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Abstract

Since its inception in 2016, federated learning has evolved into a highly promising decentral-
ized machine learning approach, facilitating collaborative model training across numerous
devices while ensuring data privacy. This survey paper offers an exhaustive and systematic
review of federated learning, emphasizing its categories, challenges, aggregation techniques,
and associated development tools. To commence, we outline our research strategy used for
this survey and evaluate other existing reviews related to federated learning. We initiate
the discussion, about federated learning concepts, with a detailed examination of the pri-
mary challenges inherent in federated learning, including communication overhead, device
and data heterogeneity, and data privacy issues. Subsequently, we scrutinize and classify
various aggregation techniques designed to mitigate these challenges, such as federated av-
eraging, secure aggregation, and strategies leveraging clustering and optimization method-
ologies. Furthermore, we delve into the exploration of cutting-edge development tools and
frameworks that expedite efficient implementations of federated learning. Through our
review, we aspire to provide a holistic understanding of the federated learning landscape,
thereby setting the stage for future investigations, advancements, and practical implemen-
tations in this prosperous field.

Keywords:
Federated Learning, Deep Learning, Aggregation, Privacy, Heterogeneity, IoT.

1. Introduction

The Internet of Things (IoT) has burgeoned into a paramount technology of the 21st
century over recent years, profoundly impacting various domains [1]. The IoT paradigm
involves the integration of intelligent sensors, actuators, rapid communication protocols,
and robust cybersecurity measures to augment its functions and applications. This con-
cept has been extrapolated to numerous other sectors, such as the Internet of Medical
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Things and the Internet of Industrial Things. To manage the abundant data generated
by smart devices within cyber-physical systems, IoT frameworks necessitate smart and
safe big data analysis methodologies. The complexity of decisions is ever-increasing, owing
to the escalating volume of data [2]. In this context, Artificial Intelligence (AI), Machine
Learning (ML), and Deep Learning (DL) techniques have exhibited remarkable efficacy due
to their advanced learning and processing capabilities, particularly within network-based
systems. Historically, the prevalent approach to utilizing these techniques was centralized
learning, in which, a single server would train the AI model using data from all con-
nected endpoints. However, this method posed significant challenges, such as bandwidth
congestion, extended data processing time, and potential privacy breaches due to the sub-
stantial data transmission from endpoints to the server [3]. Recently, this method has been
superseded by distributed learning, specifically Federated Learning (FL). This approach
encompasses multiple endpoints, each retaining its secure and non-distributable data [4].
These endpoints collaborate, achieving parity in learning not by sharing data but through
the exchange of learning parameters.

The FL has gained significant traction in the industry because it offers several advan-
tages over traditional ML approaches. First, it allows organizations to train ML models on
data that cannot be shared due to privacy concerns, such as healthcare data [5], financial
data [6], etc. Second, it enables organizations to leverage data from multiple sources to
improve the accuracy of their models. Third, it reduces the cost and complexity associ-
ated with storing and managing large volumes of data. It has been adopted by several
industry giants, including Google, Apple, and Microsoft. Google, for example, used the
FL to improve the accuracy of its keyboard app, Gboard [4], by training the model on
users’ devices. Similarly, Apple used the FL to improve the accuracy of its QuickType [7]
keyboard, and Microsoft used it to train a model that predicts the likelihood of a Windows
machine being infected with malware.

The efficacy of FL critically depends on the proficient aggregation of local model up-
dates, culminating in a global model that incorporates knowledge from all participating
nodes. This key procedure not only shapes the system’s performance but also its opera-
tional efficiency [4]. However, the process is compounded by complexities arising from the
manifold sources of these parameters, which originate from vastly diverse local environ-
ments. These environments are characterized by a gamut of computational and commu-
nication resources, which encompass an expansive range of data collections. As such, it
becomes vital to assess the adaptability of a FL framework to these variations, commonly
referred to as challenges, before its deployment. These challenges can be neatly classified
into four overarching categories:

1. Costly communication: This challenge pertains to the rate of parameter exchanges
within the FL framework and its subsequent effect on system efficiency and expense.

2. System heterogeneity: This issue mirrors the distinct resources available on each
participant’s devices, thereby shaping the system’s overall performance and fairness.
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3. Statistical heterogeneity: This category encapsulates possible disparities in data dis-
tributions and learning patterns amongst different nodes.

4. Privacy concerns: This challenge relates to ensuring the secure transit of parameters
between collaborating entities.

In this paper, we present an exhaustive review of existing aggregation methods in the
FL, emphasizing their capacity to address inherent FL challenges. Our discourse com-
mences with an overview of the FL paradigm, where we explore its approaches and chal-
lenges. Moreover, we conduct an in-depth analysis of some salient aggregation methods in
FL, specifically designed to tackle these challenges and compare these methods based on
their efficacy in overcoming the stated issues. Finally, we catalog tools such as benchmark
datasets and frameworks for developing FL algorithms, as well as the evaluation metrics
used for performance measurement. The main contributions of this review include:

1. Formulating a robust and detailed search strategy to ensure the breadth and depth
of our literature review, thereby enriching the overall review process.

2. Conducting a comparative study of existing reviews and surveys on federated learn-
ing, to identify common trends, unique insights, and potential gaps in the existing
body of knowledge.

3. Deliver a comprehensive introduction to federated learning, encompassing an overview,
primary methodologies, and prominent challenges, thus laying a solid foundation for
understanding FL.

4. Performing a detailed examination and analysis of existing FL aggregation algo-
rithms, highlighting their strengths, weaknesses, and applications.

5. Compiling a list of significant development tools and evaluation metrics prevalent in
FL, facilitating a better understanding of the practical aspects of implementing and
evaluating FL models.

6. Undertaking a critical comparison of the reviewed contributions, and engaging in
a thorough discussion on leading research directions in FL aggregation methods,
particularly focusing on how they address its prevalent challenges.

To achieve these objectives, this paper is structured as delineated in Figure 1, with
the organization unfolding as follows: Section 2 describes the procedures of this review.
In Section 3, we present a selection of existing surveys on Federated Learning. Section
4 provides an overview of FL and a comprehensive examination of its methodologies and
categorizations. Section 5 delves into the challenges associated with FL, and proposes
solutions, incorporating references to pertinent research. An in-depth exploration of FL
aggregation methods is undertaken in Section 6, accompanied by a comparative analysis.
Section 7 details notable datasets and frameworks that aid in the development of FL algo-
rithms, and introduces relevant evaluation metrics for the assessment of these algorithms.
The paper concludes with a discussion and envisages future directions in Section 8. To
assist the reader, Appendix A provides a list of abbreviations utilized throughout this
paper.
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Figure 1: Paper Structure and Objectives.

2. Search Strategy

This study adopts a Systematic Literature Review (SLR) methodology [8] to amass,
categorize, and scrutinize articles in the realm of the FL. In order to ascertain the inclu-
sion of pertinent contributions within this systematic review, we executed a rigorous and
expansive search, adhering to a precise sequence of steps. The formulation of our search
strategy was intended to cover an extensive array of sources and databases, thus allowing
for a thorough investigation of the existing literature. The exhaustive steps followed are
delineated in Figure 2.

2.1. Formulation of Research Questions
As our systematic review looks to explore the realm of FL and parameter aggregation,

several crucial research questions (RQs) organically surface, steering the investigation to-
wards a holistic grasp of FL. These RQs serve as a beacon, illuminating the review process
and addressing the key facets of interest. Expanding upon the challenges mentioned earlier,
the following RQs have been brought to light:
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Figure 2: Our Search Strategy.

• RQ1: What are the key factors to be considered in designing an efficient FL frame-
work, particularly with respect to data structure and node configuration?

• RQ2: How can potential challenges be effectively forecasted and mitigated through-
out the FL process?

• RQ3: Which aggregation methodologies are optimally equipped to handle these
anticipated challenges in a FL context?

• RQ4: What tools and techniques are best suited for validating and deploying a
developed FL framework?

2.2. Identification of Keywords and Phrases
In developing a systematic review search strategy, we carefully selected keywords re-

lated to the research question, focusing on aspects of FL and its aggregation techniques.
Key phrases included ”Federated Learning,” ”Distributed Machine Learning,” ”Privacy-
Preserving Machine Learning,” ”Collaborative Learning,” and terms describing potential
challenges. To explore data aggregation strategies in distributed learning, we considered
phrases like ”Aggregation Methods,” ”Aggregation Algorithms,” and ”Aggregation Tech-
niques.” For practical insights into FL implementation, we included terms such as ”Devel-
opment Tools,” ”Software,” ”Platforms,” ”FL Frameworks”, and ”Datasets”.
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2.3. Construction of the Search Query
The keywords and phrases, were synthesized using Boolean operators and parentheses

to construct a comprehensive search query tailored to the context of FL and its aggregation
techniques: ("Federated Learning" OR "FL" OR "Decentralized machine learning"
OR "Collaborative learning") AND ("Model aggregation" OR "Parameter aggregation"
OR "Multi-party computation" OR "Secure aggregation") AND ("Challenges" OR "Issues"
OR "Problems" OR "Impediments") AND ("Methods" OR "Techniques" OR "Strategies")
AND ("Implementation" OR "Deployment" OR "Testing tools" OR "FL frameworks").
This refined query ensures a more focused retrieval of relevant studies pertaining to the
unique challenges, strategies, and tools associated with the design and implementation of
FL systems and the selection of the appropriate aggregation method.

2.4. Selection of Databases and Sources
An exhaustive search was undertaken utilizing a judiciously chosen ensemble of databases

and sources. These sources encompassed notable platforms such as Springer Link1, Wiley2,
IEEE3, and Science Direct4, all renowned for their broad-spectrum coverage of computa-
tional and ML literature. This selection of databases was made to ensure a comprehensive
search across a multitude of application areas, especially those pertaining to distributed
ML, data privacy, and decentralized networks. By leveraging these diverse sources, the
search strategy aspired to seize a comprehensive and diverse collection of studies germane
to the domains of FL, with a focus on aggregation techniques.

2.5. Application of the Search Strategy
Our search query, tailored to the specific syntax and features of the chosen databases,

was meticulously applied to ensure compatibility with FL processes. We utilized advanced
search mechanisms, considering factors such as publication date, language, and other per-
tinent FL-related filters to refine the results. A detailed record of the search progression,
including the number of relevant results from each database, was meticulously maintained
to ensure transparency and reproducibility. Also, we screened the titles and abstracts of
retrieved articles against the inclusion and exclusion criteria, and full-text articles meeting
the criteria were further evaluated. Additionally, to guarantee comprehensive coverage, we
reviewed the reference lists of relevant articles and performed citation tracking, identifying
any potentially missed studies from the initial search.

1https://link.springer.com/
2https://onlinelibrary.wiley.com/
3https://www.ieee.org/
4https://www.sciencedirect.com/
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2.6. Periodic Search Updates
Just before completing the systematic review, we conducted a final search to integrate

the latest research findings related to the topic.
The analysis in Figure 7 indicates strong growth in FL research, emphasizing its in-

creasing significance and wide applicability. This trend not only signifies a shift towards
decentralized ML models, driven by their advantages such as data privacy and efficient
resource utilization, but also places FL at the forefront of ML advancements. Particu-
larly, the engagement with FL across diverse research fields within IEEE’s conferences and
journals underlines its broad implications across numerous sectors and disciplines.
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Figure 3: The number of articles related to “Federated Learning” in different databases visited on June
2023.

3. A Review of Existing Surveys

The domain of FL has been the subject of extensive study in a multitude of recent
survey papers, each with its unique focus. According to the database dblp 5, we identified
84 survey papers published between 2019 and 2023 that focus on FL research. This sec-
tion provides a comprehensive summary of existing surveys and reviews regarding the FL

5https://dblp.org/
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and associated research. We have meticulously undertaken an exhaustive review of various
contemporary studies, as outlined in Table 1. These investigations were scrutinized uti-
lizing ten distinct criteria: Background, Data, Degree, Network, Challenges, Aggregation,
Surveyed Papers, Comparison, Datasets, Frameworks, Metrics, and Perspectives.

1. Background assesses whether the survey provides the necessary foundational knowl-
edge to comprehend FL.

2. Data evaluates whether the survey elucidates the data partition category within FL
and cites related work.

3. Degree assesses whether the survey outlines the extent of FL participation.
4. Network considers whether the survey presents existing FL architectural models.
5. Challenges determines whether the survey thoroughly discusses FL’s challenges.
6. Aggregation ascertains whether the survey referenced the various existing aggregation

algorithms.
7. Surveyed Papers quantifies the number of papers examined in the chosen survey.
8. Comparison assesses whether the survey offers a comparative analysis of the reviewed

papers.
9. Datasets verifies whether the survey lists benchmark datasets used in FL development.

10. Frameworks verifies whether the survey lists frameworks employed in FL develop-
ment.

11. Metrics verifies whether the survey enumerates evaluation metrics for FL.
12. Perspectives evaluates whether the survey offers insights into prospective future

trends and viewpoints in the field of FL.

Wen et al. 2022 [13] delivered a comprehensive overview of current FL research from
five perspectives: fundamental FL knowledge, privacy and security protection mechanisms
in FL, communication overhead issues, FL heterogeneity issues, and some FL applications
across various fields. On the other hand, Xia et al. 2021 [9] concentrated on FL application
areas (such as healthcare systems, intelligent recommendation, and vehicular network),
development tools (including APIs and system designs), communication efficiency, as well
as security and privacy, and migration and scheduling strategies between edge nodes and
servers.

The study by Zhu et al. 2021 [10] delved into the types of data partition in FL, placing
emphasis on the neural network architectures deployed in conjunction with FL. In another
study, Shaheen et al. 2022 [11] explored the range of FL applications across diverse indus-
tries and domains. They examined distributed datasets and benchmarks of neural network
architectures used in FL experiments and discussed the challenges posed by FL, such as
statistical and system heterogeneity, data imbalance, resource allocation, and privacy con-
cerns. On a related note, Beltrán et al. 2022 [12] investigated decentralized FL, focusing
on aspects such as federation architectures, topologies, communication mechanisms, secu-
rity approaches, and key performance indicators. They also analyzed and compared the
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ID Reference Year Publisher Contribution

SRV1 Xia et al. [9] 2021 Elsevier A survey of federated learning for edge computing:
Research problems and solutions

SRV2 Zhu et al. [10] 2021 Springer From federated learning to federated neural
architecture search: a survey

SRV3 Shaheen et al. [11] 2022 MDPI Applications of Federated Learning;
Taxonomy, Challenges, and Research Trends

SRV4 Beltrán et al. [12] 2022 IEEE Decentralized Federated Learning: Fundamentals,
State-of-the-art, Frameworks, Trends, and Challenges

SRV5 Wen et al. [13] 2022 Springer A survey on federated learning:
challenges and applications

SRV6 Pandya et al. [14] 2023 Elsevier Federated learning for smart cities:
A comprehensive survey

Table 1: An overview of existing survey papers related to the FL research.

existing solutions to these challenges. The integration of FL with smart cities was the focal
point of Pandya et al. 2023, [14], where they presented related works like the application
of FL in smart transportation systems, healthcare, grid, governance, disaster management,
and industries.

