lagaris method to incorporate the initial conditions of the ODE system into the NN model16. In particular, the auxiliary function
(

1 − 𝑒−(𝑡−𝑡0)
) ensures that the NN model always satisfies the initial condition (𝑡0, 𝑦0), i.e., 𝑦̂(𝑡 = 𝑡0;𝑤) = 𝑦0, regardless of the

model parameters 𝑤. The exponential form in the auxiliary function has been demonstrated to improve the convergence of the
model39.

Approximate state solution of the ODE. As shown in Fig. 1 (Left), the proposed model itself is an approximate state
solution to the ODE system of Eq. (7) on the time range [𝑡0, 𝑇], i.e.,

𝑦̂(𝑡;𝑤) ≈ 𝑦(𝑡), 𝑡 ∈ [𝑡0, 𝑇], (14)
where 𝑦(𝑡) represents the true state solution of the ODE system. Although the input time 𝑡 of the model 𝑦̂(𝑡;𝑤) can be any
real number, we only consider 𝑦̂(𝑡;𝑤) as the solution of the ODE for the time range [𝑡0, 𝑇]. Therefore, we restrict the input to
𝑡 ∈ [𝑡0, 𝑇].

Predicted solution of the NPE. The end state of the proposed model, i.e., 𝑦̂(𝑡 = 𝑇 ;𝑤), is used as a predicted solution to
the NPE of Eq. (2), as shown in Fig. 1 (Right). The following equation shows how 𝑦̂(𝑡 = 𝑇 ;𝑤) approximate the optimal solution
𝑥∗ of the NPE problem:

𝑦̂(𝑡 = 𝑇 ;𝑤) ≈ 𝑦(𝑇) ≈ 𝑥∗, (15)

6 Dawen Wu, Abdel Lisser

Neural network Loss computation

Incorporate

NPENonlinear optimization problem

Figure 2 Integrating an NPE into loss computation for NN training.

where 𝑦̂(𝑡 = 𝑇 ;𝑤) ≈ 𝑦(𝑇) indicates that the end state of our model approximates the true end state, and 𝑦(𝑇) ≈ 𝑦∗ comes from
Theorem 1, indicating that 𝑦(𝑇) solves the NPE.

Unlike most PINN models, which aim to solve for the entire input space [𝑡0, 𝑇], our NN model focuses on the end state of the
ODE system, since it represents the predicted solution to the NPE problem. In the following section, we will show how to train
the NN model with an emphasis on improving the prediction accuracy of the end state.

4 MODEL TRAINING

Section 4.1 provides a definition of the loss function and objective function for the proposed NN model. Section 4.2 presents a
training algorithm for the NN model. Section 4.3 compares our proposed NN approach with the RK method.

4.1 Training Objective
Loss function. The loss function of the proposed NN model is defined as:

(𝑡, 𝑤) =
‖

‖

‖

‖

𝜕𝑦̂(𝑡;𝑤)
𝜕𝑡

− Φ(𝑦̂(𝑡;𝑤))
‖

‖

‖

‖

, (16)
where Φ(⋅) refers to the ODE system, corresponding to the NPE problem to be solved. Φ(𝑦̂(𝑡;𝑤)) represents the expected
derivative according to the ODE system, and 𝜕𝑦̂(𝑡;𝑤)

𝜕𝑡
represents the actual derivative of the NN model. 𝜕𝑦̂(𝑡;𝑤)

𝜕𝑡
can be computed

using automatic differentiation tools such as PyTorch or JAX40,41. (𝑡, 𝑤) represents the difference between the two at time 𝑡 and
with network parameters 𝑤. As shown in Fig. 2, the NPE is first reformulated as an ODE system via neurodynamic optimization.
The ODE system is then incorporated into the loss computational process.

Objective function. The objective function of the NN model is defined as:

𝐽 (𝑤) =

𝑇

∫
𝑡0

(𝑡, 𝑤)𝑑𝑡, (17)

which is the integral of the loss function over the time range [𝑡0, 𝑇]. The loss value (𝑡, 𝑤) represents the error of the model at
time 𝑡, while the objective function 𝐽 (𝑤) represents the total error of the model over the time range [𝑡0, 𝑇].

Batch loss. However, the objective function 𝐽 (𝑤) is computationally intractable due to its integral part. Therefore, in
practice, we cannot directly use 𝐽 (𝑤) to train the NN model. Instead, we train the model by minimizing the following batch loss:

(𝕋 , 𝑤) = 1
|𝕋 |

∑

𝑡∈𝕋
(𝑡, 𝑤), (18)

Dawen Wu, Abdel Lisser 7

where 𝕋 is a set of time points uniformly sampled from the interval [𝑡0, 𝑇], and |𝕋 | denotes the size of the set. The batch loss
(𝕋 , 𝑤) approximates the objective function 𝐽 (𝑤) by a sum of loss values over a set of sampled time points. By minimizing the
batch loss, we can effectively train the model to solve the NPE.

4.2 Algorithm Design
NPE error. We introduce an evaluation metric, called NPE error, to measure how well a prediction 𝑥pred solves the NPE

problem. The metric is defined as:
NE(𝑥pred) =

‖

‖

‖

𝑃Ω(𝑥pred − 𝐺(𝑥pred)) − 𝑥pred
‖

‖

‖∞
, (19)

where ‖⋅‖∞ represents the infinity norm.

Algorithm 1 Deep learning solver for NPE based on neurodynamic optimization
Input: 𝑁𝑃𝐸(Ω, 𝐺) as defined in Eq. (2); Time range [𝑡0, 𝑇]; Initial condition (𝑡0, 𝑦0).
Output: 𝑥best, the NN prediction to 𝑁𝑃𝐸(Ω, 𝐺).

1: function SOLVER(𝑁𝑃𝐸(Ω, 𝐺), [𝑡0, 𝑇], 𝑦0)
2: Derive the ODE system, Φ(⋅), according to Eq. (7).
3: Initialize a NN model 𝑦̂(𝑡;𝑤).
4: NEbest = NE(𝑦̂(𝑡 = 𝑇 ;𝑤)) ⊳ Initialize the best NPE error.
5: while iteration ≤ maximum iteration do
6: 𝕋 ∼ 𝑈 (𝑡0, 𝑇) ⊳ Sample 𝕋 by the uniform distribution on the interval [𝑡0, 𝑇].
7: (𝕋 , 𝑤) ⊳ Compute the batch loss through forward propagation.
8: 𝑤 ← ∇𝑤(𝕋 , 𝑤) ⊳ Update 𝑤 by ∇𝑤(𝕋 , 𝑤) through backward propagation.
9: 𝑥curr = 𝑦̂(𝑡 = 𝑇 ;𝑤) ⊳ Obtain the prediction from the NN model.

10: 𝑥curr = 𝑃Ω(𝑥curr) ⊳ Project 𝑥curr onto the feasible set Ω by Eq. (1).
11: NEcurr = NE(𝑥curr) ⊳ Calculate the NPE error of 𝑥curr.
12: if NEcurr < NEbest then
13: NEbest = NEcurr ⊳ Update NEbest.
14: 𝑥best = 𝑥curr ⊳ Update the best prediction.
15: end if
16: end while
17: return 𝑥best
18: end function

Pipeline. Alg. 1 summarizes how to use our proposed approach to solve an NPE problem. First, we need to specify an initial
condition (𝑡0, 𝑦0) and a time range [𝑡0, 𝑇] to construct an IVP for the NPE problem. Then, we initialize the proposed NN model
(13), which serves as an approximate state solution for this IVP. The model is trained by performing gradient descent on the
batch loss of Eq. (18) to improve the approximation. Note that our solver is completely based on the deep learning infrastructure
and does not require any standard optimization solver or numerical integration solver.

