
qEndpoint: A Wikidata SPARQL endpoint on commodity
hardware

Antoine Willerval
antoine.willerval@etu.univ-lyon1.fr

Lyon 1 University, CNRS Liris
Lyon, France

The QA Company SAS
Saint Etienne, France

Dennis Diefenbach
dennis.diefenbach@the-qa-

company.com
The QA Company SAS
Saint Etienne, France

Angela Bonifati
angela.bonifati@univ-lyon1.fr
CNRS, LIRIS UMR 5205, Lyon 1

University
Lyon, France

ABSTRACT
In this work, we demonstrate how to setup a Wikidata SPARQL
endpoint on commodity hardware resources. We achieve this by
using a novel triple store called qEndpoint, which uses a read-only
partition based on HDT and a write partition based on RDF4J. We
show that qEndpoint can index and query the entireWikidata dump
(currently 17 billion triples) on a machine with 600GB SSD, 10 cores
and 10GB of RAM, while keeping the query performance compara-
ble with other SPARQL endpoints indexing Wikidata.
In a nutshell, we present the first SPARQL endpoint over Wikidata
that can run on commodity hardware while preserving the query
run time of existing implementations. Our work goes in the direc-
tion of democratizing the access to Wikidata as well as to other
large-scale Knowledge Graphs published on the Web. The source
code of qEndpoint along with the query workloads are publicly
available.

CCS CONCEPTS
• Information systems→ DBMS engine architectures.

KEYWORDS
qEndpoint, HDT, Wikidata, SPARQL

ACM Reference Format:
Antoine Willerval, Dennis Diefenbach, and Angela Bonifati. 2023. qEnd-
point: A Wikidata SPARQL endpoint on commodity hardware. In Compan-
ion Proceedings of the ACM Web Conference 2023 (WWW ’23 Companion),
April 30-May 4, 2023, Austin, TX, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3543873.3587327

1 INTRODUCTION
Wikidata is growing to a central data hub on the Web. This resulted
also in a dramatic increase in its size. As of today, Wikidata contains
17 billion triples making it one of the biggest Knowledge Graphs
(KGs) on the Web.
The access to this KG is mainly guaranteed by the public Wikidata

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9419-2/23/04. . . $15.00
https://doi.org/10.1145/3543873.3587327

SPARQL service1. To maintain a stable service the Wikimedia Foun-
dation is imposing a limit on the number of queries that can be fired
in a certain time interval, as well as a timeout for each SPARQL
request. To circumvent these limits, setting up third-party SPARQL
endpoints is becoming interesting and necessary both for research
and industry.
Due to the size of the dataset, indexing thewholeWikidata dataset is
challenging. There is a limited number of successful attempts to in-
dex the whole of Wikidata on existing triple stores[5]. In this paper,
we demonstrate how to use a novel triple store, called qEndpoint,
for indexing Wikidata. Such a triple store is capable of running
on commodity hardware, while at the same time achieving query
performances similar to server-side solutions. Democratization is
one of the reasons why triple stores on low hardware resources are
urgently needed. This goes in the direction of designing the Web
for an open society [2], where linked open data is not only publicly
available, but also accessible by a wide range of people, no matter
what their resources are. In the following, we outline the principles
underpinning the architecture of qEndpoint (Section 2). We then
present an overview of the system (Section 3) by touching upon the
following main functionalities: (1) the data loading and the indexing
of the whole Wikidata corpus; (2) the query component, showcas-
ing the query performances of queries in the Wikidata query logs
and their comparison with existing publicly deployed systems. We
then present the demonstration scenarios of qEndpoint (Section 4).