A comparison of these studies, as shown in Table 2, reveals that many studies tend to
provide only brief or insufficient surveys of their selected criteria for reviewing FL. This
finding underscores the necessity for more comprehensive and in-depth analyses of the
various aspects, challenges, and aggregation algorithms pertinent to FL. Undertaking such
analyses would significantly enhance our understanding and development of this field. In
the given comparison, three distinct symbols are used to represent the extent to which the
surveys address the specified criteria:

# : This symbol indicates that the survey does not consider the specified criterion
in its analysis.

 : Conversely, this symbol signifies that the survey fully considers and covers the
specified criterion in its analysis.

G# : This symbol represents a partial consideration of the specified criterion, meaning
that the authors of the cited work have only addressed a portion of the criterion in
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their analysis.

Using these symbols, we can effectively compare the scope and depth of the various sur-
vey papers, shedding light on the areas that may require further investigation or more
comprehensive coverage.
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Our             

Table 2: Summary of reviews and surveys about FL.

4. Federated Learning Concepts

In this section, we aim to deliver a comprehensive overview of FL and its associated
workflow process. Subsequently, to construct an effective FL framework, it becomes es-
sential to delineate the types of each category and outline specific hyperparameters. This
process enables us to identify and implement the most suitable architecture for our FL
model.

4.1. Federated Learning Overview
FL is a decentralized, collaborative ML methodology, first pioneered by Google in 2016.

It exemplifies a broader paradigm shift towards taking computation to the data, rather
than vice versa [15]. FL effectively addresses key challenges in data privacy, ownership,
and locality in scenarios where data is heterogeneous, and procured from an array of
distributed devices contributing to learning. In stark contrast to conventional approaches
where data is gathered first, then used to train a model, FL ensures that individual data
remains with its owner and is not shared directly [16]. As described by Bonawitz et al. [17],
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FL presents an ML environment in which multiple entities work in conjunction to solve an
ML problem, coordinated by a central server or service provider. The raw data remains
local to each client and is not transferred or exchanged. Instead, focused updates, aimed
for swift aggregation, are used to realize the learning goal.

Assuming there are N devices, each trains its own local AI model with its distinct
dataset Di. Hence, FL aims to fine-tune the weight parameters w of the global model such
that the loss function values for all local AI models are minimized:

L(w) =

N∑
i=1

|Di|fi(w)

N∑
i=1

|Di|
(1)

Here, fi represents the loss function of the model trained by device i using its local dataset
Di. The fundamental structure of FL is depicted in Figure 4.

Figure 4: Basic Framework of Federated Learning.

The FL process is fundamentally aimed at the creation of an impeccable model for a
specific application. The standard process flow can be outlined as follows:

1. Problem Identification: The initial step involves identifying the problem that we
intend to solve using FL. Subsequently, we have to decide on the most fitting AI
model to implement.

2. Participant Selection: The selection of participants relies on available online de-
vices. These participants are chosen either randomly or through some other method-
ology to engage in the learning process.
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3. Training: Every participating device begins by initializing the parameters of its ML
model. It then trains this model on its private data until convergence or until a
pre-determined FL communication round (CR) number is reached.

4. Parameter Sharing: Following local-level training, all connected participant de-
vices securely transmit their model parameters to the central server using a commu-
nication method elaborated upon in Section 5.3.

5. Parameter Aggregation: Once the central server, which acts as the aggregator,
has collected all the local models, it combines their parameters to refine and update
the global model. This crucial step is further discussed in Section 6.

6. Parameter Broadcast: The aggregator subsequently distributes the parameters of
the updated global model. The participant devices then update the parameters of
their local models based on this latest information.

This process repeats until either the entire training process converges, or until a pre-
determined number of FL CRs have been executed (depending on the FL setup). The
process is illustrated in Figure 5.

Problem
Identi-
fication

Participant
Selection

Training

Parameter
Sharing

Parameter
Aggre-
gation

Parameter
Broadcast

start FL local processing

knowledge sharing

collaborationglobal knowledge

new FL round

Figure 5: Illustration of the Federate Learning Workflow.

4.2. Federated Learning Approaches
FL is adopted across a plethora of domains, each with its unique combination of fea-

tures, attributes, and data characteristics. This diversity contributes to the emergence of
a wide array of FL architectures and types, as delineated by Du et al. [18] and depicted in
Figure 6.
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Federated Learning
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Cross-device FL

Network Topology
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Figure 6: Federated Learning Approaches.

4.2.1. Data Partition
In this section, we delve into the classification of FL in accordance with the features

of data distribution. As proposed by Yang et al. [19], disparities might exist between the
feature space and the sample space of data providers. Consequently, they segmented FL
into three distinct categories: Horizontally FL (HFL), Vertically FL (VFL), and Federated
Transfer Learning (FTL). These categorizations are predicated on the distribution modal-
ity of data across different parties in both the feature and sample ID space. Since the
inception of FL, a plethora of research endeavors have been undertaken to explore these
categorizations, as depicted in Figure 7, based on data from dblp. In their work, Yang
et al. [19] symbolize the feature space as X , the label space as Y, and utilize I to repre-
sent the sample ID space. Together, these elements constitute the comprehensive training
dataset (X ,Y, I).

• Horizontally Federated Learning
The concept of HFL, or sample-based FL, is fundamentally associated with homoge-
neous feature spaces. However, in situations with heterogeneous feature spaces, HFL
has the limitation of only utilizing common features, thereby leaving participant-
specific features unexplored. Specifically, HFL is defined for datasets that share the
identical feature space X , but are distinct in the sample ID space I. This distinction
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is mathematically represented by Equation 2.

Xi = Xj , Yi = Yj , Ii ̸= Ij , ∀Di,Dj , i ̸= j (2)

For instance, consider the scenario of data from different hospitals. Though they
might share the same feature space (e.g., patient information), they diverge in their
sample spaces, namely, data from different patients. As practical examples of HFL
applications, Gao et al.[20] employed HFL in the training of a classification ML
model using electroencephalography data derived from varied devices. Moreover, Wei
et al.[21] introduced a deep flow inspection model, rooted in HFL, aimed at mitigating
data congestion caused by a rapid upsurge in traffic volumes, a phenomenon which
threatens the stability of the 6G network.

• Vertically Federated Learning
The application of VFL, otherwise known as feature-based FL, proves suitable when
dealing with scenarios where two datasets share the same sample identity space, de-
noted as I, but differ concerning their feature spaces, X . This distinction is demon-
strated in Equation 3.

Xi ̸= Xj , Yi ̸= Yj , Ii = Ij , ∀Di,Dj , i ̸= j (3)

VFL demonstrates its capability to construct a robust meta-ML model by assimilating
sub-models derived from a diverse set of entities. These sub-models receive their local
training from data that has been partitioned vertically and exhibits varying features
[22]. For instance, Zheng et al. [6] designed an FL-LRBC framework. This approach
amalgamates numerous agencies to collaboratively train an optimal scorecard regres-
sion model, which is employed for credit business across a vast financial holdings
group in China. Similarly, Efe [23] suggested a VFL-based multi-institutional credit
scoring system aimed at enhancing the performance of ML models for industrial
corporations serving a shared customer base.

• Federated Transfer Learning
FTL is employed when two datasets vary within the sample ID space I and fea-
ture space X , a relationship is depicted in Equation 4. Consider, for instance, two
industrial firms constructing a ML model to identify industrial objects, relying on
heterogeneous cameras that yield images of varying dimensions and color profiles. In
such a scenario, TL could be employed to address the entirety of the sample and
feature space in a federative manner. By harnessing a subset of similar samples, a
common representation that bridges the two feature spaces is acquired and subse-
quently utilized to make predictions based on data from one source.

14



Xi ̸= Xj , Yi ̸= Yj , Ii ̸= Ij , ∀Di,Dj , i ̸= j (4)

The study and application of FTL have garnered attention, with 36 distinct research
projects focusing on this area, as shown in Figure 7. Notably, FedHealth, an FTL
framework for wearable healthcare systems proposed by Chen et al. [5], enables the
aggregation of personalized models without imposing restrictions on the structure
of smartphone-based human activity recognition data. In addition, Guo et al. [24]
presented a scalable FTL framework for Wi-Fi Indoor Positioning, which utilizes
Channel State Information (CSI). The efficacy of this framework was evaluated in
three different indoor environments of varying sizes to further explore FTL potential.
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Figure 7: Number of FL’ data partition researches from 2016 to January 2023 based on dblp (Computer
science bibliography).

Comparison
The progression of FL categories from HFL to VFL, and ultimately to FTL, has been

guided by both their advantages and limitations, as shown in Figure 7 and Table 3. HFL
was at first popular because it trains a common global model and has an easy deployment
method. One significant problem is that it fails in real-world situations when the data
dimensions of the entities differ. In response, although it needs more complex computing,
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VFL, which allows collaborative feature learning, has gained popularity, particularly in
the financial industry and recommendation systems. FTL, which enables the collaborative
transfer of knowledge between various activities, was launched in 2019 to further counteract
HFL’s constraint. FTL is adaptable in many practical settings despite the possibility of
negative transfer, since it maintains diverse data characteristics among entities having a
similar type. As a result, the unique system requirements have a significant impact on
the choice of FL data partitioning category, underscoring their significance in the decision-
making.
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Category Reference Domain Contribution Advantage Disadvantage

Horizontal FL

Gao et al.[20] Medical

Hierarchical Heterogeneous

Train a shared global model

Horizontal Federated Learning
for Electroencephalography Not suitable when

organizations have

Wei et al. [21] Networking
The Deep FLow Inspection different feature set

Framework Based on
Horizontal Federated Learning

Vertical FL

Zheng et al. [6] Finance
A Vertical Federated Learning

Learn joint features More intensive Computation

Method for Interpretable Scorecard
and Its Application in Credit Scoring

Efe [23] Finance
A Vertical Federated Learning
Method For Multi-Institutional

Credit Scoring: MICS

Transfer FL

Chen et al. [5] Medical A Federated Transfer
Transfer knowledge

Risk of negative transfer
Wearable Healthcare

between different tasks

Guo et al. [24] Networking
A Federated Transfer Learning
Framework for CSI-Based Wi-Fi

Indoor Positioning

Table 3: Examples of related works that focus on FL data partition’s category.
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4.2.2. Degree of federated Learning
The nature of FL can be differentiated into ”Cross-Silo” or ”Cross-Device”, contingent

upon the dimensions and robustness of the training cohort, along with the count of devices
in play. This classification is particularly in the purview of participating entities.

• Cross-Silo Federated Learning
Cross-Silo FL becomes relevant when there is a limited, albeit sizeable range (for
instance, anywhere between two to a hundred) of participating entities like corpo-
rations or institutions (such as hospitals and schools) that engage in learning by
training a model on their local data. As per Huang et al. [25], the prime challenges of
Cross-Silo FL encapsulate: Firstly, the effectiveness and efficiency to ensure rapidly
developed models meet the client’s satisfaction and are delivered at a low cost, de-
spite client heterogeneity. Subsequently, privacy and security concerns arise, as data
privacy needs to be maintained and potential malicious adversaries detected. Lastly,
encouraging cooperation and fostering incentives is crucial to facilitate collaboration
amongst clients.

• Cross-Devices Federated Learning
This configuration involves a multitude of small, geographically distributed devices,
such as smartphones, smartwatches, and edge devices. The quantity of these devices
can reach up to millions, each possessing a comparatively small amount of data and
lower computational capabilities relative to the cross-silo FL paradigm. Yang et al.
[26] identifies several challenges associated with this structure. Firstly, potential pri-
vacy leaks pose significant concerns. These may result from various attacks, such
as model extraction, model inversion, and membership inference attacks, potentially
leading to the unauthorized exposure of model parameters or training data. Sec-
ondly, the limited computing power of participating devices can pose challenges in
the implementation of effective FL. Lastly, issues pertaining to incentives and fairness
must be addressed. Ensuring equitable participation can be accomplished through
the adoption of innovative mechanisms that rely on technologies like game theory
and blockchain [27].

Comparison
Table 4.2.2 provides an insightful comparison between two prominent types of FL de-

grees: Cross-Silo and Cross-Device. Cross-Silo FL usually involves a smaller number of
large entities, each possessing a large volume of data and substantial computational re-
sources. However, cooperation between these entities is crucial and can pose a challenge
due to the necessity of robust privacy measures and incentives. Conversely, Cross-Device
FL involves a vast number of small devices such as smartphones, each holding a small
amount of data and lower computational resources. This type of learning raises significant
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concerns about privacy, as it’s highly vulnerable to various types of attacks, and the equi-
table participation of devices requires careful attention to incentive mechanisms. In terms
of use cases, while Cross-Silo learning is suited to scenarios with uniform data dimensions
across entities. Cross-Device learning proves useful in situations involving large-scale dis-
tributed data sources with limited computational power. Despite their unique features,
both learning types face challenges regarding privacy, computational resources, and the
creation of effective incentive mechanisms.

Criteria Cross-Silo Federated Learning Cross-Device Federated Learn-
ing

Reference Ganapathy[28] Yang et al.[26]

Participants Limited number of large entities
(e.g., corporations, institutions)

Massive number of small devices
(e.g., smartphones, smartwatches)

Data Ownership Each entity has a large amount of
data

Each device has a small amount of
data

Computational Resources Entities typically have high compu-
tational resources

Devices typically have lower compu-
tational resources

Privacy & Security High emphasis on maintaining data
privacy and detecting potential ad-
versaries

High risk of privacy leaks from at-
tacks like model extraction, inver-
sion, and membership inference

Cooperation Need to encourage cooperation and
provide incentives for entities

Need to ensure equitable participa-
tion and incentive mechanisms

Use-cases Ideal for scenarios where data di-
mensions are uniform across entities

Useful in scenarios with massive dis-
tributed data sources with limited
computational power

Challenges Client heterogeneity, privacy and
security, cooperation incentives

Privacy leaks, limited computa-
tional power, fairness and incentives

Table 4: Comparison between Cross-Silo and Cross-Device Federated Learning.
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4.2.3. Network Topology in Federated Learning
The structure of an FL network, often referred to as its topology, delineates the manner

in which its constituent entities are interconnected and how they interact for the exchange
of information. Below, we discuss the most commonly employed topologies within the
context of an FL network.