Optimal result retention (ORR) mechanism. A key to Alg. 1 is that we use an ORR mechanism based on the evaluation
metric of Eq. (19). Specifically, in each iteration, the algorithm compares the NPE error of the current iteration, denoted as
NEcurr, with the lowest NPE error found so far, denoted as NEbest. Correspondingly, 𝑥curr and 𝑥best represent the current prediction
and the best predictions found so far, respectively. If NEcurr is less than NEbest, it means that the model found a better prediction
in the current iteration. The algorithm then updates NEbest to equal NEcurr and stores the best prediction as 𝑥best = 𝑥curr. This
mechanism ensures that the best prediction obtained by the model is maintained throughout the training process, improving the
overall performance of the algorithm.

8 Dawen Wu, Abdel Lisser

(B) RK method(A) NN training

Training iteration

A
cc

u
ra

cy

Approximate state solution
Prediction to NPE

Collocation point

A
cc

u
ra

cy

Approximate state solution
Prediction to NPE

Figure 3 Comparison of the solution procedures between the NN approach and RK method.

4.3 Comparison with the RK Method
Fig. 3 compares the solution procedures between our proposed NN approach and the RK method, both of which solve the NPE
problem by solving the IVP. Both approaches use the end state as the predicted solution for the NPE problem. However, they
differ in how they enhance the accuracy of the end state.

NN solution procedure. The NN approach employs gradient descent on the batch loss of Eq. (18) to improve the NN
prediction at each iteration. The evolution of the NN model is represented by 𝑦̂(𝑡;𝑤1), 𝑦̂(𝑡;𝑤2),… , 𝑦̂(𝑡;𝑤𝑀), where 𝑤𝑖 and
𝑦̂(𝑡;𝑤𝑖) denote the model parameters and the approximate state solution at the 𝑖-th iteration, respectively. The predicted end
states are 𝑦̂(𝑡 = 𝑇 ;𝑤1), 𝑦̂(𝑡 = 𝑇 ;𝑤2),… , 𝑦̂(𝑡 = 𝑇 ;𝑤𝑀), where 𝑦̂(𝑡 = 𝑇 ;𝑤𝑖) represents the NPE prediction at the 𝑖-th iteration.

RK solution procedure. In contrast, the RK method computes discrete collocation points iteratively. The method progresses
by solving Eq. (10) and Eq. (11) to obtain 𝑦̄𝑗 and 𝑡𝑗 , which represent the solved state values and collocation point at the 𝑗-th
iteration, respectively. The state value 𝑦̄𝑗 incorporates all previously solved state values. At the end of the 𝑗-th iteration, 𝑦̄𝑗 is
used as the prediction for the NPE.

5 EXPERIMENTS

Section 5.1 delineates the application of the proposed NN approach for solving various types of NPE problems. Section 5.2
contrasts our approach with the PINN. Section 5.3 investigates the performance of our NN approach over different network
architectures and hyperparameter configurations. Section 5.4 demonstrates the effectiveness of our NN approach in solving
large-scale NPE problems. Finally, Section 5.5 discusses the distinctive features and limitations of our proposed NN approach,
while also outlining possible avenues for future research.

5.1 Three Examples
Experimental setup of our NN approach. We used PyTorch 1.12.140 to implement the proposed NN model and JAX

0.4.141 to implement the ODE system. The NN model consists of a single fully connected layer with 100 neurons, and the
activation function is Tanh. For training, we used the Adam optimizer with a learning rate of 0.001, a batch size of 128.

Experimental setup of the RK method. We used the RK method42 for comparison and called it via the Scipy library43.
We set the number of collocation points to 50,000, evenly distributed over the time range.

5.1.1 Linear Complementarity Problem
Example 1: Consider the following linear complementarity problem:

𝑥𝑇 (𝑀𝑥 + 𝑞) = 0, 𝑥 ≥ 𝟎, 𝑀𝑥 + 𝑞 ≥ 𝟎, (20)

Dawen Wu, Abdel Lisser 9

where

𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

50 −8 −6 −9 12
−8 33 −1 −25 3
−6 −1 38 10 −4
−9 −25 10 55 −24
12 3 −4 −24 20

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑞 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−2
−20
−16
−12
−14

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (21)

The goal is to find an optimal solution 𝑥∗ ∈ ℝ5 that solves Eq. (20). Example 1 is reformulated as𝑁𝑃𝐸(ℝ+, 𝐺) by Proposition
1, where 𝐺(𝑥) = 𝑀𝑥 + 𝑞. Then, 𝑁𝑃𝐸(ℝ+, 𝐺) is modeled by the ODE system of Eq. (7). We establish an IVP by specifying
the initial condition as 𝑦(0) = 𝟎 and the time range as [0, 10]. We use the NN model proposed in Eq. (13), denoted as 𝑦̂(𝑡;𝑤),
to serve as an approximate state solution for this IVP. The end state, 𝑦̂(𝑡 = 10;𝑤), serves as the predicted solution for both
𝑁𝑃𝐸(ℝ+, 𝐺) and Example 1. The NN model is trained using Alg. 1 to improve accuracy.

0 2 4 6 8 10
t

0

1

2

3

4

y(
t)

y1(t)
y2(t)
y3(t)
y4(t)
y5(t)

0 2 4 6 8 10
t

0

1

2

3

4
y(
t)

0 2 4 6 8 10
t

0

1

2

3

4

y(
t)

0 2 4 6 8 10
t

0

1

2

3

4

y(
t)

0 10000 20000 30000 40000 50000
Iteration

10 1

100

101

N
PE

 e
rr

o
r

(B)

0 10000 20000 30000 40000 50000
Iteration

100

101

102

M
.S

.E
.
lo

ss

(A)

(D)

0 2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

1.0

y(
t;
w
)

y1(t; w)

y2(t; w)

y3(t; w)

y4(t; w)

y5(t; w)

(C)

0 2 4 6 8 10
t

0

1

2

3

4

y(
t;
w
)

0 2 4 6 8 10
t

0

1

2

3

4

y(
t;
w
)

0 2 4 6 8 10
t

0

1

2

3

4

y(
t;
w
)

Figure 4 Solving Example 1: (A) Mean square error (MSE) loss versus training iterations. (B) NPE error versus training
iterations, where the NPE error is defined in Eq. (2). (C) Evolution of the NN solution, 𝑦̂(𝑡;𝑤). (D) Evolution of the RK solution,
𝑦̄(𝑡).

Fig. 4(A) and Fig. 4(B) show the decreasing loss and NPE error, respectively, where the loss drops from 152.59 to 0.23 and the
NPE error drops from 24.69 to 0.03. Fig. 4(C) shows the NN model 𝑦̂(𝑡;𝑤) at the 0th, 1,000th, 10,000th, and 50,000th training
iterations, from left to right, and the predicted solutions for Example 1 are marked with red stars. Fig. 4(D) shows the results of
the RK method after accumulating 0, 5,000, 25,000, and 50,000 collocation points, and the predicted solutions are marked with
yellow stars.