2 TRIPLE-STORE ARCHITECTURE
The qEndpoint leverages a novel architecture that is based on two
partitions: a read-optimized main partition and a write optimized
delta partition (see Figure 1 for an illustration). The first partition is
used to store larger parts of the data. The data is read-only and can
be highly compressed. This partition uses HDT[6] as an indexing
structure allowing high compression of the data coupled with high
triple pattern resolution. The delta partition allows reads and writes
and is currently using a RDF4J native store. Over time, the delta
partition grows and is therefore merged with the main partition
with the help of qEndpoint ’s merger.
For the purpose of this demo, we focus on the main partition since
we consider the querying aspect of Wikidata and thus disregard up-
date operations on the knowledge graph. HDT is known as a good
data structure for storing large-scale knowledge graphs and access
them at high speed. On the other side, the original implementation
suffered from the fact that the generation of HDT had high memory
consumption assuming that the whole dataset can be entirely stored

1https://query.wikidata.org

https://orcid.org/0000-0003-2186-074X
https://orcid.org/0000-0002-0046-2219
https://orcid.org/0000-0002-9582-869X
https://doi.org/10.1145/3543873.3587327
https://doi.org/10.1145/3543873.3587327
https://query.wikidata.org

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA Willerval, et al.

Figure 1: High level qEndpoint architecture

in memory. Two solutions have been proposed to circumvent this
problem HDT-MR[8]2 and HDTCat[3]. The drawback of the first
solution is that it requires a Map Reduce cluster which is an infras-
tructure not accessible to everyone. The second solution suffers
from the fact that it does not scale well with growing size of the
dataset. To this end, we have introduced a new indexing strategy
that we integrated into the official RDFHDT Java library3. It allows
to index HDT using the disk instead of the memory, drastically
reducing the memory usage and allowing to index bigger datasets.
The qEndpoint offers a SPARQL query interface based on YASGUI[10].
A screenshot is shown in Figure 2. The code of the qEndpoint is pub-
licly available at https://github.com/the-qa-company/qEndpoint.

3 INDEXING AND QUERYINGWIKIDATA
In the following we describe how to index and query Wikidata as
well as a comparison with existing alternatives.

3.1 Loading data
To load the full Wikidata dump into the qEndpoint, one needs to
run a few instructions. This is done using our indexing method to
efficiently create the HDT partition (Point 1 in the figure 1)

Download the executable from https :// github

#.com/the -qa -company/qEndpoint/releases/latest/

wget https :// github.com/the -qa-company/qEndpoint

/releases/latest/download/qendpoint.jar

Download the Wikidata dump

wget https :// dumps.wikimedia.org/wikidatawiki/

entities/latest -all.nt.gz

Start the qEndpoint executable (jar)

java -Xmx10G -jar qendpoint.jar

Index the dataset (latest -all.nt.gz)

curl "http ://127.0.0.1:1234/ api/endpoint/load"

-F "file=@latest -all.nt.gz"

These simple commands allow everyone to quickly have a SPARQL
endpoint over Wikidata without the need of special configurations.

2https://github.com/rdfhdt/hdt-mr
3https://github.com/rdfhdt/hdt-java/pull/179

Task Time Description
Dataset download 7 h Download the dataset4
HDT compression 45 h Creating HDT
HDT co-index gen 5 h Creating OPS/PSO/POS indexes
Loading the index 2 min Start the endpoint

Table 1: Time split during the loading of theWikidata dataset.

System Loading
Time

#Triples RAM Index
size

Doc

Apache
Jena

9d 21h 13.8 B 64 GB 2TB 1

Virtuoso several
days5
(prepro-
cessing) +
10h

11.9 B 378 GB NA 2

Blazegraph ∼5.5d 11.9 B 128 GB 1.1 T 3
QLever 14.3 h 17 B 128 GB 823 GB 4
qEndpoint 50 h 17.4 B 10 GB 294 GB 5

Table 2: Wikidata Index characteristics for different end-
points

(1) https://wiki.bitplan.com/index.php/WikiData_Import_2020-08-15
(2) https://community.openlinksw.com/t/loading-wikidata-into-virtuoso-open-

source-or-enterprise-edition/2717
(3) https://addshore.com/2019/10/your-own-wikidata-query-service-with-no-

limits/
(4) https://github.com/ad-freiburg/qlever/wiki/Using-QLever-for-Wikidata
(5) https://github.com/the-qa-company/qEndpoint/wiki/Use-qEndpoint-to-

index-a-dataset

Note that the Wikidata dump is not uncompressed during this pro-
cess. In particular, the disk footprint needed to generate the index
is lower than the uncompressed dump (which is around 1.5 Tb). In
the Table 1, we can see the time spent for the different indexing
steps.