• Centralized FL, as illustrated in Figure 8, hinges on a singular server that facilitates
the collection of local AI models, their subsequent aggregation, and the propagation
of the globally computed model. The network topology in use features a single server,
complimented by multiple participant nodes [4].

• The concept of Peer-to-Peer Decentralized FL (P2P DFL) is introduced by Behera
et al. [29]. This approach aims to eliminate the requirement of a central server for
model aggregation. Instead, it utilizes a peer-to-peer communication framework,
allowing machines to exchange information directly among themselves. In the archi-
tecture proposed by Behera et al. [29], the P2P structure consists of a leader (Ag-
gregator) node, a set of follower (Participant) nodes, and candidate nodes interested
in a leader election. This decentralized approach mitigates potential risks associated
with a central server, such as operational failures or security vulnerabilities. The
architecture is depicted in Figure 10.

As part of the broader movement to decentralize FL, several other architectural frame-
works have been proposed, including ring and hybrid network topologies [28]. The hybrid
topology, depicted in Figure 9, groups participants who are sequentially arranged accord-
ing to their use case. Each group member trains their AI model asynchronously before
forwarding it to the adjacent participant. The last participant in the sequence then shares
the model with the aggregator. The ring topology, shown in Figure 11, operates simi-
larly to the P2P FL. However, the model aggregation is performed by each participant
sequentially.

Comparison
Table 5 shows a comparison of the different FL designs, which tells us that each one

has its own set of benefits and drawbacks. Centralized FL has one server that coordinates
all the nodes. This gives it a high level of scalability, but it may not be the best option for
privacy and fault tolerance. P2P FL, on the other hand, gets rid of the central server. This
improves privacy and fault tolerance but comes at the cost of more connection overhead
and less scalability. With its unique ring structure connecting nodes, Ring FL offers a
balanced solution that minimizes transmission overhead while ensuring a moderate level
of fault tolerance, privacy, and scalability. Lastly, because Hybrid FL uses parts of both
centralized and decentralized models, the transmission overhead, fault tolerance, privacy,
and scalability of each hybrid design are different. So, the choice of architecture rests a lot
on the needs and limitations of the system in question.
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4.3. Discussion
FL is a multifaceted and expansive field, its relevance and applications extend across

numerous real-world scenarios permeated by AI, such as healthcare [20, 5], industrial ap-
plications [30, 31], and the financial sector [6, 23]. Yet, to fully harness its potential, it’s
advisable to first clearly outline the parameters that govern distinct FL approaches. This
initial step serves as the foundation for developing a customized framework, methodology,
or strategy for FL, which is shaped by the specific category of the approach being em-
ployed. For instance, the performance of FL aggregation algorithms in HFL might not be
as proficient when applied within the context of FTL. Furthermore, the degree of FL must
be clearly stipulated to ascertain the system’s complexity level and determine the requisite
level of data privacy. It’s also important to note that designing an effective architecture
necessitates the precise specification of the network architecture. In conclusion, to navigate
the intricacies of FL and capitalize on its extensive potential, a thorough understanding of
the FL category, degree, and network architecture is essential. These parameters signifi-
cantly influence the resultant system’s performance, complexity, and data privacy.

Figure 8: Centralized Federated Learning Archi-
tecture.

Figure 9: Hybrid Federated Learning Architec-
ture.
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Figure 10: Peer-to-Peer Decentralized Federated
Learning Architecture.

Figure 11: Ring Federated Learning Architec-
ture.
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Criteria Centralized P2P Ring Hybrid

Reference McMahan et al.[4] Behera et al. [29] Ganapathy [28] Ganapathy [28]

Architecture Single central Direct communication between
nodes without a central server.

Each node communicates
with its two nearest neighbors

Combination of centralized
and decentralized aspects.

Communication
Overhead

Dependent on
the number of nodes.

Highest: grows with the square
of the number of nodes.

Low; constant with
respect to the number of nodes.

Varies; dependent on the
specific hybrid design.

Fault Tolerance
Low; if the central

server fails, the system
fails.

High; system can
still function if a node

fails.

Moderate; system can
still function unless
a critical node fails.

Varies; dependent on
the specific hybrid design.

Privacy Low; central server
may see all updates.

High; nodes share
updates only with

their peers.

Moderate; updates are
shared only with
neighboring nodes.

Varies; dependent
on the specific
hybrid design.

Scalability High; easy to
add new nodes.

Low; addition of new nodes
increases communication

complexity.

Moderate; addition of new
nodes requires reconfiguring

the ring.

Varies; dependent
on the specific hybrid

design

Table 5: Comparative Analysis of Federated Learning Architectures: Centralized, Peer-to-Peer, Ring, and Hybrid.
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5. Federated Learning Challenges

FL, as previously defined, represents a collaborative process that unites a range ofentities,
such as edge devices, to achieve a consistent level of learning. This is achieved through
the improvement of the latter, despite the significant differences in training, network, and
system architecture amongst these entities. It should also be noted that the distribution
and the domain of the data acquired by these entities may not be uniform in real-world
applications. These distinct conditions introduce unique challenges due to the heterogene-
ity of the participants [32]. Moreover, even though private data cannot be shared amongst
these entities, there is potential for certain entities to engage in malicious activity. This
could involve the distribution of false parametric data or the extraction of private data via
the use of the same parametric data, leading to significant privacy concerns. The primary
challenges associated with FL are depicted in Figure 12 and will be elaborated upon in the
following sections.

5.1. Expensive Communication
FL frameworks possess the capacity to manage an enormous number of remote par-

ticipant devices, including millions of intelligent entities. These entities engage in sharing
large-scale AI models, such as neural networks, with the aggregator. These models, which
encompass millions of parameters, require frequent updates to reach desired convergence.
However, they often grapple with limited network bandwidth. This limitation gives rise to
a significant communication cost challenge in FL [71]. It directly influences the efficiency,
scalability, and overall performance of the learning process, thus emerging as a crucial area
of focus.

To further curtail communication in such a context, several techniques are currently in
use. For instance, adaptive communication strategies such as those proposed by Luping
et al. [33] have proven effective. They introduced a communication-mitigating FL frame-
work that permits only relevant local updates to be sent to the aggregator. This approach
not only expedites convergence but also diminishes the number of communications re-
quired, thereby minimizing the number of shared model parameters. Another approach to
reducing communication is increasing the number of local epochs, which reduces the num-
ber of CR. This strategy has been effectively employed by McMahan et al. [4]. One can
also shrink the size of the messages transmitted in each round by compressing them. For
example, Zhu et al. [34] proposed a model compression and privacy-preserving framework
for FL. This framework condenses local models by eliminating redundant data and intro-
ducing a layer of noise. Similarly, the Federated Learning with autoencoder compressions
(FLAC) framework proposed by Beitollahi and Lu [35] uses autoencoders to compress local
models.

Finally, limiting the number of participants via selection techniques can also reduce
communication needs. McMahan et al. [4] employed a strategy of a random selection of
participants for each CR. Moreover, an adaptively partial model aggregation strategy in
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Figure 12: FL Challenges.

FL using reinforcement learning has been proposed by Liu et al. [36] to optimally select the
number of devices involved. In their work, Wang et al. 2022 have pointed out that partial
customer participation in FL could potentially lead to objective inconsistency, resulting in
slowed convergence. Furthermore, they proposed a strategy targeting the enhancement of
convergence analysis by advocating for an optimal and unbiased sampling method.
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5.2. Heterogeneity in Systems
System heterogeneity is inherently induced by discrepancies in hardware attributes such

as CPU, GPU, and RAM [32], variations in network connectivity (e.g., 3G, 4G, 5G, WiFi)
[32], and fluctuations in power capacity (battery level) [32]. This diversity may give rise
to statistical heterogeneity [73].

FL networks can be particularly expansive, with often only a minuscule fraction of the
devices being active at any specific moment [32]. Edge devices may exhibit unpredictability,
prone to dropping out due to constraints in connectivity or power [32]. This implies that
any participant’s device could potentially withdraw from the collaboration due to network
glitches or battery limitations [32].

Several strategies have been put forth by researchers to mitigate these challenges. Such
strategies encompass asynchronous FL communication [37, 38, 39, 40, 41], strategic client
selection [4, 42, 43, 44], and the implementation of fault tolerance mechanisms [45, 46, 47].
Each of these solutions will be further elucidated in the ensuing sections.

5.2.1. Communication in Asynchronous Federated Learning
FL frequently aggregates models from participant devices through synchronous com-

munication, as depicted in Figure 13-a. However, this method is hindered by constraints on
participant device computation and transmission bandwidth, often leading to disruption
in learning. An alternative approach involves asynchronous communication, illustrated in
Figure 13-b. In this approach, participant devices perform local training asynchronously;
local AI models are transmitted to the aggregator server at varied times. This can mitigate
efficiency bottlenecks caused by participant devices lagging in synchronous communication
[37].

The adaptive nature of asynchronous FL in wireless networks has been explored by Lee
and Lee [38]. They proposed an adaptive transmission planning method considering vari-
ations in wireless channel quality. Another noteworthy work by Xie et al. [40] introduced
an asynchronous FL aggregation method that updates the global AI model upon receiving
any participant model with a low degree of staleness. This method was further employed
by Sprague et al. [39] for geospatial applications. Lastly, Chen et al. [41] proposed the
ASO-Fed framework, an asynchronous FL model under a non-IID data settings. It enables
clients to perform online learning with continuously incoming dynamic data. This frame-
work uses a regularization and central feature learning module to expedite the learning
process on how clients relate to each other.

5.2.2. Client Selection
Client selection seeks to enhance the efficiency of FL by meticulously choosing entities

that neither cause delay nor disrupt the aggregation phase of models due to resource insuffi-
ciency. Furthermore, it ensures these entities do not trigger system failure due to their own
malfunction. McMahan et al. [4] proposed the random selection of participants for each FL
CR. However, this approach may inadvertently include participants with limited resources
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Figure 13: Federated Learning Communication Type.

or scarce data. Contrarily, Nishio and Yonetani [42] presented the Federated Client Selec-
tion (FedCS) framework for FL, designed to select participants who demonstrate minimal
AI model update and upload times. This selection is subject to the constraints of comput-
ing and connection resources. In FedCS, the server actively solicits resource details from
all participating nodes, then formulates the issue akin to a classic optimization problem,
specifically, the Knapsack Problem. Here, the maximum time of an FL round is equated
to the maximum weight of the knapsack, and a greedy algorithm is deployed to reduce the
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complexity of the problem.
In a bid to augment energy-constrained training, Wu et al. [43] introduced the FL

Energy (FedLE) framework. This framework forms clusters of participants using cosine
similarity metrics of all local AI models, assigning a higher probability to clusters with
fewer clients and a lower probability to those with more clients. Within each cluster,
participants with a larger battery capacity are given preference to optimize energy usage.
Furthermore, Wehbi et al. [44] proposed the Federated Minimum Interference (FedMint)
framework. This two-sided client selection mechanism chooses clients based on their own
preferences as well as those of the aggregators. Preferences include aggregator rewards for
clients and model accuracy for aggregators, providing incentives for clients to maximize
their computational and communication resources. The framework also assigns an initial
accuracy value to any new IoT device, thereby allowing it to participate in the collaborative
process.

5.2.3. Fault Tolerance
Fault tolerance in FL represents an evolving domain aimed at maintaining uninter-

rupted learning processes despite hardware or software malfunctions [47]. Several strategies
have been deployed to ensure fault tolerance within this milieu, such as:

• Checkpointing: This strategy involves periodic backup of the system state to fa-
cilitate recovery, particularly effective when communication processing time is pro-
tracted [46].

• Heartbeat Monitoring: This method ensures regular transmission of messages
across various system components to verify their functional status [46].

• Redundant Processing: This technique encompasses performing identical calcu-
lations on multiple devices or nodes, thereby enhancing system reliability and fault
tolerance [74].

• Error Detection and Correction: Implementing mechanisms to identify and rec-
tify errors in model updates or other system components helps maintain system in-
tegrity and performance. Various tools such as checksums, error-correcting codes, for-
mal methods, and consensus methods can be employed. For instance, the Byzantine-
resilient variant of the Stochastic Gradient Descent algorithm [39] has been proposed
to enhance resilience and error detection and correction capabilities in a distributed
learning environment.

• Robust Aggregation Methods: These strategies are resilient to noise or malicious
models and contribute to the overall stability of the system [75].

Statistical heterogeneity presents a significant obstacle to the successful execution of
FL [32]. It introduces complexity to the aggregation process and instigates discrepancies
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between local and global AI models. The root of this issue lies in the potential variance in
both size and distribution of local datasets employed for training participant AI models.
This variation can lead to performance disparities amongst local models and pose challenges
to their successful amalgamation into an effective global model.

Even in scenarios where dataset characteristics do not significantly influence FL, the
uniqueness of AI models per participant cannot be overlooked. Despite being of the same
type (e.g., CNN local and global models), these AI models may differ in architecture and
parameters, such as the number of layers and parameter These dual layers of complexity
stemming from statistical heterogeneity will be explored in further detail subsequently..

5.2.4. Data Heterogeneity
In FL, data heterogeneity is understood as the distinct variation in the statistical dis-

tribution of data across different participants [76]. This condition manifests in the form
of non-identical and independently distributed (non-IID) datasets belonging to the par-
ticipants [77]. This discrepancy implies that the datasets may differ in terms of size and
distribution, subsequently leading to variations in the performance of local models. As an
illustrative case, consider two electronic healthcare record devices containing disparate and
unbalanced datasets [78].

Another manifestation of data heterogeneity in FL is domain shift [79], where local
datasets possess various characteristics, features, and balance. Such disparities can consid-
erably impact the performance and convergence of the AI models trained by the partici-
pants [80]. A practical example can be seen with two industrial robots, R1 and R2, located
in China and France, respectively. Even though they employ the same CNN model for FL,
they may acquire distinct types of image data for a face recognition problem via different
IoT devices, thus creating a domain shift.