Table 1 shows the predictions of our NN approach and the RK method for Example 1 at different iterations. The results
suggest that our approach is comparably accurate to the RK method given the same initial condition and time range. After
10,000 iterations, the NPE error of our prediction is reduced to less than 0.1. The final solution from our NN approach is
[0.07, 2.75, 0.08, 3.32, 4.24], with an NPE error of 0.03.

10 Dawen Wu, Abdel Lisser

Table 1 Comparison of predicted solutions for Example 1 between our approach and the RK method

Our NN approach The RK method
Iteration Prediction NPE error Collocation point Prediction NPE error
0 [0.26, 0.43, 0.37, 0.77, 0.97] 24.67 0 [0.00, 0.00, 0.00, 0.00, 0.00] 20.00
100 [0.17, 3.07, 0.00, 3.64, 4.50] 2.32 100 [0.05, 0.34, 0.22, 0.24, 0.28] 14.60
1000 [0.13, 2.65, 0.06, 3.13, 3.92] 1.62 1000 [0.15, 1.70, 0.26, 1.82, 2.20] 7.86
5000 [0.08, 2.76, 0.13, 3.32, 4.25] 0.13 5000 [0.07, 2.71, 0.09, 3.25, 4.15] 0.37
10000 [0.07, 2.76, 0.08, 3.33, 4.25] 0.08 10000 [0.07, 2.75, 0.08, 3.32, 4.24] 0.03
30000 [0.07, 2.75, 0.08, 3.32, 4.24] 0.03 30000 [0.07, 2.75, 0.08, 3.32, 4.24] 0.03
50000 [0.07, 2.75, 0.08, 3.32, 4.24] 0.03 50000 [0.07, 2.75, 0.08, 3.32, 4.24] 0.03

5.1.2 Nonlinear Complementarity Problem
Example 2: Consider the following nonlinear complementarity problem:

𝑥𝑇𝐹 (𝑥) = 0, 𝑥 ≥ 𝟎, 𝐹 (𝑥) ≥ 𝟎, (22)
where

𝐹 (𝑥) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑥1𝑒(𝑥
2
1+(𝑥2−1)

2) + 𝑥22 + 𝑥3 − 10
(𝑥2 − 1)𝑒𝑥21+(𝑥2−1)2 + 4𝑥1 + 𝑥2𝑥3 + 2𝑥23 + 𝑒𝑥4−2

𝑥1 + 8𝑥2 + 3𝑥3 − 3
𝑥4 − 4

⎞

⎟

⎟

⎟

⎟

⎠

. (23)

We reformulate Example 2 as 𝑁𝑃𝐸(ℝ+, 𝐹) by Proposition 1. Then, 𝑁𝑃𝐸(ℝ+, 𝐹) is modeled by the ODE system of Eq. (7).
We establish an IVP by specifying the initial point as 𝑦(0) = 𝟎 and the time range as [0, 10]. We use the NN model, 𝑦̂(𝑡;𝑤), to
serve as an approximate state solution for this IVP, where the end state 𝑦̂(𝑡 = 10;𝑤) is the predicted solution for Example 2.

Table 2 Comparison of predicted solutions for Example 2 between our approach and the RK method

Our NN approach The RK method
Iteration Prediction NPE error Collocation point Prediction NPE error
0 [0.86, 0.00, 0.00, 0.00] 5.04 0 [0.00, 0.00, 0.00, 0.00] 10.00
100 [1.30, 0.94, 0.00, 2.01] 2.00 100 [0.19, 0.04, 0.05, 0.08] 9.44
1000 [1.08, 0.00, 0.59, 3.99] 0.14 1000 [1.16, 0.19, 0.20, 0.73] 3.27
5000 [1.08, 0.00, 0.64, 3.99] 0.01 5000 [1.22, 0.22, 0.00, 2.53] 1.47
10000 [1.08, 0.00, 0.64, 4.00] 0.00 10000 [1.10, 0.01, 0.40, 3.46] 0.62
30000 [1.08, 0.00, 0.64, 4.00] 0.00 30000 [1.08, 0.00, 0.64, 3.99] 0.08
50000 [1.08, 0.00, 0.64, 4.00] 0.00 50000 [1.08, 0.00, 0.64, 4.00] 0.09

Fig. 5(A) and Fig. 5(B) illustrate the decrease in loss and NPE error, respectively. Specifically, the loss decreases from 17.78
to 0.05, while the NPE error decreases from 5.04 to a value close to zero. Notably, the most substantial reduction in both loss
and NPE error occurs within the first 10,000 iterations. In addition, the implementation of the ORR mechanism, as described in
Alg. 1, ensures that the NPE error decreases consistently, despite occasional small increases in the loss values.

Fig. 5(C) shows the NN model 𝑦̂(𝑡;𝑤) at the 0th, 1,000th, 10,000th, and 50,000th training iterations, from left to right, and
the predicted solution for Example 2 are marked with red stars. As shown in the figure, the NN model at the 1,000th iteration is
already very close to the final result at the 50,000th iteration. Fig. 5(D) shows the results of the RK method after accumulating
0, 5,000, 25,000, and 50,000 collocation points, and the predicted solutions are marked with yellow stars.

Table 2 shows the predictions and their NPE errors of our NN approach and the RK method for Example 2 at different
iterations. Thanks to the adoption of the projection function in Alg. 1, our NN approach has a lower initial NPE error compared

Dawen Wu, Abdel Lisser 11

0 10000 20000 30000 40000 50000
Iteration

10 3

10 2

10 1

100

N
PE

 e
rr

o
r

0 10000 20000 30000 40000 50000
Iteration

10 1

100

101

M
.S

.E
.
lo

ss

(B)(A)

0 2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

y(
t;
w
)

y1(t; w)

y2(t; w)

y3(t; w)

y4(t; w)

0 2 4 6 8 10
t

0

1

2

3

4

y(
t;
w
)

0 2 4 6 8 10
t

0

1

2

3

4

y(
t;
w
)

0 2 4 6 8 10
t

0

1

2

3

4

y(
t;
w
)

(C)

0 2 4 6 8 10
t

0

1

2

3

4

y(
t)

y1(t)
y2(t)
y3(t)
y4(t)

0 2 4 6 8 10
t

0

1

2

3

4

y(
t)

0 2 4 6 8 10
t

0

1

2

3

4

y(
t)

0 2 4 6 8 10
t

0

1

2

3

4

y(
t)

(D)

Figure 5 Solving Example 2: (A) MSE loss versus training iterations. (B) NPE error versus training iterations. (C) Evolution
of the NN solution, 𝑦̂(𝑡;𝑤). (D) Evolution of the RK solution, 𝑦̄(𝑡).

to the RK method. By the 1,000th iteration, the NPE error associated with our NN approach has been reduced to 0.14. By the
5,000th iteration, the NPE error has further diminished to 0.01. Upon completion of 10,000 iterations, our NN approach yields
an optimal solution of [1.08, 0.00, 0.64, 4.00], which accurately resolves Example 2.

