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In this paper, we aim to advance the state of the art in the verification process of systems, predominantly modeled as Probabilistic Automata (PA). This model accommodates both nondeterministic and probabilistic behaviors. Our primary strategy to address the notorious state space explosion problem inherent in model checking is the adoption of abstraction and compositional verification techniques, culminating in the development of a distributed verification approach centered on the communication interface amongst composed automata. Initially, the abstraction technique refines the system in relation to the requirement under verification and amalgamates states demonstrating comparable behaviors. Not only does it simplify the system, but it also enables a decomposition of global requirements into local ones. This decomposition process facilitates parallel verification and securely allows inference on the global requirement from local results. Moreover, the soundness of our proposed framework has been substantiated, ensuring that it correctly interprets and applies the properties of the system under scrutiny. In the final phase, we leveraged the PRISM model checker to assess the effectiveness of our proposed framework. This evaluation was carried out on three benchmark tests, providing empirical evidence to support the benefits of our approach. Our contribution to the field lies in the novel combination of abstraction and compositional verification techniques in a distributed verification framework, validated through theoretical soundness proofs and practical tests using the PRISM model checker. This result paves the way for more efficient and scalable model-checking processes for Probabilistic Automata.

Introduction

Model checking [1,2] is a well-established formal automatic verification technique designed for finite-state concurrent systems. It examines temporal logic specifications and automata-based formalism on system models. Alongside qualitative model checking, quantitative verification methods based on probabilistic model checkers [3,4] have recently gained traction. Probabilistic verification enables probabilistic interpretation of a given property's satisfiability in systems that intrinsically exhibit probabilistic behavior. Despite its broad adoption, model checking typically requires substantial memory and processing time, which can be attributed to the potentially exponential growth of the system's state space due to the number of variables and concurrent behaviors. Therefore, reducing the complexity of the verification process is paramount for verifying large-scale systems.

Various techniques have been investigated [1,2,3,5] to address the aforementioned issue in qualitative model checking, which were subsequently extended to the probabilistic case. These solutions broadly aim to enhance the modelchecking algorithms by introducing symbolic data structures such as binary decision diagrams, or focusing on model analysis. Predominantly, two classes of solutions are identified in the literature: abstraction and compositional verification. Abstraction provides a compact representation of the global system under verification, while compositional verification bypasses the construction of the whole system parts. Our work delves into both classes.

Abstraction techniques fall into four categories [2]: 1) state merging abstraction, 2) variable abstraction, 3) restriction-based abstraction, and 4) observer automata abstraction. Our proposed framework exploits the first and third categories. Additionally, well-recognized compositional verification techniques [START_REF] Berezin | Compositional reasoning in model checking[END_REF] include partitioned transition relation, lazy parallel composition, interface processes, and assume-guarantee. We employ the interface processes technique to counteract the state explosion problem in our work.

Contributions. Figure 1 presents an overview of our proposed framework, which accepts a system modeled as a composition of Probabilistic Automata (PA) and a requirement expressed in Probabilistic Computation Tree Logic (PCTL) [4] as input. Initially, the abstraction by restriction disregards the irrelevant propositions concerning a specific requirement. Subsequently, our developed state merging rules aggregate states that depict similar behaviors. To showcase the efficiency of our approach, we employ compositional verification using interface processes to verify local PCTL properties on the resultant PAs separately. Finally, we use the probabilistic model checker PRISM [START_REF] Kwiatkowska | PRISM 4.0: Verification of Probabilistic Real-Time Systems[END_REF] as a probabilistic verification engine. Related Work. There is a vast literature dealing with the abstraction and compositional verification of probabilistic systems. For instance, [START_REF] Hahn | Game-based Abstraction and Controller Synthesis for Probabilistic Hybrid Systems[END_REF] introduced a game-based abstraction approach for systems exhibiting both discrete and continuous events, as well as Markov Decision Processes, as described in [START_REF] Kattenbelt | A game-based abstraction-refinement framework for markov decision processes[END_REF]. Symmetry reduction has been proposed in [START_REF] Donaldson | Language-level symmetry reduction for probabilistic model checking[END_REF][START_REF] Donaldson | Symmetry Reduction for Probabilistic Model Checking Using Generic Representatives[END_REF]. The partial order reduction is applied for the probabilistic branching time in [START_REF] Baier | Partial order reduction for probabilistic branching time[END_REF]. In terms of probabilistic compositional verification, [START_REF] Feng | Learning-based compositional verification for synchronous probabilistic systems[END_REF][START_REF] Feng | Automated learning of probabilistic assumptions for compositional reasoning[END_REF][START_REF] Feng | Compositional verification of probabilistic systems using learning[END_REF] proposed an assume-guarantee method for verifying the probabilistic safety properties of discrete-time Markov chains. To our knowledge, several probabilistic model checkers, such as PRISM, which supports symmetry reduction, and LiQuor4 , which includes the partial-order reduction, also support abstraction.

