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Abstract. In this paper, we aim to advance the state of the art in the
verification process of systems, predominantly modeled as Probabilistic
Automata (PA). This model accommodates both nondeterministic and
probabilistic behaviors. Our primary strategy to address the notorious
state space explosion problem inherent in model checking is the adop-
tion of abstraction and compositional verification techniques, culminat-
ing in the development of a distributed verification approach centered on
the communication interface amongst composed automata. Initially, the
abstraction technique refines the system in relation to the requirement
under verification and amalgamates states demonstrating comparable
behaviors. Not only does it simplify the system, but it also enables a
decomposition of global requirements into local ones. This decomposi-
tion process facilitates parallel verification and securely allows inference
on the global requirement from local results. Moreover, the soundness
of our proposed framework has been substantiated, ensuring that it cor-
rectly interprets and applies the properties of the system under scrutiny.
In the final phase, we leveraged the PRISM model checker to assess the
effectiveness of our proposed framework. This evaluation was carried out
on three benchmark tests, providing empirical evidence to support the
benefits of our approach. Our contribution to the field lies in the novel
combination of abstraction and compositional verification techniques in a
distributed verification framework, validated through theoretical sound-
ness proofs and practical tests using the PRISM model checker. This
result paves the way for more efficient and scalable model-checking pro-
cesses for Probabilistic Automata.

Keywords: Abstraction; Compositional Verification; Probabilistic Au-
tomata; PRISM; PCTL.

1 Introduction

Model checking [1,2] is a well-established formal automatic verification technique
designed for finite-state concurrent systems. It examines temporal logic specifi-
cations and automata-based formalism on system models. Alongside qualitative
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model checking, quantitative verification methods based on probabilistic model
checkers [3,4] have recently gained traction. Probabilistic verification enables
probabilistic interpretation of a given property’s satisfiability in systems that
intrinsically exhibit probabilistic behavior. Despite its broad adoption, model
checking typically requires substantial memory and processing time, which can
be attributed to the potentially exponential growth of the system’s state space
due to the number of variables and concurrent behaviors. Therefore, reducing
the complexity of the verification process is paramount for verifying large-scale
systems.

Various techniques have been investigated [1,2,3,5] to address the aforemen-
tioned issue in qualitative model checking, which were subsequently extended
to the probabilistic case. These solutions broadly aim to enhance the model-
checking algorithms by introducing symbolic data structures such as binary de-
cision diagrams, or focusing on model analysis. Predominantly, two classes of
solutions are identified in the literature: abstraction and compositional verifica-
tion. Abstraction provides a compact representation of the global system under
verification, while compositional verification bypasses the construction of the
whole system parts. Our work delves into both classes.

Abstraction techniques fall into four categories [2]: 1) state merging abstrac-
tion, 2) variable abstraction, 3) restriction-based abstraction, and 4) observer
automata abstraction. Our proposed framework exploits the first and third cat-
egories. Additionally, well-recognized compositional verification techniques [6]
include partitioned transition relation, lazy parallel composition, interface pro-
cesses, and assume-guarantee. We employ the interface processes technique to
counteract the state explosion problem in our work.

Contributions. Figure 1 presents an overview of our proposed framework,
which accepts a system modeled as a composition of Probabilistic Automata
(PA) and a requirement expressed in Probabilistic Computation Tree Logic
(PCTL) [4] as input. Initially, the abstraction by restriction disregards the irrele-
vant propositions concerning a specific requirement. Subsequently, our developed
state merging rules aggregate states that depict similar behaviors. To showcase
the efficiency of our approach, we employ compositional verification using inter-
face processes to verify local PCTL properties on the resultant PAs separately.
Finally, we use the probabilistic model checker PRISM [7] as a probabilistic
verification engine.