5.1.3 Variational Inequality
Example 3: Consider the following variational inequality:

(𝑥 − 𝑥∗)𝑇 𝐺 (𝑥∗) ≥ 0, 𝑥 ∈ Ω, (24)
where

𝐺(𝑥) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥1 −
2

𝑥1+0.8
+ 5𝑥2 − 13

1.2𝑥1 + 7𝑥2
3𝑥3 + 8𝑥4

1𝑥3 + 2𝑥4 −
4

𝑥4+2
− 12

⎤

⎥

⎥

⎥

⎥

⎦

,
Ω = {𝑥 ∈ ℝ4 ∣1 ≤ 𝑥1 ≤ 100,−3 ≤ 𝑥2 ≤ 100,

− 10 ≤ 𝑥3 ≤ 100, 1 ≤ 𝑥4 ≤ 100}.
(25)

We reformulate Example 3 as 𝑁𝑃𝐸(Ω, 𝐺) by Proposition 2. Then, 𝑁𝑃𝐸(Ω, 𝐺) is modeled by the ODE system of Eq. (7).
We establish an IVP by specifying initial point as 𝑦(0) = 𝟎 and the time interval as [0, 10]. We use the NN model, 𝑦̂(𝑡;𝑤), to
serve as an approximate state solution for this IVP, where the end state 𝑦̂(𝑡 = 10;𝑤) is the predicted solution for Example 3.

Fig. 6(A) and Fig. 6(B) illustrate the decrease in loss and NPE error, respectively. Specifically, the loss decreases from 126.99
to 0.10, while the NPE error decreases from 15.42 to 0.00. Note that there are small fluctuations in the loss value around the
18,000th iteration, but the NPE error remains unaffected because the training algorithm retains the best prediction from its
training history.

Fig. 6(C) shows the NN model 𝑦̂(𝑡;𝑤) at the 0th, 1,000th, 10,000th, and 50,000th training iterations, from left to right, and
the predicted solution for Example 3 are marked with red stars. In particular, at the 1,000th iteration, i.e., the first subplot on the
left in Fig. 6(C), the NN model is already very close to the final result of the 50,000th iteration. Fig. 6(D) shows the results of
the RK method after accumulating 0, 5,000, 25,000, and 50,000 collocation points, and the predicted solutions are marked with
yellow stars.

12 Dawen Wu, Abdel Lisser

0 10000 20000 30000 40000 50000
Iteration

10 1

100

101

102

M
.S

.E
.
lo

ss

0 10000 20000 30000 40000 50000
Iteration

10 2

100

N
PE

 e
rr

o
r

(B)(A)

0 2 4 6 8 10
t

0.5

0.0

0.5

1.0

y(
t;
w
)

y1(t; w)

y2(t; w)

y3(t; w)

y4(t; w)

0 2 4 6 8 10
t

10

0

10

20

y(
t;
w
)

0 2 4 6 8 10
t

10

0

10

20

y(
t;
w
)

0 2 4 6 8 10
t

10

0

10

20

y(
t;
w
)

(C)

0 2 4 6 8 10
t

10

0

10

20

30

y(
t)

0 2 4 6 8 10
t

10

0

10

20

30

y(
t)

0 2 4 6 8 10
t

10

0

10

20

30

y(
t)

y1(t)
y2(t)
y3(t)
y4(t)

0 2 4 6 8 10
t

10

0

10

20

30

y(
t)

(D)

Figure 6 Solving Example 3: (A) MSE loss versus training iterations. (B) NPE error versus training iterations. (C) Evolution
of the NN solution, 𝑦̂(𝑡;𝑤). (D) Evolution of the the RK solution, 𝑦̄(𝑡).

Table 3 Comparison of predicted solutions for Example 3 between our approach and the RK method

Our NN approach The RK method
Iteration Prediction NPE error Collocation point Prediction NPE error
0 [1.00, -0.46, 0.24, 1.00] 15.42 0 [1.00, 0.00, 0.00, 1.00] 13.11
100 [1.77, 0.12, -1.57, 1.66] 11.43 100 [1.00, -0.02, -0.16, 1.00] 13.22
1000 [27.62, -3.00, -10.00, 10.92] 0.46 1000 [2.61, -0.22, -1.75, 2.28] 12.09
5000 [28.15, -3.00, -10.00, 11.18] 0.08 5000 [11.38, -1.69, -10.00, 8.88] 10.26
10000 [28.07, -3.00, -10.00, 11.15] 0.00 10000 [20.78, -3.00, -10.00, 10.87] 7.32
30000 [28.07, -3.00, -10.00, 11.15] 0.00 30000 [27.96, -3.00, -10.00, 11.15] 0.11
49999 [28.07, -3.00, -10.00, 11.15] 0.00 49999 [28.07, -3.00, -10.00, 11.15] 0.00

Table 3 shows the predictions for Example 3 provided by our NN approach and the RK method. Remarkably, after only 1,000
iterations, our NN approach yields an acceptable prediction with an NPE error of 0.46. After 5,000 iterations, our NN approach
refines this prediction further to an NPE error of less than 0.1. After 10,000 iterations, our approach converges to the solution
of [28.07,−3.00,−10.00, 11.15], which is an optimal solution of Example 3.

5.2 Comparision with PINN
In this subsection, we compare our approach with PINNs in terms of accuracy. Specifically, we have chosen the basic version

of PINN20 for comparison. Despite the existence of more advanced models such as CPINNs44 or XPINNs45, however, we find
that the basic version of PINN is sufficiently effective for the NPE problem, obviating the need for more complex variants.
Regarding the setting for the PINN, we use the same network architecture and hyperparameters as in Section 5.1.

Dawen Wu, Abdel Lisser 13

0 10000 20000 30000 40000 50000
Iteration

10 3

10 2

10 1

100

N
PE

 e
rr

o
r

Our
PINN

0 10000 20000 30000 40000 50000
Iteration

10 1

100

101
N

PE
 e

rr
o
r

Our
PINN

0 10000 20000 30000 40000 50000
Iteration

10 3

10 2

10 1

100

101

N
PE

 e
rr

o
r

Our
PINN

Example 1 Example 2 Example 3

Figure 7 Comparison of NPE errors between our proposed approach and the PINN for the three examples given in Section 5.1.

Our approach can be viewed as a modification of the PINN, specifically designed for the NPE problem to improve compu-
tational performance. The core distinction between our approach and the PINN lies in our focus on the end state of the NN
model. Building on this, we employ the ORR mechanism in Alg. 1, which continuously monitors the NPE error of the end
state throughout the training process. Therefore, the NN model optimizes simultaneously for both the ODE system and the NPE
problem at hand, consistently maintaining the best result throughout the solution process. This unique focus results in improved
performance, as demonstrated below.

Fig. 7 compares our approach with the PINN for solving the three examples given in Section 5.1. As shown in the figure,
both approaches start with similar initial errors, but our approach is significantly outperforms the PINN as training progresses.
Specifically, in Example 1, the NPE error converges to 0.03 with our approach, while the PINN converges to 0.7. In Example
2, our approach converges to less than 0.001, while the PINN could only converge to 0.4. In Example 3, our approach again
converges to less than 0.001, while the PINN only converges to 0.1. These experimental results show that our approach provides
superior solutions for solving these NPE problems. Moreover, this validates the effectiveness of the key designs in Alg. 1, such
as the use of the ORR mechanism and the projection function.

5.3 Hyperparameter Study

0 2000 4000 6000 8000 10000
Iteration

10 2

10 1

100

101

N
PE

 e
rr

o
r

(A)

0 2000 4000 6000 8000 10000
Iteration

10 2

10 1

100

101

N
PE

 e
rr

o
r

(B)

Figure 8 (A) NPE errors versus training iterations for three different initial points. (B) NPE errors versus training iterations for
three different time ranges.