Recent research has primarily focused on addressing these categories of challenges.
For instance, personalized FL and TL have been used to tackle this issue [48, 30], while
clustering techniques have been implemented to group similar participants according to
data [49, 50, 51]. Additionally, normalization of local DL models has been attempted [52],
as well as the deployment of a public dataset that includes groupings constituting a fraction
of local datasets [53]. Domain adaptation techniques have also been employed to resolve
the domain shift problem [54, 55, 56]. These research efforts will be elaborated upon in
Section 6.

5.2.5. Model Heterogeneity
Traditional FL aggregation algorithms usually demand that all participants employ an

identical AI model architecture [4]. However, this norm may be impracticable in certain
real-world settings [81]. Primarily, the number of IoT sensors can differ across various sce-
narios, leading to a range of datasets and their corresponding AI models. In addition, there
could be instances where a participant’s device lacks the necessary computational capacity
to train a more intensive model, effectively barring them from participation. Consequently,

29



model heterogeneity arises when the devices participating in the learning process employ
divergent AI models, or models that possess distinct features and characteristics.

A substantial body of FL research is geared toward addressing this challenge. For exam-
ple, [48, 30] have suggested algorithms that aggregate either personalized or foundational
AI models. Moreover, innovative frameworks like FedMD [57], FedH2L [58], and MHAT
[59] have been put forth, leveraging knowledge distillation [82] as a method to exchange
and aggregate predictive outputs rather than local AI model parameters. These studies
and their significant contributions will be discussed in more detail in Section 6.

5.3. Privacy Concerns
Ensuring data privacy and transaction security are paramount issues in FL applications

[63]. Traditional centralized learning raised concerns over the secure sharing of user data.
Although FL ameliorates this problem by keeping user data local, it introduces a new
challenge: ensuring the security of shared model information, such as weights or gradients.
In this context, several privacy risks are still to be addressed, including:

• Data Poisoning: This threat [83, 84] arises when a participant intentionally or in-
advertently transmits incorrect data to the aggregator, which may negatively impact
the model’s accuracy.

• Data Leakage Attack: In this scenario [85, 86, 87], an attacker intercepts the
model’s weights to reconstruct the original data. Studies, such as those by [88],
highlight the vulnerability of FL to gradient data leakage, thereby compromising the
privacy of participants’ training data.

• Model Inversion Attacks: These attacks [89, 90] occur when an adversary lever-
ages the updates provided to the aggregator to reconstruct an approximation of the
original model.

• Membership Inference Attacks: Here, an adversary [91, 92, 93] utilizes the
trained model to deduce the participation of specific members in the FL process,
potentially revealing sensitive information about the data owners.

Recent research focuses on augmenting the privacy of FL using diverse tools such as
Secure Multi-party Computation (SMPC) [94], Homomorphic Encryption (HE) [95], and
Differential Privacy (DP) [96, 97], as highlighted in [32]. These strategies will be elaborated
upon in the following sections.

5.3.1. Secure Multi-party Computation (SMPC)
SMPC, a subfield of cryptography [94], strives to devise novel methodologies that fa-

cilitate distributed entities to collaboratively compute a function over their inputs while
preserving the confidentiality of these inputs. This is typically achieved by distributing the
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computation across small tasks, each performed individually by an entity, and subsequently
to merge the results. Within the realm of FL, each participant trains the model on their
private data utilizing SMPC techniques, such as secret sharing [60], to encapsulate local
model updates (either gradients or weights) as shared secrets. Subsequently, aggregation
can be performed using HE (discussed in Section 5.3.2) or secret sharing-based protocols
[98].

As stated by [99], SMPC delivers robust privacy assurances and dependable protection
against adversarial assaults in FL. However, the employment of SMPC is not without its
challenges:

• Computational Complexity. SMPC protocols often necessitate extensive com-
putation resources, potentially resulting in increased training times and resource
consumption.

• Communication Overhead: Secure protocols may require increased Communica-
tion Rate (CR) and larger messages, potentially leading to higher bandwidth usage
and potential communication congestion.

• Scalability: Scaling FL systems to accommodate a large number of nodes can be
challenging, as the effectiveness of SMPC protocols may diminish as participant count
increases.

Regardless of these challenges, contemporary research on SMPC and FL is focused on
developing more efficient and scalable protocols that can be adapted to a variety of appli-
cations, particularly those with rigorous privacy and security requirements. For instance,
Bonawitz et al. introduced an SMPC protocol in FL for secure aggregation that ensures
robust privacy [60]. SecureML [61] and FALCON [62] are two exemplary SMPC-based
frameworks that maintain the privacy of the training process in ML.

5.3.2. Homomorphic Encryption
HE is a unique class of encryption algorithms, specifically designed to allow the exe-

cution of mathematical operations on encrypted data. Fully HE (FHE) [100], is a type of
HE that facilitates any form of ciphertext computation. Conversely, Semi-HE (SHE) [101]
enables selected ciphertext computations, such as addition and multiplication.

In FL, HE plays a critical role by aggregating model updates across various devices
while safeguarding user data privacy. A detailed breakdown of the formal application of
HE in FL involves several key components:

1. Encryption: This phase involves the encryption of local AI model updates on each
participating device. Assume wi is the model update from a specific device i, and
Enc(wi) is the resulting ciphertext derived from encrypting wi using a HE scheme.
Therefore:

Enc(wi) = HE.Encrypt(wi) (5)
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Here, HE denotes the HE function. After this process, the aggregator receives ci-
phertexts, maintaining their confidentiality.

2. Aggregation: Let Enc(w1), Enc(w2), · · · , Enc(wn) be the set of encrypted model up-
dates originating from n devices. The central server can execute homomorphic op-
erations (for instance, addition or multiplication) on these ciphertexts to achieve the
newly updated model:

Enc(Wnew) = Wold ⊗ Enc

(
n∑

i=1

wi

)
(6)

Where ⊗ represents the chosen homomorphic operation, and Enc(Wnew) is the en-
crypted global model.

3. Decryption: Let Enc(Wnew) be the aggregate ciphertext procured by combining the
encrypted model updates from all devices. Using a secret key, the central server can
decrypt this aggregate ciphertext to reveal the final model update.

Wnew = HE.Decrypt(Enc(Wnew)) (7)

Here, HE.Decrypt refers to the homomorphic decryption function.

Several studies, such as [63] and [64], demonstrate how HE can mitigate privacy challenges
in FL and facilitate model aggregation from diverse devices. For example, the proposed
secure FL framework for medical data by these studies strengthens data privacy in a
network of hospitals using HE. Other contributions, such as [65], have further improved
HE in FL by proposing an efficient doubly homomorphic secure aggregation scheme for
cross-silo FL, employing multi-key HE and seed homomorphic pseudo-random generator
as cryptographic primitives.

Despite its potential for preserving model training and assessment data privacy in FL,
HE does have some limitations:

• The computational complexity of HE is high, leading to increased training time and
resource consumption at the node level.

• Some HE systems only offer basic operations like addition and multiplication, which
might not suffice for complex ML models or optimization algorithms.

• Compared to traditional encryption methods, HE produces larger ciphertexts, thereby
raising communication costs and potentially exacerbating bandwidth constraints.

5.3.3. Differential Privacy
DP [96, 97] serves as a robust methodology for safeguarding the privacy of data during

the analysis or dissemination of sizeable and sensitive datasets. The central premise relies
on integrating a random perturbation function to the original data, which helps mask
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sensitive details without compromising the relevance of the aggregated data [102]. In the
context of FL, where participants collaboratively train a model in a decentralized fashion,
DP is primarily implemented by infusing random noise into the model parameters. Such
techniques may include the Laplace mechanism [103] or the Gaussian mechanism [104],
and the noise-infused parameters are then shared with the aggregator [99].

For instance, let’s consider a FL system comprising n participants, each labeled as
participant i, involved in the learning process. Every participant computes its local model
update, denoted as ∆wi, using its unique dataset Di. To achieve ϵ-DP, each participant i
integrates Laplace noise to its local update:

∆wDP
i = ∆wi + Lap(∆f/ϵ) (8)

In the above equation, ∆wDP
i symbolizes the DP model update, ∆wi indicates the original

model update, and Lap(∆f/ϵ) denotes the noise added to attain ϵ-DP, where ϵ is a positive
real number that determines the quantity of the noise. The sensitivity parameter ∆f is
contingent on the specific ML task and the dataset in use. Its careful determination is
crucial to ensure the desired level of privacy protection. Post-computation of DP model
updates, they are aggregated by the central server to update the global model. This
aggregation could be achieved by simply averaging the noisy updates:

Wnew = Wold +
1

n
×

n∑
i=1

(∆wDP
i ) (9)

Here, Wold denotes the current global model, and Wnew signifies the updated global model.
Global Differential Privacy (GDP) and Local Differential Privacy (LDP) are two possi-

ble approaches to utilize within FL. Firstly, GDP necessitates a trusted aggregator, which
incorporates the noise post-aggregation. The majority of FL security research focuses on
LDP as it empowers data owners to privatize their data prior to sharing. For example, [66]
introduced a novel LDP for FL (LDPFL) protocol designed for industrial settings. This
protocol operates effectively with untrusted entities while providing stronger privacy assur-
ances compared to existing methods. Similarly, [67] addressed the issue of privacy within
FL and proposed a solution based on LDP to secure user information. Moreover, [66] sug-
gested a framework leveraging LDP for FL, specifically for image classification applications,
thereby showing that LDP can enhance privacy while maintaining performance.

The integration of DP within FL can effectively bolster privacy protection for partici-
pating devices and their data. However, the employment of DP within FL presents some
challenges:

• Utility-Privacy Trade-off: The introduction of noise to ensure privacy can potentially
delay convergence and escalate the variance in model updates. The pursuit of an
optimal balance between privacy and utility thus emerges as a critical challenge when
designing privacy-preserving FL systems.
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• Parameter Tuning: The task of adjusting DP noise settings and privacy budgets can
be quite challenging. It requires careful consideration of the FL application, data
sensitivity, and the level of privacy desired.

5.3.4. Blockchain
Blockchain technology, as discussed by [105], provides an immutable, verifiable, and

secure decentralized ledger that records transactions among parties in sequential blocks.
When integrated with FL, blockchain can serve as a trustless infrastructure, offering a
decentralized framework for secure model training, validation, and updates [106]. Several
potential applications of blockchain in FL include:

• Decentralized model training and updates: FL can harness the distributed
nature of blockchain to facilitate model training and updates without reliance on
a central server. Blockchain consensus algorithms such as Proof of Work (PoW),
Proof of Stake (PoS), or Byzantine fault-tolerant techniques can assist participants
in reaching a consensus on the updated model.

• Secure and transparent record-keeping: Blockchain can serve as a secure repos-
itory for storing model updates, training history, and validation results. This capa-
bility enhances the audibility and verifiability of the learning process for both par-
ticipants and auditors.

• Smart contracts for incentive mechanisms: In FL, incentivization is essential to
ensure nodes provide high-quality data and model updates. Blockchain-based smart
contracts can reward users with tokens or improved models in recognition of their
valuable contributions to learning.

• Privacy preservation: Combining blockchain technology with privacy-preserving
methods such as Secure Multi-Party Computation (SMPC) (Section 5.3.1), HE (Sec-
tion 5.3.2), and DP (Section 5.3.3) can enable secure and private model training
in FL. These techniques allow blockchain nodes to share encrypted data or model
updates without compromising their private information.

• Secure model sharing and access control: Blockchain can securely distribute
trained models among participants or external parties. It achieves this by establish-
ing access control policies through smart contracts, limiting model access strictly to
authorized parties.

• Model provenance and intellectual property protection: Blockchain’s abil-
ity to track trained model provenance and ownership aids in protecting intellectual
property and verifying the authenticity of models deployed in various applications.

The prospect of combining blockchain and FL is generating considerable interest. Nu-
merous research studies have examined the potential benefits and challenges of integrating
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these two technologies. For instance, Kim et al. [68] conducted an investigation of poten-
tial security vulnerabilities in blockchain-enabled FL, proposing effective solutions to these
challenges. Additionally, Hardjono and Pentland [69] explored how blockchain technology
could facilitate identity and access management in FL, emphasizing the importance of secu-
rity and interoperability. Chen et al. [70] presented a secure and robust IoT-enabled smart
city framework that blends distributed ML and blockchain technology, with a particular
focus on FL for edge devices. Lu et al. [27] developed a framework that ensures privacy in
Industrial IoT data sharing by combining FL and blockchain, thereby promoting safe and
private data sharing and analysis.

Despite the potential of blockchain technology to address many inherent challenges in
distributed ML environments including those related to security, transparency, and decen-
tralization it is important to consider potential trade-offs and obstacles. These could en-
compass the elevated computational expense, scalability issues associated with blockchain
consensus methods, and the intricacy of integrating blockchain within established ML
frameworks. Nevertheless, when appropriately integrated with FL, blockchain can signifi-
cantly enhance the overall efficiency and efficacy of the system.

5.4. Discussion
Numerous existing solutions have been presented to address associated challenges, in-

cluding the enhancement of communication efficiency, the implementation of synchroniza-
tion strategies for participant devices, the fortification of system robustness, the design of
algorithms for data and model heterogeneity, and the incorporation of privacy-preserving
techniques. These latter include SMPC, DP, HE, and blockchain technologies.

Upon analysis, we observe that, while these proposed techniques exhibit a general
application, they do not necessarily cater to specific use cases. Furthermore, their solutions
may give rise to challenges in different categories. For instance, the use of blockchain
technology as a decentralized security method, despite its advantages, can introduce the
challenge of increased communication costs during the exchange of model parameters.
Therefore, to devise a solution that is both reliable and valuable, all FL challenges must
be comprehensively considered.

6. Federated Learning Aggregation Algorithms

FL’s primary goal is to assist a group of K participants in making better decisions
by minimizing the loss function Fk of their local neural network models, which are built
with local weights wk and trained with private datasets Dk that contain nk samples. The
mathematical formula of the local objective is:

minwk∈RdFk(wk) where Fk =
1

|Dk|

nk∑
i=1

fi(wk) (10)
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To collaborate learning and make enhancement in decision-making, FL works by having
a server that collects local model weights for each CR t, aggregates them to create a global
neural network model with global weights wt, and then broadcasts the latter to all partic-
ipants to make local updates. McMahan et al. [107] started FL in 2016 with FedSGD,
which is an abbreviation for Federated Stochastic Gradient Descent and is the name of the
basic algorithm that makes the aggregation step. With FedSGD, first, the participants
train their local models using batch GD with just one local epoch and upload their gradient
gk. The central server then collects these latter, averages them, and aggregates them by
updating the global weights using the GD algorithm. FedSGD requires participants to
train their models with one local epoch and one batch, which slows down their convergence
and requires hundreds of CR to achieve the target accuracy of all of them.