For comparison, to date, there exists only few attempts to suc-
cessfully index Wikidata [5]. Since 2022, when the Wikidata dump
exceeded 10B triples, only 4 triple stores are reported to be capable
of indexing the whole dump, namely: Virtuoso [4], Apache Jena 6,
QLever[1] and Blazegraph. We report in Table 2 the loading times,
the number of indexed triples, the amount of needed RAM, the final
index size and the documentation for indexing Wikidata.
Overall, we can see that the qEndpoint has the lowest RAM foot-
print as well as the lowest disk footprint. Also, it offers an easy
documentation for compressing the whole Wikidata dump. The
time to index is the second best compared to the other systems.
Most notably, the qEndpoint is the only setup that allows currently
to index Wikidata on commodity hardware.

3.2 Loading a pre-computed index
HDT is meant to be a format for sharing RDF datasets[7] and was
therefore designed to have a particularly low disk footprint. Table
3 shows the sizes of the components needed to currently set up
a Wikidata SPARQL endpoint using only HDT, which amounts
6https://jena.apache.org

https://github.com/the-qa-company/qEndpoint
https://github.com/rdfhdt/hdt-mr
https://github.com/rdfhdt/hdt-java/pull/179
https://wiki.bitplan.com/index.php/WikiData_Import_2020-08-15
https://community.openlinksw.com/t/loading-wikidata-into-virtuoso-open-source-or-enterprise-edition/2717
https://community.openlinksw.com/t/loading-wikidata-into-virtuoso-open-source-or-enterprise-edition/2717
https://addshore.com/2019/10/your-own-wikidata-query-service-with-no-limits/
https://addshore.com/2019/10/your-own-wikidata-query-service-with-no-limits/
https://github.com/ad-freiburg/qlever/wiki/Using-QLever-for-Wikidata
https://github.com/the-qa-company/qEndpoint/wiki/Use-qEndpoint-to-index-a-dataset
https://github.com/the-qa-company/qEndpoint/wiki/Use-qEndpoint-to-index-a-dataset
https://jena.apache.org

qEndpoint: A Wikidata SPARQL endpoint on commodity hardware WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA

Figure 2: qEndpoint interface with a basic query

File name File size Usage
index_dev.hdt 183GB Dictionary + SPO index
index_dev.hdt.index.v1-1 113GB OPS/PSO/POS indexes
native-store 16KB RDF4J store
qendpoint.jar 82MB qEndpoint

Table 3: Sizes of each components of qEndpoint (total: 296GB)

to the first two rows in the table, i.e. 300GB in total. The RDF4j
counterpart, which is the third row in Table 3, corresponds to 16KB.
Compared with the other endpoints in Table 2, the whole data can
be easily downloaded in a few hours with any high-speed internet
connection.
The second component in Table 1 of 113GB can be avoided in setups
with slow connections since this co-index can be computed in 5h.
As a consequence, it is possible to further reduce the amount of
time required to deploy a full SPARQL endpoint. This time turns
to be shrunk to a few minutes after downloading the files in Table
17. Note that the whole bzip2 Wikidata dump is more than 150GB8.
This means that by sharing the index, the setup time can be reduced
to the amount of time that is necessary to download double of the
size of the plain compressed Wikidata dump.