In this subsection, we explore the influence of various hyperparameters on the computational performance of our NN model.
Specifically, we focus on Example 3, as given in Section 5.1.3. The hyperparameters under investigation include the initial point,
the time range, the number of hidden layers, the number of neurons, and the activation function used.

14 Dawen Wu, Abdel Lisser

Table 4 Predictions and their NPE errors at different training iterations for three different initial points

Initial point:
𝑦(0) = [1, 2, 3, 4]

Initial point:
𝑦(0) = [−10,−15,−10,−14]

Initial point:
𝑦(0) = [20, 0, 0, 8]

Iteration Prediction NPE error Prediction NPE error Prediction NPE error
0 [1.00, 2.79, 2.86, 3.18] 12.86 [1.00, -3.00, -10.00, 1.00] 28.11 [20.10, 1.38, 0.23, 7.94] 13.89
100 [4.37, -0.06, -0.55, 5.96] 9.45 [1.00, -3.00, -10.00, 1.00] 28.11 [17.92, -2.25, -3.62, 6.54] 6.43
300 [23.89, -3.00, -10.00, 13.22] 4.19 [11.23, 5.10, 0.28, 6.14] 10.28 [26.40, -3.00, -10.00, 11.98] 1.68
500 [25.77, -3.00, -10.00, 12.87] 3.48 [14.21, -0.67, -10.00, 10.50] 2.33 [26.40, -3.00, -10.00, 11.98] 1.68
1000 [28.47, -3.00, -10.00, 11.28] 0.41 [14.21, -0.67, -10.00, 10.50] 2.33 [27.88, -3.00, -10.00, 11.72] 1.15
3000 [28.37, -3.00, -10.00, 11.30] 0.31 [30.04, -3.00, -10.00, 12.00] 1.97 [28.14, -3.00, -10.00, 11.14] 0.07
5000 [28.06, -3.00, -10.00, 11.16] 0.01 [28.01, -3.00, -10.00, 11.19] 0.07 [28.09, -3.00, -10.00, 11.15] 0.02
10000 [28.06, -3.00, -10.00, 11.16] 0.01 [28.01, -3.00, -10.00, 11.19] 0.07 [28.06, -3.00, -10.00, 11.16] 0.01

Table 5 Prediction and their NPE errors at different training iterations for three different time ranges.

Time range:
𝑡 ∈ [0, 5]

Time range:
𝑡 ∈ [0, 8]

Time range:
𝑡 ∈ [0, 15]

Iteration Predition NPE error Predition NPE error Predition NPE error
0 [1.00, 1.23, -0.22, 1.00] 11.56 [1.00, 0.63, 0.15, 1.00] 11.183 [1.00, 0.90, -0.40, 1.00] 11.74
100 [5.47, -0.52, -6.10, 5.25] 10.44 [5.53, -0.56, -5.13, 4.76] 10.59 [4.30 -0.236 -4.644 4.08] 10.27
300 [22.82, -3.00, -10.00, 14.27] 6.28 [23.81, -3.00, -10.00, 14.69] 7.14 [22.12, -3.00, -10.00, 14.18] 6.12
500 [27.04, -3.00, -10.00, 11.93] 1.57 [27.73, -3.00, -10.00, 12.17] 2.06 [27.14, -3.00, -10.00, 12.14] 2.00
1000 [27.04, -3.00, -10.00, 11.66] 1.03 [27.26, -3.00, -10.00, 11.55] 0.81 [27.25, -3.00, -10.00, 11.55] 0.82
3000 [28.08, -3.00, -10.00, 11.11] 0.08 [28.62, -3.00, -10.00, 10.91] 0.55 [27.77, -3.00, -10.00, 10.98] 0.35
5000 [28.05, -3.00, -10.00, 11.16] 0.02 [28.18, -3.00, -10.00, 11.21] 0.12 [28.40, -3.00, -10.00, 11.32] 0.33
9999 [28.05, -3.00, -10.00, 11.16] 0.02 [28.07, -3.00, -10.00, 11.15] 0.00 [28.08, -3.00, -10.00, 11.15] 0.01

Initial point. Fig. 8(A) and Table 4 show the results of different initial point configurations with the same time range of
[0, 10]. The results suggest the following:

• All initial points converge to the same optimal solution, as supported by Theorem 1.
• The convergence rates of different initial points vary, with initial points closer to the optimal solution converging faster.
• The initial point 𝑦(0) = [1, 2, 3, 4] is closest to the optimal solution and achieves the fastest convergence with the smallest

initial NPE error.
• The initial point 𝑦(0) = [−10,−15,−10,−14] is the furthest away from the optimal solution and still converges, but has

a higher initial error and slower convergence rate.
Time range. Fig. 8(B) and Table 5 show the results of different time range configurations with the same initial points of

𝑦(0) = [0, 0, 0, 0]. The results suggest the following:
• Shorter time ranges lead to faster convergence but may result in less accurate predictions. As shown in the table, the

shortest time range of [0, 5] converges very fast, but its NPE error does not decrease much after 3,000 iterations.
• Longer time ranges provide better predictions, but require more training iterations. The longest range of [0, 15] converges

slowly, but with more training it can give better results than the other two ranges.
• The choice of time ranges represents a trade-off. Longer ranges may enhance accuracy but require more training, whereas

shorter ranges are easier to train but may yield less satisfactory predictions. As shown in Table 5, considering a fixed
maximum number of iterations at 10,000, the time range of [0, 8] achieves the optimal performance.

Dawen Wu, Abdel Lisser 15

Table 6 Comparison of NPE errors for NNs with different model sizes. The top half of the table presents the results for single-
layer networks with different numbers of neurons, while the bottom half presents the results for multi-layer networks with 500
neurons per layer.

Iteration 1 layer, 100 neurons 1 layer, 500 neurons 1 layer, 1000 neurons 1 layer, 1500 neurons 1 layer, 2000 neurons
100 11.43 0.33 0.23 0.78 2.32
300 7.08 0.33 0.23 0.75 0.71
500 2.07 0.33 0.23 0.52 0.71
1000 0.46 0.33 0.23 0.16 0.29
3000 0.10 0.00 0.03 0.02 0.02
5000 0.08 0.00 0.00 0.01 0.01
10000 0.00 0.00 0.00 0.00 0.01

Iteration 1 layer,
each 500 neurons

2 layer,
each 500 neurons

3 layer,
each 500 neurons

4 layer,
each 500 neurons

5 layer,
each 500 neurons

100 0.33 1.73 2.22 6.43 6.88
300 0.33 0.10 0.76 1.82 6.70
500 0.33 0.07 0.27 0.57 0.52
1000 0.33 0.01 0.03 0.23 0.34
3000 0.00 0.01 0.01 0.03 0.03
5000 0.00 0.00 0.00 0.03 0.03
10000 0.00 0.00 0.00 0.02 0.03

Number of layers and neurons. Table 6 shows the NPE errors of different model sizes, specifically different numbers of
hidden layers and neurons. As shown in the table, all models of different sizes converge to solutions with NPE errors below 0.03
by the 10,000th iteration. However, the model size has a significant impact on the speed of convergence. Models that are too
small or too large perform worse than the others. For example, the 100-neuron single-layer model has higher NPE errors in the
first 1000 iterations. The 5-layer model with 500 neurons per layer has similar results.