While various solutions have been proposed to address the challenges of the FL (refer
to Section 5), it is noteworthy that certain aggregation methods have emerged to tackle
multiple challenges simultaneously during the aggregation process. These methods are
designed to target a specific challenge as the primary focus while minimizing any adverse
effects on other challenges. By strategically considering the interplay between challenges,
these aggregation methods offer approaches to mitigate multiple obstacles concurrently,
thus showcasing their potential to enhance the overall performance and effectiveness of FL
systems.

The FedPer method, proposed by Arivazhagan et al. (2019)[48], employs TL tech-
niques and distinguishes between base and personalized layers in a local model. In the
context of CNNs models, these base and personalized layers typically correspond to fea-
ture extractor layers and fully connected layers, respectively, such that participants share
only the base layers with the server while retaining personalized layers. This approach
was tested on the FLICKR-AES and CIFAR datasets, showing superior performance to
FedVG in personalization tasks. This suggests that using base and personalized layers
can alleviate issues from statistical heterogeneity in FL. Contrary to the typical approach,
Ek et al. [108] suggested a role reversal for the two layers in FL models. They propose
that the base layers should concentrate on individual-specific decision-making, whereas
the personalized layers should focus on shared representation learning. Hence, the choice
of assigning roles to these two layers is contingent upon the specific problem that needs
to be resolved. Chen et al. (2018)[109] proposed a federated meta-learning framework,
FedMeta, where only models gradients are shared. They used the algorithm of model
agnostic meta-learning (MAML) Finn et al. [110] that treats each client as a task. The
goal of using meta-learning is to learn a model on a collection of tasks (clients’ tasks), such
that it can solve new tasks with only a few samples. FedMeta executes on two steps per
FL CR. Inner update, when each client trains the local model with its training dataset
using the weights vectors of the global model, tests its performance with its testing dataset
using the updated weights vector, and returns the gradients to the global server. Outer
update, if the global server receives local model parameters, it updates the global model
and broadcasts it to participants. They tested FedMeta on the LEAF datasets with non-
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IID data and the real-world production dataset, showing that it is 2.82–4.33 times more
efficient in terms of communication cost, has rapid convergence and improves accuracy by
3.23%-14.84% compared to ‘FedAVG. FedProx is a FL framework proposed by Li et al.
(2020). It generalizes the FedAVG approach, with key modifications to address data and
system heterogeneity. In FedProx, participants optimize the loss function with a proximal
regularization term. This term penalizes large divergence between the current local model
and the previous global model, aiming to keep models more coherent across the network. In
order to address system heterogeneity, they suggest solving the previous objective function
directly, rather than training local models over several local epochs. This approach can
help decrease computational overhead. FedProx was evaluated using Multinomial Logis-
tic Regression (MLR) and LSTM models trained on LEAF and SHAKESPEARE non-IID
datasets, respectively. To mimic system heterogeneity, devices were allocated different
amounts of local workload. When compared to FedAVG, FedProx showed substantial
improvements, with accuracy increases averaging 22%. This suggests that the framework’s
considerations for data and system heterogeneity are effective in enhancing model perfor-
mance in an FL setting. Wang et al. (2020)[111] proposed Federated Matched Averaging
(FedMA), a novel layer-wise FL algorithm tailored for CNNs and LSTMs models. In
FedMA, each layer of the model is trained independently and then communicated to the
server. The server conducts a one-layer matching process on the participants’ first layer
weights to derive the weights for the first layer of the federated model. These weights are
then broadcast back to the participants, who use them to train all subsequent layers on
their local datasets, while keeping the federated layer frozen. This process is iteratively
repeated until all layers have been processed. The number of CR in FedMA corresponds
to the number of layers in the local models for all participants. The algorithm was evalu-
ated using a VGG-9 model trained on the CIFAR-10 dataset, and an LSTM trained on the
Shakespeare dataset. The results suggest that FedMA does not result in communication
overload between the server and participants, as it only shares one layer at a time, unlike
FedAVG and FedProx that share the entire models. Consequently, FedMA potentially
offers a more scalable and efficient approach for FL.

The FedDist technique, proposed by Ek et al.(2021)[51], is a novel FL aggregation
method developed for Human Activity Recognition (HAR). This method modifies the
model architecture by identifying variations among individual neurons across different
clients to address divergence in heterogeneous and non-IID datasets. Initially, FedDist
aggregates local models using the standard FedAvg approach. It then measures the pair-
wise dissimilarity between each neuron in a client’s layer and the corresponding neuron
in the global model. If the distance exceeds a predefined threshold, that neuron is incor-
porated into the corresponding layer of the global model. Following this, clients perform
layer-wise training: they freeze the updated layer and all layers above it, and train the
subsequent layer. This iterative process yields new global and local models with adjusted
neuron counts per layer. They evaluated FedDist by training a Convolutional Neural Net-
work (CNN) model on the LEAF dataset. The results showed that FedDist outperformed

37



FedAVG, FedPer, and FedMA, demonstrating its potential for handling non-IID and
heterogeneous data. However, one drawback of FedDist is the high communication cost
involved. By aggregating layers and adding extra neurons to the global and local models
in each FL CR, FedDist significantly increases the communication load between clients
and the global server.

Briggs et al. (2020) [49] proposed a combination of FL and Hierarchical Clustering
(FL+HC) to improve learning on non-IID data. This approach groups similar partici-
pants’ local models, aiming to mitigate their divergence. The initial aggregation is per-
formed using FedAVG [4], followed by the execution of the Agglomerative Hierarchical
Clustering algorithm [112] to select clusters of similar local models. Finally, an additional
aggregation step is performed at each cluster level in parallel. The authors evaluated the
performance of FL+HC on an image classification task, using a CNN model trained on
the FEMNIST dataset in both IID and non-IID settings. They compared the results with a
standalone FL approach. The experiments demonstrated that FL+HC allows for quicker
learning, even with variations in the algorithm’s hyperparameters. However, there are some
caveats to consider. The FL+HC approach assumes homogeneity of local models, limiting
its applicability in scenarios with diverse model structures. Additionally, in the second step
involving cluster aggregation, having multiple aggregation algorithms running in parallel
on a central server may introduce issues related to synchronization and reliability.

FedGA, proposed by Guendouzi et al. (2022) [30], is an aggregation algorithm that
combines the concepts of Federated Personalization (FedPer) and Genetic Algorithms
(GA). This approach is aimed at addressing the challenges associated with data and model
heterogeneity in federated learning environments. In the initial setup, each participant
shares a personalized fraction of their dataset with the central server, and all participants
have the same base layer structure for their local models. In the FedGA approach, only
the base layer weights of each local model are transmitted to the central server. The
server then employs a genetic algorithm to compute the new global weights by seeking
the individual (i.e., set of weights) that minimizes the loss function of the global model,
based on the union of the data subsets shared by the participants. The authors evaluated
the proposed approach on the MNIST dataset, using both IID and non-IID settings and
employing CNNs models for local and global learning tasks. The results showed faster con-
vergence of all local models and improved average accuracy when using FedGA compared
to FedPer, thereby reducing communication costs. However, it’s worth noting that the
use of genetic algorithms may increase the computational complexity of the aggregation
process compared to simpler methods, such as directly averaging the weight vectors.

Berghout et al. (2022) [52] proposed a heterogeneous FTL approach named FTL-RLS.
This approach is particularly adept at handling the challenges of statistical heterogeneity
and system heterogeneity in FL, in addition to offering remarkable aggregation speed and
reducing communication costs. The FTL-RLS employs the Recursive Least Squares (RLS)
algorithm to enable rapid computation at each client’s end involving a single-weight matrix.
Prior to the aggregation step, FTL-RLS encodes the weight matrices and standardizes
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their dimensions using a transpose operation. This tackles issues related to diverse model
architectures and data privacy. During the aggregation phase, FTL-RLS normalizes the
learning weights by using the standard deviation and mean values of each matrix to cater to
non-IID data challenges associated with disparate weight scales. Post-aggregation, linear
algebra operations are performed to reverse the prior steps. In their experiments, Berghout
et al. used a personalized dataset distributed across four clients. The results indicated that
FTL-RLS achieves an impressive execution time and reduces the communication message
size. However, in terms of model accuracy, FTL-RLS performs on par with other methods.
It’s worth noting that, due to its reliance on RLS methods, FTL-RLS is primarily suitable
for regression tasks.

Ye et al. (2022) [113] proposed an anchor-based feature matching aggregation method
for FL, termed as FedFM. This approach effectively addresses the challenge of data hetero-
geneity across clients by rectifying inconsistencies and overlaps in features and facilitating
local model convergence. They introduce the concept of anchors, markers used to reduce the
distance between the central anchor of a particular data category and the data within that
category. Simultaneously, the anchors increase the distance between a data category and
other categories. Consequently, the aggregation process is performed for the anchor of each
category along with the global model. To mitigate bandwidth costs between clients and
servers, potentially exacerbated by their solution, they propose a communication scheme
where both models and anchors are communicated within a single handshake. Moreover,
while anchors are communicated in each FL round, models are only communicated during
specific rounds. Upon comparing FedFM with FedAVG,FedProx, and other state-of-
the-art algorithms using CIFAR and CINIC-10 datasets and RestNet pre-trained models,
it was observed that FedFM improves the learning accuracy by an average of 6%, while
incurring minimal communication time costs.

Palihawadana et al. (2022) [114] proposed FedSim, a FL aggregation algorithm that
mitigates model divergence due to unequal distributions (non-IID) datasets across partic-
ipants. The method is based on comparing the gradients of models to determine their
similarity. FedSim decomposes the baseline aggregation process into local and global ag-
gregation steps. After the initialization and broadcasting of the global model, and the
collection of gradients from the local models of the participants, the aggregator reduces the
matrix dimension of the collected gradients using Principal Component Analysis (PCA)
[115]. It then constructs clusters of participants using the K-means ML algorithm [116],
executes the local aggregation for each cluster, averages their results in the global ag-
gregation step, and broadcasts the final global model throughout the network. FedSim
was evaluated on various datasets, including FedME-x and Fed-Goodreads. The results in
terms of global model accuracy confirm the superior of its performance when compared
with FedAVG and FedProx, primarily due to the use of clusters that expedite conver-
gence. However, a noticeable increase in complexity is observed when PCA and K-means
are executed for each FL CR.

Li and Wang (2019) [57] proposed FedMD, a FL framework that leverages TL and
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knowledge distillation [82] to obviate the need for deploying a singular homogeneous AI
model. The process starts with the deployment of a public dataset on all the participant
devices. These datasets serve as the basis for the initial training of their local models.
Following this, the participants release their prediction outputs, which are subsequently
averaged by the aggregator. The final averaged predictions are then shared with all the
participants, who strive to minimize the discrepancy between their individual predictions
and these averaged predictions. Despite evaluating FedMD on various datasets, including
LEAF and CIFAR (both IID and non-IID), the results do not necessarily exhibit high
performance, but they do underscore the potential utility of FedMD when using multiple
heterogeneous models.

Hu et al. (2021) [59] proposed Model Heterogeneous Aggregation Training (MHAT),
an innovative FL model heterogeneous aggregation training scheme. This method addresses
challenges associated with heterogeneous model architectures and the communication costs
between clients and the server by primarily focusing on model outputs rather than param-
eters. It integrates FL and TL techniques, specifically knowledge distillation. In the first
step, participants train their local models and share the prediction outputs with the ag-
gregator. The aggregator then aggregates these outputs and generates new ones, which
are subsequently broadcasted to all clients. These new outputs form part of the training
dataset, thus enhancing the learning of all participants’ local models without affecting the
architecture of these models. MHAT was evaluated using the IID MNIST dataset un-
der both homogeneous and heterogeneous models. The results showed a difference of 82
FL communication rounds between the baseline FL (FedAVG) and MHAT to achieve
an average accuracy of 95% across all clients, demonstrating the algorithm’s efficiency in
reducing the resource consumption for clients.

Li et al. (2021) [58] proposed FedH2L, a framework that addresses model and statistical
heterogeneity issues in the FL. This is achieved by focusing on the exchange of prediction
outputs rather than local model parameters, and it also supports decentralized FL, thereby
eliminating the need for a third-party entity. Initially, each participant computes its lo-
cal gradients using its own private datasets, makes predictions using public datasets, and
shares these prediction outputs and their corresponding accuracies with all other partici-
pants. These participants then calculate the public gradients, defined as the losses between
the predictions of their local models and the public predictions. Subsequently, they up-
date their local models using these new gradients. FedH2L was evaluated on the MNIST
and Office-Home datasets [117]. The results showed that FedH2L outperforms several
state-of-the-art algorithms and addresses system and communication resource constraints
by reducing the training local epoch to one and communicating only output predictions and
accuracies, rather than model parameters. However, this framework requires thousands of
FL CRs to achieve a comparable accuracy level, and it only supports homogeneous data,
which may not accurately reflect real-world situations. Ahmed et al. (2021) [118] pro-
posed an innovative FTL model that accommodates the varying computational resources
and model architectures available to different clients. In their system, participants are
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categorized into clusters based on the computational resources they possess, classified as
either low, medium, or high. In the initial stage, the server initializes a unique global
model for each cluster. Then, the server associated with each cluster independently carries
out the aggregation process. This method promotes expedited convergence of the models
for clients equipped with high computational resources. Their proposed solution was eval-
uated using three clients, each with a pre-trained model for facilitating Transfer Learning.
These clients shared an IID version of the CIFAR-10 dataset. In this experimental setup,
which resembles centralized learning, their model outperformed current state-of-the-art FL
models in terms of convergence speed.

He et al. (2020) [119] introduced the FedGKt framework, a system designed specifically
for FL involving large CNN models implemented at edge clients. In contrast to traditional
methods, FedGKt transfers model outputs, termed knowledge, instead of model param-
eters. The framework operates asynchronously, aggregating information and updating all
models using Stochastic GD [120] along with Cross-Entropy [121] and Kullback-Leibler
divergence [122] loss functions. Participants in this setup train their models locally and
exchange the outputs of the feature extractor and the fully connected layer, as well as the
ground truth labels, with the aggregator for each FL CR. The aggregator subsequently up-
dates the global CNN model to accommodate new participants and disseminates the newly
predicted labels to all participants. FedGKt employs a novel loss function that combines
the knowledge of both the aggregator and the participants. FedGKt was tested on the
CIFAR dataset under both IID and non-IID conditions. The results indicated that despite
the asynchronous aggregation process and its inherent flexibility, there was no compro-
mise in terms of model accuracies. Furthermore, the proposed loss function significantly
improved learning, offering an average increase of 0.03% compared to both FedAVG and
centralized learning.