Paper Organization. The remainder of this paper is structured as follows. The subsequent section presents the models for our systems and the specifications for their requirements. The compositional reduction approach we propose is detailed in Section 3. The PRISM language is formalized in Section ??. Experimental results are presented in Section 4, and finally, Section 5 concludes the paper.

Probabilistic systems

This section delves into the fundamental characteristics and applications of probabilistic systems, and further examines the methodologies employed in probabilistic modeling. Subsequently, specific focus is dedicated to the precise specification of probabilistic system requirements.

Probabilistic modeling

In systems featuring both non-determinism and probabilistic choices, Probabilistic Automata (PAs) present an apt formal model for design and representation. For a clearer understanding, let's look at the formal definition of a PA in Definition 1.

Definition 1 (Probabilistic Automata). A Probabilistic Automaton (PA) is a quintuple M = (s, S, L, Σ, δ) wherein:

s, a member of S, denotes the initial state, -S is a finite set of states that are reachable from s, -L : S → 2 AP is a labeling function assigning a set of atomic propositions from a set AP to each state, -Σ stands for a finite set of actions, -δ : S ×Σ → Dist(S) is a probabilistic transition function that, for each state s ∈ S and action α ∈ Σ, assigns a probability distribution µ ∈ Dist(S). Here, Dist(S) symbolizes the set of convex distributions over S.

Typically, a system is composed of multiple interacting components. This concept in PAs is manifested through the principle of parallel composition, described in Definition 2.

Definition 2 (Parallel Composition of PAs). The parallel composition of two PAs:

M 1 = (s 1 , S 1 , L 1 , Σ 1 , δ 1 ) and M 2 = (s 2 , S 2 , L 2 , Σ 2 , δ 2 ), is represented as a PA M = ((s 1 , s 2 ), S 1 × S 2 , L, Σ 1 ∪ Σ 2 , δ) where: -L(s 1 , s 2 ) = L 1 (s 1 ) ∪ L 2 (s 2 ), -For each pair of probability distributions µ 1 ∈ δ 1 (s 1 , α) and µ 2 ∈ δ 2 (s 2 , α),
we define:

δ((s 1 , s 2 ), α) =      µ 1 × µ 2 if α ∈ Σ 1 ∩ Σ 2 , µ 1 if α ∈ Σ 1 \ Σ 2 , µ 2 if α ∈ Σ 2 \ Σ 1 .

Requirements specification

To verify a Probabilistic Automaton (PA), we apply the Probabilistic Computation Tree Logic (PCTL) to define associated specifications. In the BNF grammar provided below, "ap" represents an atomic proposition, k is an element of the natural numbers set N, p is within the interval [0, 1], and ⊲⊳ signifies the set of relational operators <, ≤, >, ≥. The symbols "∧" and "¬" are logical operators denoting conjunction (AND) and negation (NOT), respectively. Temporal logic operators include "X" (next), "U ≤ k " (bounded until), and "U" (until). Formally, the PCTL syntax is defined as:

φ ::= ⊤ | ap | φ ∧ φ | ¬φ | P ⊲⊳ p [ψ], (1) 
where

ψ ::= Xφ | φU ≤ k φ | φUφ. (2) 
We can also derive additional operators:

-True logic: ⊤ ≡ ¬⊥.

-Disjunction:

φ 1 ∨ φ 2 ≡ ¬(¬φ 1 ∧ ¬φ 2 ). -Implication: φ 1 → φ 2 ≡ ¬φ 1 ∨ φ 2 .
-Future operator:

F φ ≡ ⊤ U φ or F ≤ k φ ≡ ⊤ U ≤ k φ.
-Globally operator:

Gφ ≡ ¬(F ¬φ) or G ≤ k φ ≡ ¬(F ≤ k ¬φ).
-Probability of always φ:

P ≥p [Gφ] = P ≤1-p [F ¬φ].
To describe a satisfaction relation of a PCTL formula in a given state "s", we introduce the concept of a class of adversaries (Adv) [4]. An adversary is employed to resolve the non-deterministic choices in a PA, meaning a PCTL formula should be satisfied under all possible adversaries. Thus, the satisfaction relation (|= Adv ) of a PCTL formula is defined as follows, where "s" is a state and "π" is a sequence of states, or path:

-s |= Adv ⊤ is always satisfied. -s |= Adv a ⇔ a ∈ L(s), where L(s) is the labeling function of state s. -s |= Adv φ 1 ∧ φ 2 ⇔ s |= Adv φ 1 and s |= Adv φ 2 , and s |= Adv ¬φ ⇔ s |= Adv φ. -π |= Adv Xφ ⇔ π(1) |= Adv φ, where π(1) is the second state in path π. -π |= Adv φ 1 U ≤k φ 2 ⇔ ∃i ≥ k, ∀j < i : π(i) |= Adv φ 2 and π(j) |= Adv φ 1 . -π |= Adv φ 1 U φ 2 ⇔ ∃ k ≥ 0 : π |= Adv φ 1 U ≤k φ 2 .
s |= Adv P ⊲⊳ p [ψ] ⇔ P s Adv ({π|π Adv |= ψ}) ⊲⊳ p, where P s Adv represents the probability measure over all paths π starting from state s under adversary Adv.

Interface-based Verification Approach

This section provides a comprehensive overview of our methodology for verifying a PCTL property in a probabilistic system. The explanation is structured into two key subsections. The first subsection, i.e., Section 3.3, introduces a minimization algorithm that aims at reducing a Probabilistic Automaton (PA) while considering a PCTL property. Suppose S is a probabilistic system composed of n Probabilistic Automata (PAs), represented as M j:1≤j≤n . The system S can be denoted by the expression M

1 i1 • • • in-1 M n ,
where " i " signifies a composition operation involving synchronization between PAs through a particular interface i. Crucial properties associated with the composition operator " i " are commutativity and associativity.

Minimization Phase

In an attempt to manage the complexity of model composition, we propose a strategy to reduce the behavior of a model utilizing a minimization operator. This operator is defined in Definition 3 and represented by "↓". We define M ′ = M ↓ ap as the operation of minimizing the behavior of M to obtain M ′ with respect to the atomic proposition ap. We also use L(ap) to denote the set of PCTL formulas that include ap ∈ AP .

Definition 3 (Model Minimization).

The process of minimizing a model M to M ↓ ap should abide by the following rules:

1. Rule 1: ∀ap / ∈ AP si : M (s i-1 → s i → s i+1 ) ↓ ap = M (s i-1 → s i+1 ). 2. Rule 2: ∀ap / ∈ AP si : M (s i-1 → p1 s i → p2 s i+1 ) ↓ ap = M (s i-1 → p1×p2 s i+1 ). 3. Rule 3: ∀ap / ∈ AP si ∩ AP s ′ i : M (s i-1 → p s i → p1 s i+1 ; s i → 1-p1 s ′ i+1 ; s i-1 → 1-p s ′ i → p2 s i+1 ; s ′ i → 1-p2 s ′ i+1 ) ↓ ap = M (s i-1 → p1×p× 1 p+p ′ +p2× p ′ p+p ′ s i+1 ; s i-1 → 1-p1× p p+p ′ +p2× p ′ p+p ′ s ′ i+1 ).
In this paper, we describe a relation between two Probabilistic Automata (PAs), denoted as M and M ′ and symbolized as M RM ′ . This relationship is characterized by the concept of weak simulation, which incorporates the idea of observable actions interspersed between invisible actions. We denote the latter using the symbol "↓". Formally, the probabilistic weak simulation relation introduces the concept of observable action "a", which is preceded and followed by sequences of invisible steps. This weak transition is notated as s a =⇒ P , where P is the distribution over states reached from state s through a series of combined steps.

Definition 4 (Probabilistic Weak Simulation). A probabilistic weak simulation between two Probabilistic Automata (PAs

) M 1 and M 2 is a relation R ⊆ S 1 × S 2 if,

and only if:

1. Each initial state of M 1 is related to at least one initial state of M 2 , and 2. For each pair of states (s 1 , s 2 ) such that s 1 Rs 2 , and for each transition

s 1 a -→ µ 1 in M 1 , there exists a weak combined transition s 2 a =⇒ µ 2 in M 2 such that µ 1 ⊑ R µ 2 .
In the above definition, ⊑ R is the lifting of relation R to probability distributions, achieved by employing a weight function as introduced by Segala [START_REF] Segala | A compositional trace-based semantics for probabilistic automata[END_REF]. This weight function, denoted by △, associates each state in M 1 with a set of states in M 2 , each assigned a particular probability. The formal definition of the weight function is provided below.