Therefore, selecting an appropriately-sized model is importance to achieve optimal performance. Small model sizes have
limited capacity, while large model sizes require a lot of training to converge, which may not be necessary. Among the model
sizes considered in Table 6, the two-layer model with 500 neurons each achieves the best performance. It converges to an NPE
error of 0.1 within 300 iterations and further reduces to 0.01 within 1000 iterations, outperforming other model architectures.

Table 7 Comparison of NPE errors for different activation functions. The considered NN model is a two-layer network, with
500 neurons in each layer.

Iteration 2 layers, each 500 neurons
tanh sinx sigmoid relu leaky relu

100 1.73 2.18 3.01 2.62 2.32
300 0.10 0.73 0.28 1.13 0.71
500 0.07 0.15 0.05 1.13 0.71
1000 0.01 0.03 0.01 1.13 0.29
3000 0.01 0.03 0.01 0.01 0.01
5000 0.00 0.03 0.01 0.01 0.01
10000 0.00 0.03 0.00 0.01 0.00

16 Dawen Wu, Abdel Lisser

Activation Function. Table 7 shows the NPE errors for different activation functions on the same NN model. The data
show that regardless of the activation function chosen, all NN models converge to solutions with NPE errors less than 0.03.
Notably, the influence of the activation function on model performance is relatively minor when compared to the effects of
model size. Among the tested activation functions, ReLU and Leaky ReLU were found to be slightly less effective than the
others. Specifically, the tanh activation function stands out as the most efficient, which corroborates its widespread adoption in
research related to PINNs46,47,48.

5.4 Large Scale NPE
Consider the following NPE problem: For 𝑖 = 1, 2,… , 1000,

(

𝑥∗𝑖 −
1

2
√

(𝑀𝑥∗)𝑖 + 𝑞𝑖

)+

= 𝑥∗𝑖 . (26)

The objective is to find an optimal solution 𝑥∗ = [𝑥∗1, 𝑥
∗
2,… , 𝑥∗1000] ∈ ℝ1000 that solves Eq. (26). The problem data 𝑀 ∈

ℝ1000×1000 is partitioned as
𝑀 =

[

𝑀1 𝑀2
𝑀3 𝑀4

]

, (27)
where 𝑀1 ∈ ℝ500×500, 𝑀2 ∈ ℝ500×500, 𝑀3 ∈ ℝ500×500, and 𝑀4 ∈ ℝ500×500 are given by

𝑀1 =

⎡

⎢

⎢

⎢

⎢

⎣

1.2 0.6 … 0.6
0.6 1.2 … 0.6
⋮ ⋮ ⋱ ⋮
0.6 0.6 … 1.2

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑀2 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑀3 =

⎡

⎢

⎢

⎢

⎢

⎣

−1 0 … 0
0 −1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … −1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑀4 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 … 0
0 0 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 0

⎤

⎥

⎥

⎥

⎥

⎦

. (28)

For the problem data 𝑞 ∈ ℝ1000, the first half is sampled uniformly from the interval [−31,−28], while the second half is
sampled uniformly from the interval [3, 10]. We create a problem set by generating ten different 𝑞, resulting in ten different
NPE problems. All the sampled 𝑞 can be accessed through the link 1. Solving these NPE problems is non-trivial due to their
high dimensionality with 1,000 variables and the presence of multiple nonlinear operations. Therefore, the RK method may
encounter computational inefficiencies when applied to these NPE problems.

Table 8 Performance of the NN approach for solving the set of NPE problems. STD stands for standard deviation. CPU time is
measured in seconds.

Iteration M.S.E. loss
(Mean ± STD)

CPU time
(Mean ± STD)

NPE error
(Mean ± STD)

NPE error
(50%-quantile)

NPE error
(75%-quantile)

NPE error
(95%-quantile)

0 470.29 ± 92.68 0.00 ± 0.00 4839.33 ± 673.10 4720.42 4911.21 6008.41
100 45.85 ± 39.83 2.36 ± 0.60 15.34 ± 16.46 6.65 19.98 46.38
500 32.10 ± 26.70 11.32 ± 0.68 0.67 ± 0.89 0.37 0.46 2.30
1000 26.81 ± 11.53 22.57 ± 1.16 0.31 ± 0.18 0.27 0.36 0.60
3000 15.20 ± 11.23 67.82 ± 1.40 0.19 ± 0.06 0.18 0.24 0.27
5000 12.33 ± 10.44 112.91 ± 2.20 0.13 ± 0.07 0.11 0.17 0.24
7000 8.16 ± 8.13 157.98 ± 2.86 0.10 ± 0.06 0.07 0.14 0.19
10000 2.93 ± 3.38 225.47 ± 3.82 0.05 ± 0.04 0.04 0.07 0.12
30000 0.73 ± 1.18 670.38 ± 5.82 0.01 ± 0.01 0.01 0.01 0.02

We use the proposed NN approach to solve the ten large-scale NPE problems. With respect to the experimental setup, the
employed network architecture consisted of a three-layer fully connected network, each layer having 500 neurons and utilizing
the tanh activation function. The time range chosen for the experiments is [0, 10], and the initial point is set to a zero vector. All

1https://github.com/wuwudawen/IJNME_data_2023/blob/main/Q.npy

https://github.com/wuwudawen/IJNME_data_2023/blob/main/Q.npy

Dawen Wu, Abdel Lisser 17

Table 9 Performance of the RK method for solving the set of NPE problems STD stands for standard deviation. CPU time is
measured in seconds.

Time range CPU time
(Mean ± STD)

NPE error
(Mean ± STD)

NPE error
(50%-quantile)

NPE error
(75%-quantile)

NPE error
(95%-quantile)

[0, 2] 369.33 ± 44.27 1.87 ± 0.16 1.86 2.01 2.08
[0, 4] 547.93 ± 74.83 0.48 ± 0.06 0.50 0.51 0.55
[0, 6] 739.74 ± 88.02 0.14 ± 0.02 0.15 0.15 0.16
[0, 8] 1048.92 ± 88.20 0.04 ± 0.01 0.04 0.05 0.05
[0, 10] 1542.07 ± 205.43 0.01 ± 0.01 0.01 0.01 0.02

other hyperparameter settings are kept consistent with those described in Section 5.1. Tables 8 and 9 present the experimental
results of our NN approach compared to the RK method, focusing on both accuracy and computational time. In order to offer
a comprehensive understanding of the experimental results, we provide statistical descriptors of the outcomes, including the
mean, standard deviation (STD), and various percentiles.

In the following, we discuss the differences between our NN approach and the RK method in terms of computational efficiency,
stability and convergence.

• Efficiency: As shown in the tables, our NN approach outperforms the RK method in terms of computational efficiency
when solving large scale NPE problems. In particular, our NN approach requires less CPU time than the RK method for
the same level of accuracy. For example, our approach achieves an NPE error of 0.01, requiring an average of 30,000
iterations and consuming only 670.38 seconds. On the contrary, the RK method requires spanning a time range of [0, 10],
which requires a higher average time of 1542.07 seconds. Moreover, the efficiency gap becomes more significant as the
required accuracy is relaxed. For example, for an NPE error threshold of less than 0.50, our NN approach takes on average
only 500 iterations and 11.32 seconds, making it about 48 times faster than the RK method, which requires 547.93 seconds.