To address the issue of domain shift due to unequal distribution of local datasets, Yao
et al. (2022) [55] proposed a federated multi-target domain adaptation (FMTDA) solution
known as the DualAdapt framework. In this setup, each participant’s device is considered
a target domain with an unlabeled dataset, while the aggregator holds a labeled and public
dataset that serves as the source domain. The main goal of their approach is to enhance the
recognition of outputs from participants’ datasets by aggregating their local CNN models.
These models share the same feature extraction layers (FELs) but possess different fully
connected layers (FCLs) in terms of weights, although all models maintain the same archi-
tectural design. During each FL round, the aggregator broadcasts the global model to the
participants. Each participant then fine-tunes the FELs, computes their respective FCLs
using the maximum classifier discrepancy (MCD) technique [123], encodes its statistical
distribution using a Gaussian mixture model (GMM) on its dataset, and shares the FCLs
and GMM parameters with the aggregator. The aggregator then updates the FELs and
rebroadcasts them throughout the network. Experiments conducted on five-digit datasets
[124, 125, 126] and the Cross-City dataset [127] confirmed that DualAdapt enhances the
average accuracy by 2.4% and requires only a quarter of the computational cost and half
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of the communication overhead compared to baseline FL algorithms (FedAVG).
Xie et al. (2019) [40] proposed an asynchronous FL aggregation method, known as

FedAsync, aimed at enhancing the flexibility and scalability of FL and addressing issues
related to non-IID data and non-convex problems. After the initialization and broadcasting
of the global model, the aggregator awaits any incoming local model and updates the global
model using the Gradient Descent (GD) algorithm. To regulate the function, a penalty
term is added to the loss function for any local updates. This approach tackles the issue
of staleness when participants have heterogeneous computing resources and non-IID data,
making FL flexible for any new participant. They evaluated their algorithm on the CIFAR
and WikiText-2 [128] datasets using 100 devices, and compared it with FedAVG. Their
findings showed that FedAsync is sensitive to hyperparameters that measure the staleness
of participants and significantly depends on them. However, the results indicated that
FedAsync performs comparably to FedAVG, even under high staleness conditions.

Tian et al. (2021) [53] proposed a Delay Compensated Adam (DC-Adam) asynchronous
FL approach for anomaly detection in resource-constrained IoT devices using DL tech-
niques. This method consists of three steps. (1) Pre-initialization of global model param-
eters: A random set of clients transmit a small portion of their data to the server to train
the initial global model, which is then distributed to all clients to start FL. This step aims
to reduce errors associated with non-IID data. (2) Immediate aggregation and (3) delayed
gradient compensation: Upon receiving a local update from a client, the server immedi-
ately aggregates the information and compensates for delayed gradients. To evaluate their
approach, the authors compared the convergence of loss functions over training epochs on
MNIST, CICIDS-2017 [129], and IoT-26 [130] datasets using Sync-Adam, Asynch-SGD,
Asynch-Adam, and Asynch-DC-Adam (their proposal) optimizer algorithms. Their re-
sults indicated that Sync-Adam and Asynch-DC-Adam outperformed the other optimizers.
However, the study did not examine node reliability, and the server faced bandwidth load
issues and potential crashes when simultaneously pre-initializing global model parameters,
performing aggregation, and compensating for delayed gradients.

Yao and Ansari (2020) [131] proposed a FL enhancement approach for network anomaly
detection, based on fog computing. The aim was to accelerate federated learning and
minimize energy consumption by controlling the CPU frequency and wireless transmission
power (WTP) of all IoT devices. The FL time, comprised of the computation time for local
model training and the wireless transmission time for uploading local model updates to the
fog node, was designed to meet a Quality of Service (QoS) requirement by not exceeding the
maximum permissible FL time. The same concept was applied to energy consumption. To
determine the optimal WTP and CPU frequency values for each IoT device, an alternating
direction algorithm (ALTD) was implemented. This algorithm iteratively updates the
WTP based on previous frequency values and the CPU frequency based on the current
WTP value within each local iteration across all IoT devices. The performance of the
ALTD algorithm was compared to three other strategies: power-only, CPU-only, and
fixed. Across all comparisons, the ALTD method consistently delivered superior results
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in terms of energy consumption and learning time, especially as the number of IoT devices,
the number of examples in the dataset, the number of CPU cycles, and the size of the
dataset increased.

Xu et al. (2019) [132] introduced ELFISH, a resource-aware FL framework designed
to mitigate the delays experienced by edge devices when sharing their models with an ag-
gregator, primarily due to their physical resource constraints. The main objective was to
expedite model training and prevent lagging edge devices from slowing the overall process.
To achieve this, they implemented a soft-training method that dynamically masked a cal-
culated number of neurons in each edge device during each training cycle. This procedure
included a rule that accounted for the computational workload, training memory usage,
training time consumption, and the contribution to the global convergence of each neu-
ron. Furthermore, they introduced a parameter aggregation scheme to recover the masked
weights during aggregation, with the goal of enhancing both the accuracy and convergence
speed during edge training. The performance of their framework was evaluated by sim-
ulating devices with varying computational capabilities and distinct resource constraints,
achieved by adjusting CPU bandwidth and memory availability settings. Additionally,
pre-trained AlexNet and LeNet models on the MNIST and CIFAR datasets were used
in constructing their framework. When compared to conventional synchronized or asyn-
chronous FL methods, ELFISH consistently demonstrated superior accuracy and faster
convergence speed.

Saha et al. (2020) [50] proposed a framework, FogFL, designed to minimize commu-
nication latency, reduce the energy consumption of resource-constrained edge devices, and
enhance system reliability. This was accomplished by utilizing a greedy heuristic approach
for the selection of an optimal fog unit as a temporary aggregator during FL iteration.
The system is arranged as a set of edge device clusters, each linked to the nearest fog
unit. After a number of local training iterations, which are adjusted based on the physical
characteristics of the edge devices, the weight vectors are forwarded to the fog aggrega-
tor. Subsequently, each fog unit sends workload and communication latency parameters
to the cloud server, which selects the aggregator based on these parameters. To evaluate
their proposal, they deployed participant nodes with varying physical attributes and tech-
nologies, and the non-IID MNIST dataset. They compared the FogFL results with the
FedAVG algorithm and the hierarchical FL framework (HeFL) [133]. The results indi-
cated that FogFL reduced delay by 85% and 68% compared to the FedAVG and HeFL,
respectively, decreased energy consumption by 92% compared to FedAVG, and reduced
the number of CRs necessary to complete the target global model accuracy.

Khan et al. (2020) [134] proposed an FL approach that is specifically designed for edge
networks. Their approach utilizes the Stackelberg game [135] to encourage device partici-
pation in the FL process, by offering rewards while taking into account both communication
and computation costs for both the edge server and edge devices. Their system comprises
an edge server and a set of user devices with non-IID data, each with different computa-
tion and communication resources. Their implementation of the Stackelberg game enables
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the selection of a subset of IoT devices eligible for participation in the FL process with
an aim to minimize overall training costs. It also provides for differential rewards to be
offered based on the distinct training costs of the devices. To assess their incentive-based
FL model, they used multinomial logistic regression and divided the MNIST dataset into
five user groups, each characterized by unique communication channel properties. They
found that higher reward rates led users to perform more iterations within a single global
iteration, thereby enhancing accuracy. However, their proposal does not elaborate on how
reward allocation and optimal use of training resources are determined.

Qu et al. 2020 [31] introduced D2C for big data-cognitive computing in Industry 4.0
networks. D2C incorporates a decentralized paradigm based on blockchain-enabled FL
to enhance the performance of Industry 4.0 manufacturing systems. The approach looks
to guarantee data security and efficient processing, and provides incentive mechanisms to
encourage participation in the learning process, while also helping to mitigate poisoning
attacks. In each FL round, model weights are sent to a cluster of miners, who verify
the authenticity of local model parameters via a cross-verification mechanism. The Proof
of Work (PoW) consensus algorithm assigns a target nonce for each round. The miners
continuously generate random nonces until the target is found. Once identified, the process
is halted, and the successful miner is rewarded, thus promoting further participation in the
learning process. This miner obtains the right to use the associated block as the new
block and subsequently broadcasts it to all other parties. Local model parameters are then
aggregated using the Distributed Approximate Newton (DANE) method [136]. The newly
computed global parameters are stored in a block and made accessible for all machines to
download. The proposed framework was tested on CNN models trained on the CIFAR-10
dataset under IID conditions. The results showed that the D2C framework boosts global
accuracy by 0.12% compared to the baseline FL model and facilitates faster convergence
across various learning rates.

Liu et al. (2021) [137] introduced a distributed FL and blockchain-based framework
named Vehicle Intrusion Detection System (FL-VIDS). It emphasizes the preservation
of vehicle privacy using differential privacy and aims to curtail communication overhead
and computational expenses by obviating the need for a global server, while establishing a
secure model-sharing protocol among edge devices, particularly the Roadside Units (RSUs).
RSUs in this setup, gather data from vehicles traversing the same vicinity and act as
local aggregators. They undertake the execution of FL and securely store the consequent
models in the blockchain. A unique facet of this system is the competitive dynamic fostered
for the authentication of aggregated model training transactions. The RSU winning this
competition incorporates these transactions into the blockchain via a distributed consensus
process and evaluates trustworthiness based on the accuracy of the model. To counteract
potential malevolent attacks, homomorphic encryption is deployed. The system’s efficacy
was assessed using the DDCup99 dataset [138] with a multi-layer perceptron model. The
results revealed a direct correlation between the dataset’s size and model accuracy, and
temporal complexity, while showing an increment in model accuracy with an increased
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number of collaborating nodes. Significantly, the proposed Proof of Authority (POA)
mechanism was found to bolster trust and diminish mining complexity.

6.1. Discussion and comparison
In this section, we studied various FL aggregation methodologies developed between

2016 and 2022. This exhaustive examination of recent contributions illuminates how they
tackle prevalent FL challenges such as statistical heterogeneity, system heterogeneity, ex-
pensive communication, and privacy concerns. The surveyed contributions related to FL
aggregation methods are systematically organized and contrasted in Table 6.1. Differ-
entiating criteria include the challenges addressed: statistical heterogeneity (c1), system
heterogeneity (c2), expensive communication (c3), and privacy concerns (c4). Additional
features considered are the deployment setting of FL (Cloud, Fog, or Edge), the learning
model, the dataset employed for simulation, foundational solution strategies, and tech-
niques to ensure privacy.

From the evidence provided in Table 6.1, it becomes apparent that confronting statis-
tical heterogeneity is a focal point in FL. The prime objective of FL is to refine decision-
making processes by training a global AI model that leverages the diversity and distribution
of data across multiple participants, all while ensuring data privacy. In practical scenar-
ios, data is often non-IID and originates from disparate domains, potentially leading to a
deceleration in learning convergence. Furthermore, numerous FL contributions adhere to
the deployment of a single AI model architecture across participant devices. This strategy
could oblige participants with limited resources to contribute, potentially prolonging sys-
tem processing times and instigating issues related to computational and communication
resources. Consequently, FL contributions primarily center on mitigating this challenge,
thereby enhancing the performance and effectiveness of both global and local AI models
within the FL system.

Several strategies have been proposed to address the challenge of handling non-IID
data in FL. One such strategy includes executing FL aggregation on the base layers of the
NN model, rather than on the entire model [48, 30]. However, this approach can only be
applied when dealing with homogeneous local models. Another strategy utilizes clustering
techniques to group similar participants based on the characteristics of their data, thereby
improving the management of the distributed learning process and enhancing model per-
formance [49, 50, 51, 114]. Normalization of models has also been employed to ensure
a consistent representation across the models [52]. Alternatively, using a public dataset,
consisting of subsets of the local datasets, allows for a more realistic depiction of the data
distribution, especially when the data falls within the same domain [53, 139]. Integration
of meta-learning [110] into FL systems can also boost their flexibility. This enables sup-
porting new participants, even when they have limited and non-IID data [109]. Finally,
to address the challenge of domain shift [79] and the evolving nature of unsupervised local
datasets within the FL context, domain adaptation techniques [140] have been employed.
These techniques have proven effective in enhancing the performance and generalization
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capabilities of models across diverse data distributions from multiple participants in the
FL system [55, 56].

Knowledge distillation is an alternative to address the heterogeneity of local models
in Fl. By using a public dataset as a benchmark in FL and sharing the predictions of
AI models instead of their parameters, this approach can effectively mitigate the issues
associated with local model heterogeneity while also ensuring data privacy [58, 59, 57, 134].
However, these solutions might not always be applicable in real-world scenarios due to the
presence of multi-domain data [139] or multitask learning [141] among participants, which
could introduce inconsistencies in the benchmark dataset within FL strategies. To address
this challenge, further research and development is required to devise methods capable of
handling diverse data distributions in practical applications.

Addressing the challenge of system heterogeneity in FL can be accomplished by em-
ploying robust aggregation methods. These methods encompass asynchronous algorithms
[40, 53, 134], incentive mechanisms [134], strategies employing dynamic and multiple ag-
gregators [50], as well as approaches adapting local training objectives [4, 54]. However,
asynchronous algorithms accommodate disparities in computational capabilities and net-
work conditions by processing and aggregating device updates at disparate time intervals
[40, 53, 134]. These algorithms can potentially induce convergence issues due to incon-
sistent updates to the global model by participating devices. Moreover, they may com-
plicate the real-time monitoring and assessment of the overall FL system performance.
Thus, incentive mechanisms [134] encourage balanced participation by offering rewards.
Nevertheless, they may introduce overheads, such as increased communication costs for
reporting rewards and monitoring contributions. Further, these mechanisms are suscepti-
ble to exploitation by malicious or selfish participants who claim rewards without making
meaningful contributions. Furthermore, the use of dynamic and multiple aggregators [50]
distributes the aggregation workload, thus mitigating the impact of heterogeneity on the
overall model performance and managing bandwidth overhead. Yet, this strategy may
necessitate more computational resources and potentially result in increased communica-
tion overhead and potential bandwidth congestion, particularly when network resources
are limited. In addition, adaptive local training objectives tailor learning goals according
to the unique properties of each device’s local dataset [4, 54]. This allows FL systems
to better handle diverse data distributions and produce a more accurate global model.
However, they may slow down the learning process due to proximal term calculations and
hyperparameter determination.