PA
+ PCTL Property

Global Result

Abstracted PA
+ Local PCTL Properties

Minimized PA
+ Local Properties

Parallel
Verification

Inferring

Abstracting Distributing

Minimizing

CheckingPrism

Fig. 1: The Interface-based Probabilistic Compositional Verification.
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Related Work. There is a vast literature dealing with the abstraction and
compositional verification of probabilistic systems. For instance, [8] introduced
a game-based abstraction approach for systems exhibiting both discrete and
continuous events, as well as Markov Decision Processes, as described in [9].
Symmetry reduction has been proposed in [10,11]. The partial order reduction
is applied for the probabilistic branching time in [12]. In terms of probabilis-
tic compositional verification, [13,14,15] proposed an assume-guarantee method
for verifying the probabilistic safety properties of discrete-time Markov chains.
To our knowledge, several probabilistic model checkers, such as PRISM, which
supports symmetry reduction, and LiQuor4, which includes the partial-order
reduction, also support abstraction.

Paper Organization. The remainder of this paper is structured as follows.
The subsequent section presents the models for our systems and the specifica-
tions for their requirements. The compositional reduction approach we propose
is detailed in Section 3. The PRISM language is formalized in Section ??. Ex-
perimental results are presented in Section 4, and finally, Section 5 concludes
the paper.

2 Probabilistic systems

This section delves into the fundamental characteristics and applications of prob-
abilistic systems, and further examines the methodologies employed in proba-
bilistic modeling. Subsequently, specific focus is dedicated to the precise specifi-
cation of probabilistic system requirements.

2.1 Probabilistic modeling

In systems featuring both non-determinism and probabilistic choices, Probabilis-
tic Automata (PAs) present an apt formal model for design and representation.
For a clearer understanding, let’s look at the formal definition of a PA in Defi-
nition 1.

Definition 1 (Probabilistic Automata). A Probabilistic Automaton (PA) is
a quintuple M = (s, S, L,Σ, δ) wherein:

– s, a member of S, denotes the initial state,
– S is a finite set of states that are reachable from s,
– L : S → 2AP is a labeling function assigning a set of atomic propositions

from a set AP to each state,
– Σ stands for a finite set of actions,
– δ : S×Σ → Dist(S) is a probabilistic transition function that, for each state
s ∈ S and action α ∈ Σ, assigns a probability distribution µ ∈ Dist(S). Here,
Dist(S) symbolizes the set of convex distributions over S.

4 http://www.i1.informatik.uni-bonn.de/baier/projectpages/LIQUOR/LiQuor
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Typically, a system is composed of multiple interacting components. This
concept in PAs is manifested through the principle of parallel composition, de-
scribed in Definition 2.

Definition 2 (Parallel Composition of PAs). The parallel composition of
two PAs: M1 = (s1, S1, L1, Σ1, δ1) and M2 = (s2, S2, L2, Σ2, δ2), is represented
as a PA M = ((s1, s2), S1 × S2, L,Σ1 ∪Σ2, δ) where:

– L(s1, s2) = L1(s1) ∪ L2(s2),
– For each pair of probability distributions µ1 ∈ δ1(s1, α) and µ2 ∈ δ2(s2, α),

we define:

δ((s1, s2), α) =











µ1 × µ2 if α ∈ Σ1 ∩Σ2,

µ1 if α ∈ Σ1 \Σ2,

µ2 if α ∈ Σ2 \Σ1.

2.2 Requirements specification

To verify a Probabilistic Automaton (PA), we apply the Probabilistic Computa-
tion Tree Logic (PCTL) to define associated specifications. In the BNF grammar
provided below, ”ap” represents an atomic proposition, k is an element of the
natural numbers set N, p is within the interval [0, 1], and ⊲⊳ signifies the set of
relational operators <,≤, >,≥. The symbols “∧” and “¬” are logical operators
denoting conjunction (AND) and negation (NOT), respectively. Temporal logic
operators include “X” (next), “U≤ k” (bounded until), and “U” (until). Formally,
the PCTL syntax is defined as:

φ ::= ⊤ | ap | φ ∧ φ | ¬φ | P⊲⊳ p[ψ], (1)

where
ψ ::= Xφ | φU≤ kφ | φUφ. (2)

We can also derive additional operators:

– True logic: ⊤ ≡ ¬⊥.
– Disjunction: φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2).
– Implication: φ1 → φ2 ≡ ¬φ1 ∨ φ2.
– Future operator: Fφ ≡ ⊤ U φ or F≤ kφ ≡ ⊤ U≤ k φ.
– Globally operator: Gφ ≡ ¬(F¬φ) or G≤ kφ ≡ ¬(F≤ k¬φ).
– Probability of always φ: P≥p[Gφ] = P≤1−p[F¬φ].