• Stability: Our NN approach demonstrates not only computational efficiency, but also greater stability, reflected in a much
lower STD of CPU times - only 5.82 at the 30,000th iteration. This indicates consistent and reliable performance across
different NPE problem instances. On the other hand, the RK method exhibits higher variability with an STD of 205.43
for the time range of [0, 10], signifying greater sensitivity to the specific NPE problem at hand.

• Convergence: While there are notable differences in computational efficiency and stability between our NN approach and
the RK method, both techniques demonstrate comparable accuracy in the long run, each achieving an NPE error as low
as 0.01. As discussed in Section 4.3, the convergence mechanisms of the two approaches are fundamentally different. Our
NN approach operates within a fixed time range of [0, 10] and refines its predictive accuracy through iterative training. In
contrast, the RK method improves its accuracy by progressively extending the time range.

5.5 Discussion
Below, we summarize the key features of our proposed NN approach:
• Our NN approach reliably converges to the optimal solutions of the NPE problems. This is supported by Theorem 1 in

neurodynamic optimization and the universal approximation theorem of NNs. Experimentally, we have shown that the
NN approach successfully found optimal solutions for the three types of NPE problems in Section 5.1, as well as ten
large-scale NPE problems in Section 5.4.

• The proposed NN approach outperforms the PINN in solving NPE problems. This improvement is due to some modifi-
cations made to the basic PINN approach that allow it to exploit the problem structure of NPEs for better performance.
In particular, during each training iteration, the NN model evaluates the accuracy of its end state against the target NPE
problem and retains the best performing solution. Additionally, we employ the projection function of Eq. (1) to further
boost accuracy.

18 Dawen Wu, Abdel Lisser

• The computational performance of our NN approach is significantly affected by the hyperparameter settings. As discussed
in Section 5.3, choices regarding the time range and initial point have a strong impact on the convergence result. For
example, smaller time ranges may prevent the NN model from converging to an optimal solution, regardless of the training
time. Moreover, in our empirical observations, the network architecture and activation functions influence the model
convergence rate.

• Our NN approach excels in solving large-scale NPE problems. As presented in Section 5.4, our NN approach outperforms
the RK method in terms of computational efficiency. For the same level of accuracy, the CPU time required by our approach
is less than that required by the RK method. In addition, our approach exhibits greater stability, with its solution time
remaining consistent across different NPE problems.

However, we must acknowledge some limitations of our proposed NN approach. The most notable limitation is that, unlike
traditional RK methods, the NN approach lacks rigorous theoretical underpinnings to guarantee convergence, primarily due to
the black-box nature of NNs. Furthermore, as elaborated in Section 5.3, the performance of the model is highly sensitive to
hyperparameter choices and architectural decisions, requiring careful tuning. Numerical integration methods, which are typically
simpler, avoid these complexities.

To address these limitations, future research should focus on improving network design and training methods. This could
include developing more effective hyperparameter search strategies or exploring advanced network architectures, such as
attention-based models or transformers. In addition, investigating how to incorporate domain-specific knowledge into the
network structure may improve solution accuracy and reduce training time.

6 CONCLUSION

In this paper, we presented an innovative deep learning-based approach for solving NPEs based on neurodynamic optimization
and PINNs. We showed how our approach can efficiently solve NPEs and highlighted its advantages over PINNs and the RK
method. The proposed approach transforms NPE problems into NN training problems, allowing the use of the latest advances in
machine learning and deep learning to solve NPEs. We also identified areas for future research, such as exploring better methods
for selecting initial points and time ranges, experimenting with different network architectures, and investigating advanced
neurodynamic optimization techniques, among others.

In summary, our proposed framework shows considerable promise for improving computational efficiency in solving NPEs.
With ongoing research and development, we expect to further strengthen the robustness of our approach and position it as a
valuable computational tool for addressing a wide range of nonlinear optimization challenges in diverse applications.

DATA AVAILABILITY STATEMENT

The problem data used in Section 5.4 are available in https://github.com/wuwudawen/IJNME_data_2023/blob/main/Q.npy.

References

1. Bertsekas DP. Nonlinear programming. Journal of the Operational Research Society 1997; 48(3): 334.
2. Harker PT, Pang JS. Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory,

algorithms and applications. Mathematical programming 1990; 48(1-3): 161–220.
3. Robinson SM. Normal maps induced by linear transformations. Mathematics of Operations Research 1992; 17(3): 691–714.
4. Xia Y, Feng G. A new neural network for solving nonlinear projection equations. Neural Networks 2007; 20(5): 577–589.
5. Xia Y, Wang J. A Bi-Projection Neural Network for Solving Constrained Quadratic Optimization Problems. IEEE

Transactions on Neural Networks and Learning Systems 2016; 27(2): 214–224. doi: 10.1109/TNNLS.2015.2500618

https://github.com/wuwudawen/IJNME_data_2023/blob/main/Q.npy
http://dx.doi.org/10.1109/TNNLS.2015.2500618

Dawen Wu, Abdel Lisser 19

6. Che H, Wang J. A collaborative neurodynamic approach to global and combinatorial optimization. Neural Networks 2019;
114: 15–27.

7. Burden RL, Faires JD, Burden AM. Numerical analysis. Cengage learning . 2015.
8. Tank DW, Hopfield JJ. SIMPLE ’NEURAL’ OPTIMIZATION NETWORKS: AN A/D CONVERTER, SIGNAL DE-

CISION CIRCUIT, AND A LINEAR PROGRAMMING CIRCUIT.. IEEE transactions on circuits and systems 1986;
CAS-33(5): 533–541. doi: 10.1109/tcs.1986.1085953

9. Liu Q, Wang J. A one-layer recurrent neural network with a discontinuous hard-limiting activation function for quadratic
programming. IEEE transactions on neural networks 2008; 19(4): 558–570.

10. Kennedy MP, Chua LO. Neural Networks for Nonlinear Programming. IEEE Transactions on Circuits and Systems 1988;
35(5): 554–562. doi: 10.1109/31.1783

11. Xia Y, Leung H, Wang J. A projection neural network and its application to constrained optimization problems. IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications 2002; 49(4): 447–458.

12. Guo Z, Liu Q, Wang J. A one-layer recurrent neural network for pseudoconvex optimization subject to linear equality
constraints. IEEE Transactions on Neural Networks 2011; 22(12): 1892–1900.

13. Che H, Wang J. A two-timescale duplex neurodynamic approach to biconvex optimization. IEEE Transactions on Neural
Networks and Learning Systems 2018; 30(8): 2503–2514.

14. Jia W, Liu N, Qin S. An Adaptive Continuous-Time Algorithm for Nonsmooth Convex Resource Allocation Optimization.
IEEE Transactions on Automatic Control 2022; 67(11): 6038–6044. doi: 10.1109/TAC.2021.3137054

15. Liu N, Wang J, Qin S. A one-layer recurrent neural network for nonsmooth pseudoconvex optimization with quasiconvex
inequality and affine equality constraints. Neural Networks 2022; 147: 1–9.

16. Lagaris IE, Likas A, Fotiadis DI. Artificial neural networks for solving ordinary and partial differential equations. IEEE
Transactions on Neural Networks 1998; 9(5): 987–1000. doi: 10.1109/72.712178

17. McFall KS, Mahan JR. Artificial neural network method for solution of boundary value problems with exact satisfaction of
arbitrary boundary conditions. IEEE Transactions on Neural Networks 2009; 20(8): 1221–1233.