Definition 5 (Weight Function). A function

△ : S × S ′ → [0, 1] is a weight function for the two distributions µ 1 , µ 2 ∈ Dist(S) with respect to R ⊆ S × S ′ , if and only if: 1. If △(s 1 , s 2 ) > 0 then (s 1 , s 2 ) ∈ R, 2.
For all s 1 ∈ S: s2∈S △(s 1 , s 2 ) = µ 1 (s 1 ), and 3. For all s 2 ∈ S ′ : s1∈S △(s 1 , s 2 ) = µ 2 (s 2 ).

Below, Proposition 1 establishes that the relation between two Probabilistic Automata, M and M ′ , is a probabilistic weak simulation.

Proposition 1 (Minimization Relation). Given two Probabilistic Automata, M and M ′ , we denote the probabilistic weak simulation of M by M ′ as M w M ′ , where M ′ is the result of a reduction process applied to M which abstracts away invisible actions, symbolized by

M ′ = M ↓ ap .
Proof. The proof is provided in the appendix section.

⊓ ⊔ Property 1 (Minimization Preservation). Given a property φ expressed in the PCTL language L(ap), and a set of atomic propositions ap that are relevant in the context of M , if the minimized version of M , denoted by M ↓ ap , satisfies φ, then the original PA M must also satisfy φ. Mathematically, this is expressed as

∀φ ∈ L(ap), ap ∈ AP M : M ↓ ap |= φ ⇒ M |= φ.
Proof. The proof is given in the appendix.

⊓ ⊔

Proposition 2 ( w Composition). The probabilistic weak simulation relation preserves the composition of PAs: if M 1 is weakly simulated by M ′ 1 , then the composition of M 1 with another PA M 2 is weakly simulated by the composition of M ′ 1 with the same M 2 . Mathematically, this is expressed as

M 1 w M ′ 1 ⇒ M 1 i M 2 w M ′ 1 i M 2 .
Proof. The proof is in the appendix. ⊓ ⊔ Definition 6 (Minimization Rule). Given a composed PA M 1 i M 2 , the minimization rule prescribes the following transformations:

-Construct M ′ 2 as the minimized version of M 2 with respect to the shared interface i, formally

M ′ 2 ≡ M 2 ↓ ap(i) .
Here, M ′ 2 represents the behavior of M 2 that is observable by M 1 .

-For any property φ expressed in the language L(ap

(i) ∪ AP M1 ), if M 1 i M ′ 2 satisfies φ, then M 1 i M 2 also satisfies φ. Mathematically, ∀φ ∈ L(ap(i) ∪ AP M1 ) : M 1 i M ′ 2 |= φ ⇒ M 1 i M 2 |= φ.
Theorem 1 (Soundness). The minimization rule, as specified in Definition 6, is sound.

Proof. The proof of the soundness is given in the appendix. ⊓ ⊔

The Composition Phase

In this section, we detail the process of decomposing a global property into local ones. Definition 7 introduces the decomposition operator "♮", which enables compositional verification by substituting the propositions of a PA with propositions related to its interfaces. This operator utilizes the substitution notation Q[z/y] from the π-calculus, which denotes that in the structure Q, the term z replaces the term y.

Definition 7 (PCTL Property Decomposition). Let φ be a PCTL property to be verified on M 1 i M 2 . The decomposition of φ into φ 1 and φ 2 is denoted by φ = φ 1 ♮ i φ 2 , where:

1. AP (φ) = (AP (φ 1 ) ∪ AP (φ 2 ))\{ap(i)}, with ap(i) representing the atomic propositions related to interface i,

2. AP (φ 1 ) is a subset of AP M1 , 3. AP (φ 2 ) is a subset of AP M2 , 4. φ 1 = φ([[ap(i)/AP M2 ]]), 5. φ 2 = φ([[ap(i)/AP M1 ]]).
Property 2 demonstrates that the decomposition operator "♮" exhibits commutative and associative properties. Property 2. For M 1 i M 2 , the decomposition operator ♮ i is both commutative and associative:

1. φ 1 ♮ i φ 2 ≡ φ 2 ♮ i φ 1 . 2. φ 1 ♮ i1 (φ 2 ♮ i2 φ 3 ) ≡ (φ 1 ♮ i1 φ 2 )♮ i2 φ 3 .
Proof. The proof approach for Property 2 follows a style analogous to that of Property ??, and is based on Definition 7.