To describe a satisfaction relation of a PCTL formula in a given state ”s”,
we introduce the concept of a class of adversaries (Adv) [4]. An adversary is
employed to resolve the non-deterministic choices in a PA, meaning a PCTL
formula should be satisfied under all possible adversaries. Thus, the satisfaction
relation (|=Adv) of a PCTL formula is defined as follows, where ”s” is a state
and ”π” is a sequence of states, or path:
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– s |=Adv ⊤ is always satisfied.
– s |=Adv a⇔ a ∈ L(s), where L(s) is the labeling function of state s.
– s |=Adv φ1 ∧ φ2 ⇔ s |=Adv φ1 and s |=Adv φ2, and s |=Adv ¬φ⇔ s 6|=Adv φ.
– π |=Adv Xφ⇔ π(1) |=Adv φ, where π(1) is the second state in path π.
– π |=Adv φ1U

≤kφ2 ⇔ ∃i ≥ k, ∀j < i : π(i) |=Adv φ2 and π(j) |=Adv φ1.
– π |=Adv φ1 Uφ2 ⇔ ∃ k ≥ 0 : π |=Adv φ1U

≤kφ2.
– s |=Adv P⊲⊳ p[ψ] ⇔ PsAdv

({π|πAdv |= ψ}) ⊲⊳ p, where PsAdv
represents the

probability measure over all paths π starting from state s under adversary
Adv.

3 Interface-based Verification Approach

This section provides a comprehensive overview of our methodology for verifying
a PCTL property in a probabilistic system. The explanation is structured into
two key subsections. The first subsection, i.e., Section 3.3, introduces a mini-
mization algorithm that aims at reducing a Probabilistic Automaton (PA) while
considering a PCTL property. Suppose S is a probabilistic system composed of
n Probabilistic Automata (PAs), represented as Mj:1≤j≤n. The system S can
be denoted by the expression M1 ‖i1 · · · ‖in−1

Mn, where “‖i” signifies a com-
position operation involving synchronization between PAs through a particular
interface i. Crucial properties associated with the composition operator “‖i” are
commutativity and associativity.

3.1 Minimization Phase

In an attempt to manage the complexity of model composition, we propose a
strategy to reduce the behavior of a model utilizing a minimization operator.
This operator is defined in Definition 3 and represented by “↓”. We define M ′ =
M ↓ap as the operation of minimizing the behavior of M to obtain M ′ with
respect to the atomic proposition ap. We also use L(ap) to denote the set of
PCTL formulas that include ap ∈ AP .

Definition 3 (Model Minimization). The process of minimizing a model M
to M ↓ap should abide by the following rules:

1. Rule 1: ∀ap /∈ APsi :M(si−1 → si → si+1) ↓ap=M(si−1 → si+1).
2. Rule 2: ∀ap /∈ APsi :M(si−1 →p1

si →p2
si+1) ↓ap=M(si−1 →p1×p2

si+1).
3. Rule 3: ∀ap /∈ APsi ∩APs′

i
:M(si−1 →p si →p1

si+1; si →1−p1
s′i+1;

si−1 →1−p s
′
i →p2

si+1; s
′
i →1−p2

s′i+1) ↓ap= M(si−1 →
p1×p× 1

p+p′
+p2×

p′

p+p′

si+1; si−1 →
1−p1×

p

p+p′
+p2×

p′

p+p′
s′i+1).

In this paper, we describe a relation between two Probabilistic Automata
(PAs), denoted as M and M ′ and symbolized as MRM ′. This relationship is
characterized by the concept of weak simulation, which incorporates the idea of
observable actions interspersed between invisible actions. We denote the latter
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using the symbol “↓”. Formally, the probabilistic weak simulation relation in-
troduces the concept of observable action “a”, which is preceded and followed
by sequences of invisible steps. This weak transition is notated as s

a
=⇒ P ,

where P is the distribution over states reached from state s through a series of
combined steps.