18. Han J, Jentzen A, E W. Solving high-dimensional partial differential equations using deep learning. Proceedings of the
National Academy of Sciences 2018; 115(34): 8505–8510.

19. Huang S, Feng W, Tang C, Lv J. Partial Differential Equations Meet Deep Neural Networks: A Survey. arXiv preprint
arXiv:2211.05567 2022.

20. Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics 2019; 378: 686–
707. doi: https://doi.org/10.1016/j.jcp.2018.10.045

21. Samaniego E, Anitescu C, Goswami S, et al. An energy approach to the solution of partial differential equations in com-
putational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied
Mechanics and Engineering 2020; 362: 112790.

22. Mao Z, Jagtap AD, Karniadakis GE. Physics-informed neural networks for high-speed flows. Computer Methods in Applied
Mechanics and Engineering 2020; 360: 112789.

23. Cai S, Mao Z, Wang Z, Yin M, Karniadakis GE. Physics-informed neural networks (PINNs) for fluid mechanics: A review.
Acta Mechanica Sinica 2022: 1–12.

24. Abueidda DW, Lu Q, Koric S. Meshless physics-informed deep learning method for three-dimensional solid mechanics.
International Journal for Numerical Methods in Engineering 2021; 122(23): 7182–7201.

http://dx.doi.org/10.1109/tcs.1986.1085953
http://dx.doi.org/10.1109/31.1783
http://dx.doi.org/10.1109/TAC.2021.3137054
http://dx.doi.org/10.1109/72.712178
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.10.045

20 Dawen Wu, Abdel Lisser

25. Ghaffari Motlagh Y, Jimack PK, Borst dR. Deep learning phase-field model for brittle fractures. International Journal for
Numerical Methods in Engineering 2022.

26. Lu L, Pestourie R, Yao W, Wang Z, Verdugo F, Johnson SG. Physics-Informed Neural Networks with Hard Constraints for
Inverse Design. SIAM Journal on Scientific Computing 2021; 43(6): B1105–B1132. doi: 10.1137/21M1397908

27. Zhang D, Guo L, Karniadakis GE. Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-
Informed Neural Networks. SIAM Journal on Scientific Computing 2020; 42(2): A639–A665. doi: 10.1137/19M1260141

28. Yu J, Lu L, Meng X, Karniadakis GE. Gradient-enhanced physics-informed neural networks for forward and inverse PDE
problems. Computer Methods in Applied Mechanics and Engineering 2022; 393: 114823.

29. Sharma R, Shankar V. Accelerated Training of Physics Informed Neural Networks (PINNs) using Meshless Discretizations.
arXiv preprint arXiv:2205.09332 2022.

30. Rezaei S, Harandi A, Moeineddin A, Xu BX, Reese S. A mixed formulation for physics-informed neural networks as a
potential solver for engineering problems in heterogeneous domains: Comparison with finite element method. Computer
Methods in Applied Mechanics and Engineering 2022; 401: 115616. doi: 10.1016/j.cma.2022.115616

31. Abueidda DW, Koric S, Guleryuz E, Sobh NA. Enhanced physics-informed neural networks for hyperelasticity. Interna-
tional Journal for Numerical Methods in Engineering 2023; 124(7): 1585–1601.

32. He J, Abueidda D, Al-Rub RA, Koric S, Jasiuk I. A deep learning energy-based method for classical elastoplasticity.
International Journal of Plasticity 2023; 162: 103531.

33. Samaniego E, Anitescu C, Goswami S, et al. An energy approach to the solution of partial differential equations in com-
putational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied
Mechanics and Engineering 2020; 362: 112790.

34. Yu B, others . The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems.
Communications in Mathematics and Statistics 2018; 6(1): 1–12.

35. Lu L, Meng X, Mao Z, Karniadakis GE. DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM
Review 2021; 63(1): 208–228. doi: 10.1137/19m1274067

36. Chen F, Sondak D, Protopapas P, et al. NeuroDiffEq: A Python package for solving differential equations with neural
networks. Journal of Open Source Software 2020; 5(46): 1931. doi: 10.21105/joss.01931

37. Billups SC, Murty KG. Complementarity problems. Journal of Computational and Applied Mathematics 2000; 124(1-2):
303–318. doi: 10.1016/S0377-0427(00)00432-5

38. Singh VV, Lisser A. Variational inequality formulation for the games with random payoffs. Journal of Global Optimization
2018; 72(4): 743–760. doi: 10.1007/s10898-018-0664-8

39. Mattheakis M, Sondak D, Dogra AS, Protopapas P. Hamiltonian neural networks for solving equations of motion. arXiv
preprint arXiv:2001.11107 2020.

40. Paszke A, Gross S, Massa F, et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: Curran
Associates, Inc. 2019 (pp. 8024–8035).

41. Bradbury J, Frostig R, Hawkins P, et al. JAX: composable transformations of Python+NumPy programs. 2018.
42. Dormand JR, Prince PJ. A family of embedded Runge-Kutta formulae. Journal of computational and applied mathematics

1980; 6(1): 19–26.
43. Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature

Methods 2020; 17(3): 261–272. doi: 10.1038/s41592-019-0686-2

http://dx.doi.org/10.1137/21M1397908
http://dx.doi.org/10.1137/19M1260141
http://dx.doi.org/10.1016/j.cma.2022.115616
http://dx.doi.org/10.1137/19m1274067
http://dx.doi.org/10.21105/joss.01931
http://dx.doi.org/10.1016/S0377-0427(00)00432-5
http://dx.doi.org/10.1007/s10898-018-0664-8
http://dx.doi.org/10.1038/s41592-019-0686-2

Dawen Wu, Abdel Lisser 21

44. Jagtap AD, Kharazmi E, Karniadakis GE. Conservative physics-informed neural networks on discrete domains for con-
servation laws: Applications to forward and inverse problems. Computer Methods in Applied Mechanics and Engineering
2020; 365: 113028.

45. Jagtap AD, Karniadakis GE. Extended Physics-informed Neural Networks (XPINNs): A Generalized Space-Time Domain
Decomposition based Deep Learning Framework for Nonlinear Partial Differential Equations.. 2021.

46. Jagtap AD, Kawaguchi K, Karniadakis GE. Adaptive activation functions accelerate convergence in deep and physics-
informed neural networks. Journal of Computational Physics 2020; 404: 109136.

47. De Ryck T, Lanthaler S, Mishra S. On the approximation of functions by tanh neural networks. Neural Networks 2021; 143:
732–750.

48. Mishra S, Molinaro R. Estimates on the generalization error of physics-informed neural networks for approximating a class
of inverse problems for PDEs. IMA Journal of Numerical Analysis 2022; 42(2): 981–1022.

	Neuro-PINN: A Hybrid Framework for Efficient Nonlinear Projection Equation Solutions
	Abstract
	Introduction
	Related Works
	Key Contributions
	Paper Outline

	Preliminaries
	Nonlinear Projection Equation
	Neurodynamic Optimization
	Runge-Kutta Method

	Neural Network Model
	Model training
	Training Objective
	Algorithm Design
	Comparison with the RK Method

	Experiments
	Three Examples
	Linear Complementarity Problem
	Nonlinear Complementarity Problem
	Variational Inequality

	Comparision with PINN
	Hyperparameter Study
	Large Scale NPE
	Discussion

	Conclusion
	DATA AVAILABILITY STATEMENT
	References