3.3 Queries
In the following, we discuss the evaluation of the query performance
of the qEndpoint with other available systems. To the best of our

7The index files are currently available at the URL https://qanswer-svc4.univ-st-
etienne.fr/ into the RDF HDT open format
8https://dumps.wikimedia.org/wikidatawiki/entities/

knowledge, ours is also the first evaluation on the whole Wikidata
dump using historical query logs.
As described above, while there are successful attempts to set up
a local Wikidata endpoint, these are difficult to reproduce and
depending on the cases the needed hardware resources are difficult
to find [5]. Therefore, in order to compare with existing systems,
we restrict to those whose setups are publicly available, namely:

• Blazegraph: the current system that is used in production by
Wikimedia Foundation available at https://query.wikidata.
org/sparql;

• Virtuoso: a live demo was set up in 20199 that is available at
https://wikidata.demo.openlinksw.com/sparql;

• QLever: a live demo is available at https://qlever.cs.uni-freiburg.
de/wikidata and was set up in 2022.

To benchmark the different systems, we performed a random extrac-
tion of 10K queries from Wikidata query logs [9] and ran them on
the qEndpoint and on the above endpoints. Table 4 shows the query
types for each query. The 10k queries where selected as follows.
We picked 10k random queries of the interval 7 dump10 matching
these conditions:

(1) No usage of http://www.bigdata.com/ functions, internal to
Blazegraph and not supported by other endpoints

(2) No MINUS operation, currently not supported by the qEnd-
point.

The resources for the compared systems are the same as the one
reported for indexing in Table 2.

9https://community.openlinksw.com/t/loading-wikidata-into-virtuoso-open-source-
or-enterprise-edition/2717
10https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en

https://qanswer-svc4.univ-st-etienne.fr/
https://qanswer-svc4.univ-st-etienne.fr/
https://dumps.wikimedia.org/wikidatawiki/entities/
https://query.wikidata.org/sparql
https://query.wikidata.org/sparql
https://wikidata.demo.openlinksw.com/sparql
https://qlever.cs.uni-freiburg.de/wikidata
https://qlever.cs.uni-freiburg.de/wikidata
https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en

WWW ’23 Companion, April 30-May 4, 2023, Austin, TX, USA Willerval, et al.

Query type Count
Triple Pattern (TP) 5285

Recursive / Path queries 2852
TP + Filter 986
TP + Union 213

Other 664
Table 4: Query count per type

The results are presented in Figure 3 and Table 6.
We observe that the various systems have varying level of SPARQL
support (see Table 6) and that qEndpoint via RDF4J can correctly
parse all the queries. As shown in Figure 5, it achieves better perfor-
mances than QLever in 44% of the cases (despite 4x lower memory
footprint). It outperforms Virtuoso in 34% of the cases (despite 10x
lower memory footprint) and it outperforms Blazegraph (the pro-
duction system used by Wikimedia Deutschland with Wikidata)
in 46% of the cases (despite a 4x lower memory footprint). Overall,
we see that the median execution time between the qEndpoint and
the other systems is -0.05. This means that, modulo a few outliers,
we can achieve comparable query speed with reduced memory and
disk footprint. By manually investigating some queries, we believe
that the outliers are due to query optimization problems that we
plan to tackle in the future.
Overall, despite running on commodity hardware, qEndpoint can
achieve query speeds comparable to other existing alternatives.
The dataset and the scripts used for the experiments are available
online11.

4 DEMONSTRATION OVERVIEW
During the demonstration, we plan to show the following capabili-
ties of qEndpoint:

• how it is possible to index Wikidata on a commodity hard-
ware;

• how it is possible to set up a SPARQL endpoint by down-
loading a pre-computed index; (Point 2 in the figure 1)

• the performance of qEndpoint on typical queries over Wiki-
data from our test dataset (see Table 4). Query types that are
relevant for showcasing are simple triple pattern queries (TP),
TPs with Unions, TPs with filters, Recursive path queries
and other query types found in the Wikidata query logs. We
will also be able to load queries formulated by the visitors of
our demo booth.

The objective is to demonstrate that the qEndpoint performance
is overall comparable with the other endpoints despite the consid-
erable lower hardware resources. As such, it represents a suitable
alternative to current resource-intensive endpoints.