Definition 4 (Probabilistic Weak Simulation). A probabilistic weak sim-
ulation between two Probabilistic Automata (PAs) M1 and M2 is a relation
R ⊆ S1 × S2 if, and only if:

1. Each initial state of M1 is related to at least one initial state of M2, and

2. For each pair of states (s1, s2) such that s1Rs2, and for each transition

s1
a
−→ µ1 in M1, there exists a weak combined transition s2

a
=⇒ µ2 in M2

such that µ1 ⊑R µ2.

In the above definition, ⊑R is the lifting of relation R to probability distri-
butions, achieved by employing a weight function as introduced by Segala [16].
This weight function, denoted by △, associates each state in M1 with a set of
states in M2, each assigned a particular probability. The formal definition of the
weight function is provided below.

Definition 5 (Weight Function). A function △ : S × S′ → [0, 1] is a weight
function for the two distributions µ1, µ2 ∈ Dist(S) with respect to R ⊆ S × S′,
if and only if:

1. If △(s1, s2) > 0 then (s1, s2) ∈ R,

2. For all s1 ∈ S:
∑

s2∈S △(s1, s2) = µ1(s1), and

3. For all s2 ∈ S′ :
∑

s1∈S △(s1, s2) = µ2(s2).

Below, Proposition 1 establishes that the relation between two Probabilistic
Automata, M and M ′, is a probabilistic weak simulation.

Proposition 1 (Minimization Relation). Given two Probabilistic Automata,
M and M ′, we denote the probabilistic weak simulation of M by M ′ as M -w

M ′, where M ′ is the result of a reduction process applied to M which abstracts
away invisible actions, symbolized by M ′ =M ↓ap.

Proof. The proof is provided in the appendix section. ⊓⊔

Property 1 (Minimization Preservation). Given a property φ expressed in the
PCTL language L(ap), and a set of atomic propositions ap that are relevant in
the context of M , if the minimized version of M , denoted by M ↓ap, satisfies φ,
then the original PA M must also satisfy φ. Mathematically, this is expressed as
∀φ ∈ L(ap), ap ∈ APM : M ↓ap|= φ⇒ M |= φ.

Proof. The proof is given in the appendix. ⊓⊔
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Proposition 2 (-w Composition). The probabilistic weak simulation relation
preserves the composition of PAs: if M1 is weakly simulated by M ′

1, then the
composition ofM1 with another PAM2 is weakly simulated by the composition of
M ′

1 with the same M2. Mathematically, this is expressed as M1 -w M ′
1 ⇒ M1 ‖i

M2 -w M ′
1 ‖i M2.

Proof. The proof is in the appendix. ⊓⊔

Definition 6 (Minimization Rule). Given a composed PA M1 ‖i M2, the
minimization rule prescribes the following transformations:

– Construct M ′
2 as the minimized version of M2 with respect to the shared

interface i, formally M ′
2 ≡ M2 ↓ap(i). Here, M

′
2 represents the behavior of

M2 that is observable by M1.
– For any property φ expressed in the language L(ap(i)∪APM1

), if M1 ‖i M
′
2

satisfies φ, then M1 ‖i M2 also satisfies φ. Mathematically, ∀φ ∈ L(ap(i) ∪
APM1

) : M1 ‖i M
′
2 |= φ⇒ M1 ‖i M2 |= φ.

Theorem 1 (Soundness). The minimization rule, as specified in Definition 6,
is sound.

Proof. The proof of the soundness is given in the appendix. ⊓⊔

3.2 The Composition Phase

In this section, we detail the process of decomposing a global property into lo-
cal ones. Definition 7 introduces the decomposition operator “♮”, which enables
compositional verification by substituting the propositions of a PA with propo-
sitions related to its interfaces. This operator utilizes the substitution notation
Q[z/y] from the π-calculus, which denotes that in the structure Q, the term z
replaces the term y.

Definition 7 (PCTL Property Decomposition). Let φ be a PCTL property
to be verified on M1 ‖i M2. The decomposition of φ into φ1 and φ2 is denoted by
φ = φ1♮iφ2, where:

1. AP (φ) = (AP (φ1) ∪ AP (φ2))\{ap(i)}, with ap(i) representing the atomic
propositions related to interface i,

2. AP (φ1) is a subset of APM1
,

3. AP (φ2) is a subset of APM2
,

4. φ1 = φ([[ap(i)/APM2
]]),

5. φ2 = φ([[ap(i)/APM1
]]).