The issue of high communication costs is a prevalent challenge, while current aggrega-
tion methods may not tackle this directly, they incorporate a variety of techniques into their
design to offer broader solutions. These solutions are intended to minimize communication
costs while enhancing the overall performance of the FL. Additionally, privacy concerns
represent a significant hurdle in this area, necessitating the involvement of sophisticated
cybersecurity techniques adopted for FL. This has been predominantly addressed in recent
times through the adoption of blockchain techniques [137, 31]. These techniques strive to
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ensure robust data privacy and security during the exchange of local and global DL model
parameters, mitigating potential exacerbations of existing FL challenges. Notably, the
exchange of DL models introduces more complexity than conventional message exchanges
via blockchains, which could potentially impair the efficiency and efficacy of FL systems.

Furthermore, most FL contributions are implemented on cloud infrastructures, tak-
ing full advantage of the massive computing resources that they provide. However, there
is a distinct shift towards edge- and fog-based deployments. The growing popularity of
edge [134, 31, 137] and fog-based [131, 50] deployments can largely be attributed to ma-
jor features such as the proximity of model parameters, which facilitates quick, efficient
parameters access, a significant decrease in latency, which improves real-time interaction,
and more control over privacy to provide optimal data and parameters security.

In conclusion, it is evident that most of the developed aggregation algorithms in FL
are designed with a focus on generalizability. This allows their application across a broad
spectrum of real-world scenarios, taking into account their respective constraints and ad-
vantages. These algorithms have undergone rigorous testing and validation on various
benchmark datasets, such as the LEAF datasets [142], and with pre-existing models such
as CNN and LSTM. This process ensures their effectiveness and adaptability across differ-
ent contexts. Such generalizability empowers researchers and professionals to confidently
adopt these algorithms and customize them to meet the specific needs of their FL applica-
tions.
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Reference Year Contribution
Challenge

Deployment Learning Model Dataset Solution-based Privacyc1 c2 c3 c4

[107] 2016 FedSGD × × × × Cloud-based CNN & MNIST [124] & Gradients Averaging ×
LSTM SHAKESPEARE[143]

[4] 2017 FedAVG × ×
√

× Cloud-based CNN & MNIST [124] & Weights Averaging ×
LSTM SHAKESPEARE[143]

[109] 2018 FedMeta
√

×
√ √

Cloud-based CNN & LEAF [142] & Meta-Learning HE
ANN real-world production

[48] 2019 FedPer
√

×
√

× Cloudbased ResNet-34 & CIFAR [144] & Personalized FL averaging ×
MobileNet-v1 FLICKR-AES [145]

[57] 2019 FedMD
√

× × × Cloudbased CNN LEAF [142] & TL and knowledge distillation ×
CIFAR [144]

[40] 2019 FedAsyn
√ √

× × Cloudbased CNN & CIFAR [144] Asynchrounous FL ×
LSTM & WikiText-2 [146]

[54] 2020 FedProx
√ √

× × Cloudbased MLR & LEAF [142] & Models divergence ×
LSTM SHAKESPEARE[143]

[111] 2020 FedMA
√

× × × Cloudbased CNN & LEAF [142] & Layer-wise Averaging ×
LSTM SHAKESPEARE[143]

[134] 2020 FedGKT
√ √

× × Cloudbased CNN CIFAR [144] Asynchrounous Knowledge Transfer ×

[49] 2020 FL+HC
√

× × × Cloudbased CNN FEMNIST [126] Agglomerative Hierarchical Clustering ×

[131] 2020 ALTD ×
√

× × Fog-based ANN Generated Computational Ressources ×
Optimization

[132] 2019 ELFISH ×
√ √

× Cloudbased Alexnet & MNIST [124] & Models compression & ×
LeNet CIFAR [144] soft-training

[50] 2020 FogFL
√ √ √

× Fog-based CNN MNIST [124] Greedy Heuristic approach ×

[134] 2020 Stackelberg+FedAVG
√ √ √

× Edge-based CNN MNIST [124] Stackelberg Game Mechanism ×

[31] 2020 D2C
√

× ×
√

Edge-based CNN CIFAR [144] DANE [136] Blockchain

[137] 2021 FL-VIDS × × ×
√

Edge-based MLP DDCup99 [138] Models Averaging DP & Blockchain

[51] 2021 FedDist
√

× × × Cloud-based CNN LEAF [142] Distance Similarity & ×
Layer-wise Traning

[53] 2021 Asynch-DC-Adam
√ √

× × Cloud-based CNN & MNIST [124] & ADAM Optimization in ×
ANN CICIDS-2017 [129] & Asynchronous FL

IoT-26 [130]

[59] 2021 MHAT
√

×
√

× Cloud-based CNN MNIST [124] TL and knowledge distillation ×

[58] 2021 FedH2L
√

×
√

× Cloud-based CNN MNIST [124] & TL and knowledge distillation ×
Office Home [147]

[118] 2021 FTL+FedAVG
√ √

× × Cloud-based CNN CIFAR [144] Hierarchical FL ×

[30] 2022 FedGA
√

×
√

× Cloud-based CNN MNIST [124] Genetic Algorithm ×

[52] 2022 FTL-RLS
√ √ √

× Cloud-based ANN Generated Recursive Least Squares ×
(RLS) algorithm

[113] 2022 FedFM
√

×
√

× Cloud-based RestNet CIFAR [144] Anchor-based ×
Feature Matching

[113] 2022 FedSim
√

×
√

× Cloud-based CNN FedME-x [113]
& Fed-Goodread [113] Principal Component ×

& EMNIST [126] Analysis
& MNIST [124]

[55] 2022 FMTDA
√ √ √

× Cloud-based CNN five digits & Domain Adaptation ×
Cross-City [127]

Table 6: Summary of related works on FL aggregation methods, where c1, c2, c3, c4 means statistical heterogeneity, system
heterogeneity, expensive communication, and privacy concerns, federated learning challenges.
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7. Federated Learning Development Tools

Before starting the process of designing a FL framework, it is necessary to first specify a
set of development tools that are appropriate for the desired solution. This needs to be done
in accordance with the features of the problem, the specifications of the environment, and the
limitations of the solution. Either build a FL tool from scratch, which requires fundamental and
unadulterated tools like PyTorch or TensorFlow, or reuse existing frameworks in order to use the
algorithms they provide and modify them if they are open source. In addition, we need, among the
many tools for the creation of FL, a dataset or a set of datasets that matches to the specifications
of participants’ systems. The following will serve to describe all of these specifics in more detail.

7.1. FL Datasets
FL is developed to locally store private data, as previously indicated. So, most FL researchers

evaluate and validate their algorithms using benchmark datasets. Even if we find a real FL
research use case, their datasets are not sharable since they concern the confidentiality of their
participants (e.g. patients, employees). That’s why, many researchers and industrials create
benchmark datasets to get creative with FL. According to state-of-the-art studies, we found some
repetitive datasets, which are represented in Table 7 and they are detailed as follows, and compared
in Table 8.

7.1.1. MNIST (Modified National Institute of Standards and Technology dataset)
MNIST [124] dataset is commonly used to benchmark image recognition and ML algorithms.

It has several size-normalized and centered handwritten digits. Each MNIST image is represented
by 28x28 pixels and contains a grayscale digit from 0 to 9. The dataset includes 60,000 and 10,000
training and testing images respectively. Also, there are some related datasets such as:

• USPS [125], which contains 7438 training and 1860 testing respectively 16 ×16 gray and
blurry digit images.

• The Street View House Numbers (SVHN) [148] dataset is a substantial collection of real-
world images sourced from house numbers visible in Google Street View images. This dataset
was compiled by researchers at Stanford University in collaboration with Google. It com-
prises over 73,257 digits for training, 26,032 digits for testing, and an additional 531,131
samples that are somewhat less challenging, and intended to be used as extra training data.
Each image is a 32x32 RGB image, clearly annotated with a bounding box and the number
it represents.

• The MNIST-M [140] dataset is composed of 60,000 images used for training and 10,000
images used for testing. Each 28x28 pixels image is extracted from MNIST dataset with
color transformation (RGB) by adding background noise to make it complex.

• The Extended Modified National Institute of Standards and Technology(EMNIST) [140]
dataset is bigger and has more variety than the original MNIST dataset. Each image in
the EMNIST dataset is 28x28 pixels. It has more than 800,000 handmade letters, numbers,
and punctuation marks, including both uppercase and lowercase letters. This makes it more
complicated and different from the original MNIST collection.
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7.1.2. Fashion MNIST
FashionMNIST [149] replaces MNIST by containing images of clothing and accessories instead

of handwritten numbers. It contains 28x28 grayscale images of one fashion item, such as a shirt,
purse, or shoe. The dataset contains 60,000 and 10,000 training and testing images respectively.
It is more complex than MNIST because it contains different patterns and forms for sample
representation.

7.1.3. Leaf
Leaf [142] is a benchmark that includes a collection of open-source federated datasets with

different types of data. Each of them groups a set of samples collected from different users. It
is used to evaluate FL, multitask learning, and meta-learning frameworks and algorithms. Its
sub-datasets are represented as follows.

• Federated Extended MNIST (FEMNIST) is a derivative of the EMNIST dataset. It includes
grayscale images of 28x28 pixels, each representing handwritten digits, as well as both upper
and lowercase characters. What sets FEMNIST apart is that these images are distributed
across multiple clients, thus simulating a realistic FL scenario.

• Sentiment140 dataset is a widely-used dataset for sentiment analysis and opinion mining
[150]. It consists of 1.6 million tweets annotated with emoticons indicating positive, negative,
and neutral sentiments. The tweets in the Sentiment140 dataset are written in English and
cover a wide range of topics, including politics, sports, entertainment, and technology.

• Shakespeare dataset refers to a collection of texts written by the English playwright and
poet William Shakespeare [143]. The dataset typically includes all of Shakespeare’s known
works, including his plays, sonnets, and poems. The dataset is used to train neural network
models that predict the next character of a word.

• CelebA is a large-scale face attributes dataset consisting of over 202,599 celebrity images
[151], each with 40 attribute annotations. The dataset was produced specifically for the
purpose of using it in facial attribute recognition activities, such as face categorization,
attribute prediction, and face modification.

• Reddit dataset is a collection of data from the popular social media platform [152]. This data
typically includes information such as user comments, submissions, and upvote/downvote
counts. It can be obtained through the Reddit API or by web scraping, although access to
the full dataset can be limited due to size constraints and Reddit’s terms of service.

7.1.4. CIFAR-100 & CIFAR-10
The CIFAR-100 [144] dataset was developed by the Canadian Institute For Advanced Research.

It is widely used as a benchmark for image classification and computer vision applications. it is
a labeled subset of the 80 million small images dataset. They’re all labeled with one of 100 fine-
grained classes that are combined into 20 coarse-grained classes. Also, CIFAR-10 dataset extends
CIFAR-100 dataset. It consists of 60,000 32x32 color training images and 10,000 test images, with
10 classes.
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7.1.5. Quick, draw!
The Quick, Draw! dataset is a collection of hand-drawn sketches created by users of the Quick,

Draw! game, an online game [153] developed by Google that challenges players to draw a picture
of an object in 20 seconds. The game records the sketches and stores them in the Quick, Draw!
dataset, which contains over 50 million drawings across 345 categories, such as animals, objects,
and symbols.

FashionMNIST MNIST MNISTM EMNIST

USPS SVHN CIFAR-100 CelebA

Quick, Draw!

Table 7: Examples of FL benchmark computer vision datasets.

Comparison
The features of numerous benchmark datasets frequently used for FL simulations are listed in

8. These datasets cover a wide range of topics, including sentiment analysis in text, handwritten
digits, home numbers, apparel, and more. There are differences between them in terms of the
number of classes, the types of data they contain (text, images in grayscale or color), the size of
the sample set, the dimensions of the data, and the amount of preprocessing necessary. Several
datasets, especially MNIST, USPS, MNIST-M, and EMNIST, are centered on handwritten digits,
with the latter extending to handwritten letters. They are all grayscale pictures that require little
preprocessing. The SVHN dataset, on the other hand, contains color images and requires just a
little preparation. The Sentiment140 dataset, collected from Twitter, requires considerable pre-
processing in the text domain, including tasks like tokenization and stop word removal. Similarly,

51



the Reddit dataset, which contains billions of comments, necessitates considerable preparation in
order to anonymize the data and remove stop words.

In summary, This wide array of datasets meets the diverse needs of FL simulations and depends
on the research problem and, consequently, the type of data that needs to be processed. Our FL
review revealed that a large portion of the contributions was evaluated using images because of
their complex pre-process and NN models. In such cases, the proof of algorithms on increasingly
complicated scenarios would imply that they are adaptable to every scenario.
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Dataset Domain Classes Data Type Sample size Dimensions Preprocessing
Required

MNIST [124] Handwritten Digits 10 Grayscale Images 60,000 Training, 10,000 Testing 28x28 Minimal

USPS [125] Handwritten Digits 10 Grayscale Images 7,438 Training, 1,860 Testing 16x16 Minimal

SVHN [148] House Numbers 10 Color Images 73,257 Digits for training, 32x32 Moderate (e.g., bounding
26,032 Digits for testing box localization)

MNIST-M [140] Handwritten Digits 10 RGB Images 60,000 Training, 10,000 Testing 28x28 Minimal

EMNIST [140] Handwritten Digits 62 (10 digits + 26*2 letters) Grayscale Images 800,000 28x28 Minimal
Letters

Fashion MNIST [149] Clothing 10 Grayscale Images 60,000 Training, 10,000 Testing 28x28 Minimal

FEMNIST [142] Handwriting 62 (10 digits + 26*2 letters) Grayscale Images 3,550,000 28x28 Minimal

Sentiment140 [150] Text Sentiment 2 (Positive, Negative) Text 1,600,000 Tweets Variable Length Yes (e.g., tokenization,
stop word removal)

Shakespeare [143] Text N/A Text 35 Plays, 154 Sonnets Variable Length Yes (e.g., tokenization, parsing)

CelebA [151] Faces 40 Attributes Color Images 202,599 218x178 Moderate (e.g., cropping,
scaling, face alignment)

Reddit [152] Textual Conversations N/A Text Billions of comments Variable Length Yes (e.g., tokenization,
stop word removal, anonymization)

CIFAR-10 [144] Objects 10 Color Images 50,000 Training, 10,000 Testing 32x32 Minimal

CIFAR-100 [144] Objects 100 Color Images 80 million Images 32x32 Minimal

Quick Draw [153] Sketches 345 Strokes as coordinates 50 million Variable Length Yes (e.g., normalization, scaling)

Table 8: Comparison of Benchmark Datasets used for Federated Learning Simulation.
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7.2. FL Frameworks
The realm of FL has witnessed the development of various dedicated tools and frameworks,

each incorporating a range of FL algorithms. These tools are strategically designed to facilitate the
seamless implementation of FL in practical, real-world scenarios. Consequently, the objective of
this section is to introduce and discuss a selection of these practical frameworks that significantly
contribute to the ongoing advancement and application of FL.