REFERENCES
[1] Hannah Bast and Björn Buchhold. 2017. QLever: A Query Engine for Efficient

SPARQL+Text Search. In series = CIKM ’17 (Singapore, Singapore). New York,
NY, USA, 647–656. https://doi.org/10.1145/3132847.3132921

[2] Tim Berners-Lee. 2011. Designing the web for an open society. In Proceedings of
the 20th International Conference on World Wide Web, WWW 2011, Hyderabad,
India, March 28 - April 1, 2011, Sadagopan Srinivasan, Krithi Ramamritham, Arun
Kumar, M. P. Ravindra, Elisa Bertino, and Ravi Kumar (Eds.). ACM, 3–4.

11https://github.com/the-qa-company/qEndpointWDQueries

Endpoint Max Min Mean Median % outperf.
QLever 60 -60.0 -2.8 -0.05 44.4

Blazegraph 4.74 -60.0 -2.8 -0.04 45.9
Virtuoso 60.0 -60.0 -2.88 -0.04 34.4

Table 5: Statistics over the time differences in seconds

Endpoint parsing
errors

timeout
errors

evaluation
errors

QLever 4174 0 0
Virtuoso 146 1 0
qEndpoint 0 808 0
Blazegraph 0 10 1

Table 6: Errors per endpoint on 10K random queries of the
Wikidata query logs.

Figure 3: qEndPoint time difference with 3 different endpoint
(QLever, Virtuoso, Blazegraph from left to right) over 10K
random queries without considering errors, one square is
one query. A square is green if qEndPoint is faster and red
if the baseline is faster. The intensity is based on the time
difference which is between -6 and +6 seconds

[3] Dennis Diefenbach and José M Giménez-García. 2020. HDTCat: let’s make HDT
generation scale. In International Semantic Web Conference. Springer, 18–33.

[4] Orri Erling and Ivan Mikhailov. 2009. RDF Support in the Virtuoso DBMS. Springer
Berlin Heidelberg, Berlin, Heidelberg, 7–24. https://doi.org/10.1007/978-3-642-
02184-8_2

[5] Wolfgang Fahl, Tim Holzheim, Andrea Westerinen, Christoph Lange, and Stefan
Decker. 2022. Getting and hosting your own copy of Wikidata. In 3rd Wikidata
Workshop @ International Semantic Web Conference. https://zenodo.org/record/
7185889#.Y0WD1y0RoQ0

[6] Javier D Fernández, Miguel A Martínez-Prieto, Claudio Gutiérrez, Axel Polleres,
and Mario Arias. 2013. Binary RDF representation for publication and exchange
(HDT). Journal of Web Semantics 19 (2013), 22–41.

[7] Javier D Fernandez, Miguel A Martınez-Prieto, Claudio Gutierrez, Axel Polleres,
andMario Arias. [n. d.]. Binary RDF Representation for Publication and Exchange
(HDT). ([n. d.]).

[8] José M Giménez-García, Javier D Fernández, and Miguel A Martínez-Prieto. 2015.
HDT-MR: A scalable solution for RDF compression with HDT and MapReduce.
In ESWC 2015. Springer, 253–268.

[9] Stanislav Malyshev, Markus Krötzsch, Larry González, Julius Gonsior, and Adrian
Bielefeldt. 2018. Getting the most out of Wikidata: semantic technology usage in
Wikipedia’s knowledge graph. In International SemanticWeb Conference. Springer,
376–394.

[10] Laurens Rietveld and Rinke Hoekstra. 2013. YASGUI: not just another SPARQL
client. In ESWC 2013. Springer, 78–86.

Received 3 February 2023; revised ??; accepted ??

https://doi.org/10.1145/3132847.3132921
https://github.com/the-qa-company/qEndpointWDQueries
https://doi.org/10.1007/978-3-642-02184-8_2
https://doi.org/10.1007/978-3-642-02184-8_2
https://zenodo.org/record/7185889#.Y0WD1y0RoQ0
https://zenodo.org/record/7185889#.Y0WD1y0RoQ0

	Abstract
	1 Introduction
	2 Triple-store architecture
	3 Indexing and querying Wikidata
	3.1 Loading data
	3.2 Loading a pre-computed index
	3.3 Queries

	4 Demonstration overview
	References