Property 2 demonstrates that the decomposition operator “♮” exhibits com-
mutative and associative properties.

Property 2. For M1 ‖i M2, the decomposition operator ♮i is both commutative
and associative:
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1. φ1♮iφ2 ≡ φ2♮iφ1.
2. φ1♮i1(φ2♮i2φ3) ≡ (φ1♮i1φ2)♮i2φ3.

Proof. The proof approach for Property 2 follows a style analogous to that of
Property ??, and is based on Definition 7. ⊓⊔

Proposition 3. The decomposition of the PCTL property φ using the decom-
position operator ♮ for the parallel composition M1 ‖i M2 is sound.

Proof. The proof of Proposition 4 is in the appendix. ⊓⊔

The key advantage of Proposition 4 is its ability to derive the deduction rule
for the interface operator, as outlined in Theorem 2.

Theorem 2 (Compositional Reduction - CR). Let φ be a PCTL property
to be verified on M , such that: M = M1 ‖i M2 and φ = φ1♮iφ2. The following
deduction rule applies:

M1 ‖i M2 ↓ap(i)|= φ1 M2 |= φ2 φ = φ1♮iφ2

M1 ‖i M2 |= φ

Property 3 (CR-Symmetry). The compositional reduction rule is symmetric.

M1 ‖i M2 ↓ap(i)|= φ1 M2 |= φ2 φ = φ1♮iφ2

M1 ‖i M2 |= φ

Proof. The proof follows the same structure as the proof of Theorem 2. ⊓⊔

Proposition 4. The decomposition of a PCTL property φ by the decomposition
operator ♮ for M1 ‖i M2 is sound.

Proof. The proof of Proposition 4 is in the appendix. ⊓⊔

3.3 The Verifition Phase

Our approach fundamentally relies on the PRISM model checker to ensure the
soundness of the probabilistic system under scrutiny, which is modelled as a com-
position of Probabilistic Automata (PAs). In this section, we delve into defining
the syntax and semantics inherent in the PRISM programming language. PRISM
has a versatile architecture that can accommodate a range of probabilistic mod-
els. These include Discrete-Time Markov Chains (DTMCs), Continuous-Time
Markov Chains (CTMCs), Markov Decision Processes (MDPs), Probabilistic
Timed Automata (PTAs), and Probabilistic Automata (PAs). It’s noteworthy
to mention that within the PRISM framework, PAs are referred to as MDPs.
However, in the process of formalizing the approach for this study, our primary
focus will be directed towards PAs. The choice of focusing on PAs is due to their
ability to model a wide array of complex, probabilistic behaviors that are crucial
for our study.
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A probabilistic system S described by a PRISM program P comprises a set
of n modules (n > 0). Each module’s state is defined by an evaluation of a set of
finite-ranging local variables. The system’s global state is the union of evaluations
of the local variables Vl and the global variables Vg, denoted as V = Vg ∪Vl. The
behavior of each module is defined by a set of guarded commands.

Each command dictates the primary behavior changes of P . A command is
of the form: [a] g → p1 : u1+...+pm : um or [a] g → u. This implies that, for the
action ‘a’, if the guard ‘g’ holds, then an update ‘ui’ is enabled with a probability
‘pi’. Guards are propositional formulas based on expressions’ comparisons. An
update ‘ui’ is a conjunction of assignments to variables: (v′j = valj)& · · · (v′k =
valk), where vi are variables and vali are values evaluated via expressions, en-
suring type consistency.

Definition 8 (PRISM Command). A PRISM command c is a tuple c =
(a, g, u) where:

– a is an action label,

– g is a predicate over V ,

– u = {(pi, ui)|m > 1, i ≤ m,
∑m

i=1,pi>0 pi = 1 and ui = {(v, eval(v))}} where
eval : V → N ∪ {true, false} assigns an integer or a boolean value to each
variable v ∈ V . If pi = 1, we omit the probability.