7.2.1. Federated AI Technology Enabler (FATE)
FATE [154] is the first industry-grade open-source framework for FL, launched in February

2019. It enables companies and institutions to collaborate on data while protecting data security
and privacy. It supports HFL and VFL categorization and implements secure computing protocols
based on DP and SMPC. Also, it supports a number of FL algorithms, including logistic regression,
tree-based algorithms, DL, and TL.

7.2.2. Substra
Substra [155] is a Owkin project centered on data ownership and privacy, providing an en-

terprise solution tailored for healthcare. With various interfaces, including a Python library,
command-line interfaces, and a graphical UI, it caters to a wide range of users. The framework’s
commitment to privacy, traceability, and security is reinforced through encryption for model up-
dates, data storage, and network communication. This makes Substra an apt choice for sensitive
sectors like healthcare. It accommodates DL models, employs HFL for data partitioning, and uses
SMPC as a security measure.

7.2.3. PyTorch
PyTorch [156] is a widely-used, open-source ML framework developed by Facebook’s artificial

intelligence research group. Based on Python, it provides comprehensive support for the con-
struction and training of neural networks. Notably, PyTorch is flexible and capable of supporting
large-scale deployments on mobile devices, and all data partition types. It facilitates FL by of-
fering resources and tools to implement this technique from scratch, such as benchmark datasets
and security libraries. Moreover, PyTorch extends its commitment to security by incorporating
SMPC and DP as security strategies.

7.2.4. PySyft
PySyft [157] is a privacy-focused Python-based DL library. Being built on top of the PyTorch

framework, it inherits some of PyTorch’s FL functionalities, such as data partitioning. PySyft
supports secure computations through encrypted computation and DP mechanisms to safeguard
data, and it employs both dynamic and static graphs of computations. Additionally, PySyft
provides HE as a security approach. Despite these capabilities, PySyft is primarily used for
simulations and as such, it may not offer the flexibility and support for large-scale collaborators
found in some other frameworks.

7.2.5. PyGrid
PyGrid [158] serves as a management and deployment API for PySyft, tackling real-world data

science challenges. It facilitates FL across various platforms, including the web, mobile devices,
and edge devices, providing the infrastructure to distribute and orchestrate computations across
multiple nodes or machines.
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7.2.6. Flower
Flower is an open-source and adaptable FL framework developed by the Systems and Net-

working Group at the University of Oxford [159]. Compatible with various ML libraries including
TensorFlow, PyTorch, and Keras, it supports an array of real-world FL scenarios, demonstrating
flexibility and extending support to mobile devices. As for secure aggregation, Flower incorporates
the SecAgg+ protocol [160], although it primarily supports HFL.

7.2.7. Open Federated Learning
OpenFL [161], developed by Intel, is an open-source Python compatible framework that sup-

ports scalable FL. It primarily caters to HFL. The framework comprises two main components: the
Collaborator, representing the end device, and the Aggregator. OpenFL provides both a Python
API and a Command-Line Interface, accommodating diverse modes of user interaction. Security
for inter-node communication is ensured through mutual TLS (mTLS), a protocol enabling bidi-
rectional authentication among all nodes within the federation, each of which must be certified.
OpenFL also has data compression capabilities, offering both lossy and lossless options to opti-
mize data transmission. Furthermore, it operates within Docker containers, isolating federation
environments for enhanced security and reproducibility of FL tasks.

7.2.8. TensorFlow Federated (TFF)
TFF [4] is a Python open-source framework developed by Google that implements FL to

trait decentralized data on multiples servers; it shares a global model to clients. Also, it enables
developers to use the included FL algorithms. There are two types of TFF layers: federated
learning API, which is a layer that allows developers to use the existing TensorFlow models in order
to implement FL. It consists of three main parts: Models, which are classes and helper functions
that enable the wrapping of existing models with TFF, Federated Computation Builders that
are the helper functions to construct federated computations, and Datasets, which are used for
simulation scenarios. Federated Code API, which is a layer that allows developers to express novel
federated algorithms by combining TensorFlow with distributed communication operators.

7.2.9. IBM FL
IBM FL [162] is a versatile Python framework for FL, developed by IBM. It provides the nec-

essary resources for collective model training, independent of any single ML framework, thereby
supporting a variety of learning topologies. Both DL and traditional ML techniques are ac-
commodated, spanning supervised, unsupervised, and RL methodologies. With HFL as a data
partitioning scheme and SMPC and DP as security approaches, IBM FL is flexible and robust. It
extends support to mobile devices and major companies, making it viable for real-world scenarios.

7.2.10. NVIDIA Clara
NVIDIA Clara [163] is a platform designed for the innovation and deployment of AI-powered

imaging, genomics, and smart sensor solutions. It enables developers, data scientists, and re-
searchers to build real-time, secure, and scalable solutions using comprehensive GPU-accelerated
frameworks, SDKs, and reference applications. NVIDIA Clara leverages AutoML, privacy-preserving
FL, and TL for the construction of sophisticated DL models. It supports HFL as a data parti-
tioning strategy, and utilizes SMPC and DP for ensuring secure computations. Demonstrating
flexibility, NVIDIA Clara primarily extends its support to powerful hospitals, highlighting its
real-world application in global healthcare scenarios.
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7.2.11. Federated Machine Learning (FedML)
FedML [164] is an open-source research framework designed to enable researchers and devel-

opers to experiment with various FL algorithms and benchmark their performance against others.
It offers a range of experimental datasets and models, along with tools for performance measure-
ment and result analysis. FedML supports HFL, VFL, and FTL as data partitioning strategies.
Additionally, it employs DP and SMPC as security techniques. The framework is inclusive of
numerous state-of-the-art aggregation algorithms, and caters to three computing paradigms: dis-
tributed computing, standalone simulation, and mobile on-device training.

Comparison
Table 9 presents a detailed comparison of various FL frameworks. Each framework is evaluated

on several key parameters, including the maintainer, language, support for different ML models,
support for different FL data partition types (HFL, VFL, FTL), scalability, mobile support, pri-
vacy considerations, and the availability of documentation. These frameworks are maintained by
diverse companies, each contributing distinct technologies and solutions for FL deployment. Some
frameworks like IBM FL, OpenFL, and FedML offer a high level of abstraction, providing prede-
fined solutions where developers simply choose the ones suitable for their application. Although
this can streamline the development process, it can also limit developers’ flexibility and enforce
certain constraints. Alternatively, frameworks such as PyTorch and TensorFlow, when used in
combination with libraries like PySyft and TFF, offer the flexibility of building FL solutions from
scratch. These platforms provide support for all FL types and offer a variety of methods and
approaches for implementing FL. Regarding privacy, each of the compared frameworks imple-
ments robust techniques to ensure data protection. For instance, PyTorch and FedML use SMPC
and DP, while Flower leverages SecAgg+ and OpenFL uses mutual TLS for secure internode
communication. When it comes to documentation, all frameworks offer comprehensive guides,
enabling developers to understand the framework’s architecture and operation. This reflects that
these frameworks are well-supported and actively maintained by their respective communities or
companies

7.3. Federated Learning Evaluation Metrics
Metrics for evaluating FL solutions can be put into a number of categories, such as commu-

nication efficiency, contribution measurement, model performance, and assessment of the whole
training process.

7.3.1. Communication efficiency
Evaluating the communication efficiency [165] of the FL algorithms is one of the key objectives

in this area of study. During the training process, this may be evaluated by measuring the amount
of data that is communicated between participant devices and the central server and the number
of FL CR needed to achieve the target goal. This has the potential to have a major impact on the
performance of the system as a whole.

7.3.2. Contribution measurement
When participating in FL, it is absolutely necessary to evaluate the contribution made by each

participant to the overall process [166]. This assists in determining credits fairly and ensures that
each party’s contributions are correctly appreciated. One way that contribution can be measured
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is by an analysis of the effect that the data contributed by each participant has on the accuracy
of the global model as a whole.

7.3.3. Model performance
Evaluating the model performance is done by determining the accuracy, convergence rate,

generalization ability, and effectiveness of the global model that was developed through the FL
process and training using decentralized IID or non-IID data from many participants [4]. Also,
Benchmarking different FL algorithms can help assess its performance, such as FedAVG [4] and
centralized AI approach.

7.3.4. Computation overhead
The computation overhead metric determines how much computation time, and resource uti-

lization are required for each participant device, as well as the servers that have to be used in
order to complete the tasks that came with the FL system [167]. This metric can be measured
by MIPS (Million Instructions Per Second) and FLOPS (Floating Point Operations Per Second)
[19], which are general performance parameters for computers and processors [168].

7.3.5. Privacy and Security robustness
When evaluating the robustness of privacy and security in FL, it is necessary to first get

a comprehension of the potential vulnerabilities and threats, and then evaluate the efficacy of
the solutions that have been implemented to tackle these risks [169]. This can be measured by
evaluating the resilience of the developed FL system against various attacks that are mentioned
in Section 5.3.

7.4. Discussion
In this section, we have mentioned the final steps in the process of developing a FL technique,

including the use of benchmark datasets like MNIST [124] in order to validate the developed
algorithms, knowing that the data is private in the context of FL and therefore the validation is
done on benchmarks and the application is done on real use cases. Then, the technical development
of FL is implemented using frameworks and libraries such as TFF [4] which are used to apply
existing techniques or the development from scratch of new tools. The choice of such a framework
depends on the needs and requirements of the developed FL method. Finally, the most critical
step is the evaluation of such a technique using a set of measures such as the evaluation of the
communication and computational overload, the level of contribution of the participants, the
performance of the model, and the robustness of the system against privacy and security challenges.
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Framework Reference Maintainer Language ML model HFL VFL FTL Scalability Mobile support Privacy concerns Documentation

Fate [154] Webank & Python
√ √ √

×
√

× SMPC, DP
√

Linux Foundation

Substra [155] Owkin Python DL
√

× ×
√

× SMPC
√

PyTorch [156] Facebook Python
√ √ √ √ √ √

SMPC, DP
√

Pysyft [157] OpenMined Python DL
√ √ √

× × SMPC, HE
√

PyGrid [158] OpenMined Python DL
√ √ √ √

× SMPC, HE
√

Flower [159] Adaptscale Python
√ √

× ×
√ √

SecAgg+
√

OpenFL [161] Intel Python
√ √

× ×
√

× Mutual TLS
√

TensorFlow Federated [4] Google Python Tensorflow
√ √ √ √ √

DP
√

(TFF) ML models

IBM FL [162] IBM Python
√ √

× ×
√ √

DP, SMPC
√

NVIDIA Clara [163] NVIDIA Python, Medical Imaging
√

× ×
√

× SMPC, DP
√

C++ DL models

FedML [164] FedML Community Python
√ √ √ √ √ √

SMPC, DP
√

Table 9: Comparison of Federated Learning Frameworks
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8. Discussion and perspectives

This paper has provided a comprehensive and systematic review of the FL, covering a wide
range of topics including the FL categories, challenges, aggregation methods, and development
tools. In particular, we have discussed the challenges of FL, including communication costs,
system heterogeneity, statistical heterogeneity and privacy concerns. We have also evaluated and
compared the effectiveness of the existing aggregation algorithms such as FedAVG, FedProx, and
FedMA in addressing these challenges.

Moreover, this review paper has included an extensive discussion of the benchmark datasets,
frameworks and evaluation metrics used to assess the performance of FL systems. By providing an
overview of these tools, we aim to provide a valuable resource for new researchers and developers
in the field of FL, enabling them to make informed decisions about the tools and techniques that
best suit their specific needs.

• Future Research Directions: As FL continues to evolve, it is crucial to explore new
aggregation algorithms and techniques that can address the diverse challenges faced by this
field. These may include novel approaches to handle increasingly complex and heterogeneous
data, as well as innovative methods to deal with security and privacy concerns. Researchers
should also focus on developing more robust and scalable solutions that can work efficiently
across different domains and applications.

• Cross-Domain Adaptation: One possible avenue for future research is to investigate the
potential of applying FL to cross-domain adaptation scenarios. This would involve exploring
how FL techniques can be used to transfer knowledge across various domains and adapt
models to new, previously unseen data distributions.

• Integration of Advanced Techniques: Integrating advanced ML techniques, such as
meta-learning, reinforcement learning, and transfer learning, with the FL can potentially
lead to significant improvements in model performance, generalization, and adaptability.
Investigating these integrations can pave the way for more powerful and efficient FL systems.

• Real-world Applications: With the growth of the FL, it is essential to consider its ap-
plicability in real-world scenarios, such as healthcare, finance, smart cities, and industrial
IoT. Developing and validating the FL solutions for these domains can help address critical
challenges and demonstrate the practical utility of this technology.

• Standardization and Benchmarking: As the FL research advances, it is crucial to es-
tablish standard benchmarks and evaluation metrics that allow for the fair and consistent
comparison of different algorithms and approaches. This will facilitate the identification of
best practices and promote the development of more effective FL systems.

In summary, this paper has delivered a comprehensive understanding of the current state of FL
by synthesizing key findings from various survey papers. By identifying the strengths, limitations,
and challenges in the existing literature, this work serves as a robust foundation for future research
and development in this rapidly evolving field. Additionally, by highlighting potential future direc-
tions and opportunities, it encourages researchers to explore innovative solutions and applications,
further contributing to the growth and maturity of FL as a transformative technology.
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Appendix A. List Of abbreviation

IoT Internet of Things

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

FL Federated Learning

TL Transfer Learning

NN Neural Network

RL Reinforcement Learning

MLP Multi-Layer Perceptron

MLR Multinomial Logistic Regression

CNN Convolutional Neural Networks

LSTM Long short-term memory

GD Gradient Descent

IID Independent and Identically distributed

HFL Horizontal Federated Learning

VFL Vertical Federated Learning

FTL Federated Transfer Learning

P2P Peer to Peer

CR Communication rounds

ID Identity

HE Homomorphic Encryption

DP Diffirential Privacy

SMPC Secure Multi-Party Computation

SLR Systematic Literature Review

RQs Research Questions

API Application Programming Interface
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