A module, which describes the behavior of a system’s sub-part, can be con-
sidered as a set of commands. Formally, it is defined as follows:

Definition 9 (PRISM Module). A PRISM moduleM is a tupleM = (var, init, cmd)
where:

– var is a finite set of local variables for the module,

– init are the initial values of var,

– cmd = {ci : 0 ≤ i ≤ m} is a set of commands defining the module’s behavior.

A system S, comprising n parts, can be described by a PRISM program P
containing n modules. The system components are combined using a Communi-
cating Sequential Processes (CSP) expression.

Definition 10 (PRISM System). A PRISM system is a tuple P = (var, exp,M1, . . . ,Mn, sys)
where:

– var = VG
⋃n

i=1 Vli is a finite set comprising the union of global and local
variables,

– exp is a global logic expression,

– M1, . . . ,Mn is a finite set of modules,

– sys is a CSP algebraic expression defining the combination of the models.
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4 Experimental Results

We implement our proposed framework on the Probabilistic Broadcast Proto-
col (PBP), the Randomized Dining Philosophers (RDP), and Leader Election
Protocol (LEP) benchmarks5. To compare the results of our approach, we ver-
ify PCTL properties on Probabilistic Automata (PA) models with and without
our method applied. We measure and compare the number of states (#S), the
number of transitions (#T), the time needed for the model construction (Tc
in seconds), and the time needed for the model verification (Tv in seconds).
We undertake this comparison with the aim of presenting empirical results that
validate the efficiency and effectiveness of our approach.

For the PBP benchmark, we aim to measure “the minimum probability that
the message sent by the base node 0 is successfully received by node j”, where
j ranges from 1 to 8. This property can be expressed in PCTL as follows:

Pmin =? [G ((active0 ∧ ¬send0) ⇒ F (¬activej ∧ ¬sendj))] (3)

Following the PBP model and the decomposition rule (Definition 7), we de-
compose Property 3 into two properties, 4 and 5. Property 4 concerns the atomic
propositions of node 0 and the propositions related to the interaction between
nodes 0 and j. As per Definition 7, the propositions of Property 5 only belong
to node j’s propositions.

Pmin =? [G ((active0 ∧ ¬send0) ⇒ F (activej ∧ ¬sendj))] (4)

Pmin =? [G ((activej ∧ ¬sendj) ⇒ F (¬activej ∧ ¬sendj))] (5)

Table 1 shows the verification costs for these properties.

j 1 2 3 4 5 6 7 8

Res(3) 0.246 0.0615 0.246 0.104 0.035 0.0615 0.035 0.0148
Res(4) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Res(5) 0.246 0.0615 0.246 0.104 0.035 0.0615 0.035 0.0148

Table 1: Verification Cost for PBP Benchmark

For the RDP benchmark, we aim to verify the proposition ”if a philosopher
is hungry, then eventually some philosopher eats”. Here, ”hungry” refers to any
action prior to the ”eat” action. This property can be expressed in PCTL as
follows:

”hungry” ⇒ P ≥ 1[true U ”eat”] (6)

5 http://www.prismmodelchecker.org/benchmarks
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This benchmark does not incorporate interfaces, so we confine our experi-
ments to the minimization algorithm. The verification costs of Property 6 are
shown in Table 2, where #Phil denotes the number of philosophers.

PRISM CR-Approach
#Phil #S #T Tc Tv Res #S #T Tc Tv Res

3 956 3696 0.027 0.379 T 596 2286 0.025 0.135 T
4 9440 48656 0.127 8.357 T 3964 20360 0.000905 4.396 T
5 93068 599600 0.358 124.707 T 36788 233208 0.006481 49.448 T
6 1288574 9879228 1.011 week T 460336 3475264 0.56 35289.578 T

Table 2: Verification Cost for RDP Benchmark

For the LEP benchmark, we evaluate ”the minimum probability that two
different processes do not have the same source”. For two different processes Pi

and Pj , the PCTL property for verification is expressed as follows:

Pmin =? [(Pi 6= Pj) ⇒ (source(Pi) 6= source(Pj))] (7)

Table 3 presents the verification cost of Property 7, where #Proc is the
number of processes. Similar to the RDP benchmark, LEP does not incorporate
common interfaces.

PRISM CR-Approach
#Proc #S #T Tc Tv Res #S #T Tc Tv Res

3 27 108 0.023 0.005 1 8 24 0.0 0.005 1
4 81 432 0.028 0.034 1 16 64 0.020 0.031 1
5 243 1620 0.113 0.249 1 32 160 0.036 0.041 1
6 729 5832 0.154 0.893 1 64 384 0.044 0.43 1
7 6561 69984 0.327 9.994 1 128 896 0.047 0.49 1

Table 3: Verification Cost For LEP Benchmark

The above results demonstrate that our verification framework preserves the
verification of PCTL properties while significantly reducing the verification size
and time.

5 Conclusion

In this paper, we presented a verification framework aimed at enhancing the
scalability of probabilistic model-checking. In particular, we targeted systems
modeled as probabilistic automata, which accommodate both nondeterminism
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and probabilistic choice behaviors. Our proposed framework harnesses proba-
bilistic abstraction to disregard and amalgamate behaviors deemed irrelevant
to a specified PCTL property. In addition, we introduced a probabilistic com-
positional verification mechanism to optimize model-checking efficiency. This
mechanism operates by decomposing a global PCTL property into local proper-
ties corresponding to the interfaces between PAs. We established the soundness
of our algorithms by elucidating the relationship between the abstract and con-
crete PAs, demonstrating that this relationship upholds the satisfaction of PCTL
properties. Considering our reliance on PRISM, we proposed dedicated syntax
and semantics for PAs specified within this context. Finally, we substantiated
the effectiveness of our approach by applying it to a benchmark.

Looking forward, we aim to extend our approach along several trajectories.
First, we intend to integrate our algorithms within the PRISM model checker.
Second, we plan to expand our proposed abstraction to address other formalisms
such as probabilistic timed and priced automata, stochastic Petri nets, and
SysML activity diagrams. Furthermore, we aim to investigate other abstrac-
tion approaches, specifically data abstraction targeting system features like time
and data. Lastly, we propose to explore strategies to reduce property within the
model.
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A Appendix

Proposition 5 (Minimization Relation). Given two Probabilistic Automata,
M and M ′, we denote the probabilistic weak simulation of M by M ′ as M -w

M ′, where M ′ is the result of a reduction process applied to M which abstracts
away invisible actions, symbolized by M ′ =M ↓ap.

Proof. The proof of Proposition 1 centers around the establishment of a relation-
ship or correspondence between the states of M and M ′. This correspondence
takes the form of a mapping realized through the development of a weight func-
tion.

Step 1: Construction of the Weight Function: The weight function is a
critical tool used to build a bridge between each state of the original Probabilistic
Automaton M and the states in the minimized automaton M ′. This function,
denoted as △, effectively measures how much each state in M contributes to
each state in M ′ by associating states in M to those in M ′ according to certain
probability values. This function is the centerpiece of our proof.

Step 2: Application of the Minimization Rules: To minimize M into
M ′, we apply a set of rules (as outlined in Definition 3). The minimization rules
serve to reduce the complexity of M by abstracting away certain transitions.
This process is denoted as M ′ = M ↓ap, which signifies that M ′ is obtained
from M by abstracting away invisible actions.

Step 3: Verification of the Weight Function: After applying the mini-
mization rules, it is crucial to confirm that the weight function we initially set
up still accurately maps the states of M to their corresponding states in M ′.
To do this, we ensure that for each state s in M , the sum of weights associated
with s equals to the corresponding distribution inM ′. This step verifies that the
behavior of M and M ′ is indeed the same, despite the reduction in transitions.

Through this thorough process, we demonstrate that the weight function can
successfully map the states ofM andM ′, thereby validating the weak simulation
relation, and hence proving the proposition. ⊓⊔
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Property 4 (Minimization Preservation). Given a property φ expressed in the
PCTL language L(ap), and a set of atomic propositions ap that are relevant in
the context of M , if the minimized version of M , denoted by M ↓ap, satisfies φ,
then the original PA M must also satisfy φ. Mathematically, this is expressed as
∀φ ∈ L(ap), ap ∈ APM : M ↓ap|= φ⇒ M |= φ.

Proof. The proof for the preservation of PCTL properties through minimization
can be obtained through an inductive argument based on the structure of the
PCTL properties. The inductive base case can be the satisfaction of φ in M ↓ap,
and the inductive step can assume the property holds for a given structure and
then prove it for the next level of structure complexity. ⊓⊔

Proposition 6 (-w Composition). The probabilistic weak simulation relation
preserves the composition of PAs: if M1 is weakly simulated by M ′

1, then the
composition ofM1 with another PAM2 is weakly simulated by the composition of
M ′

1 with the same M2. Mathematically, this is expressed as M1 -w M ′
1 ⇒ M1 ‖i

M2 -w M ′
1 ‖i M2.

Proof. The proof of Proposition 2 relies on the previously established Probabilis-
tic Weak Simulation Relation (Proposition 1) and the specific details of the PA
composition (Definition 2). More specifically, we must show that each transition
in the composed M1 ‖i M2 can be simulated by a corresponding transition in
M ′

1 ‖i M2, which in turn relies on the definition of weak simulation. ⊓⊔

Theorem 3 (Soundness). The minimization rule, as specified in Definition 6,
is sound.

Proof. The soundness of the minimization rule can be proven by combining
the results of Proposition 2 and Property 1. In detail, Property 1 ensures that
minimization preserves the PCTL properties, and Proposition 2 guarantees that
the weak simulation preserves the composition. Hence, the combination of these
two results ensures that the minimization process, which involves both reducing
M2 to M ′

2 and composing M1 with M ′
2, does not affect the satisfaction of φ by

the composed system, confirming the soundness of the minimization rule. ⊓⊔

Proposition 7. The decomposition of the PCTL property φ using the decom-
position operator ♮ for the parallel composition M1 ‖i M2 is sound.

Proof. The proof of Proposition 4 is built upon Definition 2 and Definition 7. It
proceeds by using structural induction on the structure of PCTL formulas.

As an example, consider the ”until” operator ”U”. Let φ = α1Uα2 where
α1 ∈ APM1

and α2 ∈ APM2
. From here, we can deduce the following:

1. φ1 = α1Uα(i) and φ2 = α(i)Uα2, as per Definition 7.
2. From the hypothesis, it is assumed that M1 ‖i M2 |= α1Uα(i) and M1 ‖i

M2 |= α(i)Uα2.
3. According to the semantics of PCTL, we have M1 ‖i M2 |= (α(i)Uα2) ∧

(α1Uα(i)).
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4. Hence, we obtain M1 ‖i M2 |= φ1Uφ2 based on PCTL semantics.
5. Therefore, it follows that M1 ‖i M2 |= φ1♮iφ2, which is exactly what Propo-

sition 4 claims.

By adopting a similar proof strategy for the rest of the PCTL operators, we
can assert that Proposition 4 is valid. ⊓⊔

Proposition 8. The decomposition of a PCTL property φ by the decomposition
operator ♮ for M1 ‖i M2 is sound.

Proof. The proof of Proposition 4 relies on Definition 2 and Definition 7, and it
proceeds by a structural induction on the PCTL structure. For each α1 ∈ APM1

,
α2 ∈ APM2

, and i in the interface, we consider the until operator “U” and let
φ = α1Uα2. We can perform the following steps:

1. Define φ1 = α1Uα(i) and φ2 = α(i)Uα2 based on Definition 7.
2. Assume that M1 ‖i M2 |= φ1 and M1 ‖i M2 |= φ2.
3. From PCTL semantics, it follows that if both φ1 and φ2 hold, then their

conjunction also holds: M1 ‖i M2 |= (φ1) ∧ (φ2).
4. Furthermore, again by PCTL semantics, if the conjunction of two properties

holds, then their until operation also holds: M1 ‖i M2 |= φ1Uφ2.
5. Finally, by Proposition 4, we can express the until operation as a decompo-

sition operation: M1 ‖i M2 |= φ1♮iφ2.

By repeating the above style of proof for the remaining operators in the
PCTL structure, we find that Proposition 4 holds. ⊓⊔