⊓ ⊔ Proposition 3. The decomposition of the PCTL property φ using the decomposition operator ♮ for the parallel composition M 1 i M 2 is sound.

Proof. The proof of Proposition 4 is in the appendix.

⊓ ⊔

The key advantage of Proposition 4 is its ability to derive the deduction rule for the interface operator, as outlined in Theorem 2.

Theorem 2 (Compositional Reduction -CR). Let φ be a PCTL property to be verified on M , such that: M = M 1 i M 2 and φ = φ 1 ♮ i φ 2 . The following deduction rule applies:

M 1 i M 2 ↓ ap(i) |= φ 1 M 2 |= φ 2 φ = φ 1 ♮ i φ 2 M 1 i M 2 |= φ
Property 3 (CR-Symmetry). The compositional reduction rule is symmetric.

M 1 i M 2 ↓ ap(i) |= φ 1 M 2 |= φ 2 φ = φ 1 ♮ i φ 2 M 1 i M 2 |= φ
Proof. The proof follows the same structure as the proof of Theorem 2. ⊓ ⊔ Proposition 4. The decomposition of a PCTL property φ by the decomposition operator ♮ for M 1 i M 2 is sound.

Proof. The proof of Proposition 4 is in the appendix. ⊓ ⊔

The Verifition Phase

Our approach fundamentally relies on the PRISM model checker to ensure the soundness of the probabilistic system under scrutiny, which is modelled as a composition of Probabilistic Automata (PAs). In this section, we delve into defining the syntax and semantics inherent in the PRISM programming language. PRISM has a versatile architecture that can accommodate a range of probabilistic models. These include Discrete-Time Markov Chains (DTMCs), Continuous-Time Markov Chains (CTMCs), Markov Decision Processes (MDPs), Probabilistic Timed Automata (PTAs), and Probabilistic Automata (PAs). It's noteworthy to mention that within the PRISM framework, PAs are referred to as MDPs. However, in the process of formalizing the approach for this study, our primary focus will be directed towards PAs. The choice of focusing on PAs is due to their ability to model a wide array of complex, probabilistic behaviors that are crucial for our study.

A probabilistic system S described by a PRISM program P comprises a set of n modules (n > 0). Each module's state is defined by an evaluation of a set of finite-ranging local variables. The system's global state is the union of evaluations of the local variables V l and the global variables V g , denoted as V = V g ∪ V l . The behavior of each module is defined by a set of guarded commands.

Each command dictates the primary behavior changes of P . A command is of the form: [a] g → p 1 : u 1 +...+p m : u m or [a] g → u. This implies that, for the action 'a', if the guard 'g' holds, then an update 'u i ' is enabled with a probability 'p i '. Guards are propositional formulas based on expressions' comparisons. An update 'u i ' is a conjunction of assignments to variables:

(v ′ j = val j )& • • • (v ′ k = val k )
, where v i are variables and val i are values evaluated via expressions, ensuring type consistency.

Definition 8 (PRISM Command).

A PRISM command c is a tuple c = (a, g, u) where:

-a is an action label, -g is a predicate over V , -u = {(p i , u i )|m > 1, i ≤ m, m i=1,pi>0 p i = 1 and u i = {(v, eval(v))
}} where eval : V → N ∪ {true, f alse} assigns an integer or a boolean value to each variable v ∈ V . If p i = 1, we omit the probability.

A module, which describes the behavior of a system's sub-part, can be considered as a set of commands. Formally, it is defined as follows: Definition 9 (PRISM Module). A PRISM module M is a tuple M = (var, init, cmd) where:

var is a finite set of local variables for the module, -init are the initial values of var, -cmd = {c i : 0 ≤ i ≤ m} is a set of commands defining the module's behavior.

A system S, comprising n parts, can be described by a PRISM program P containing n modules. The system components are combined using a Communicating Sequential Processes (CSP) expression.

Definition 10 (PRISM System). A PRISM system is a tuple P = (var, exp, M 1 , . . . , M n , sys) where:

-var = V G n i=1 V li is

a finite set comprising the union of global and local variables,

exp is a global logic expression, -M 1 , . . . , M n is a finite set of modules, -sys is a CSP algebraic expression defining the combination of the models.

Experimental Results

We implement our proposed framework on the Probabilistic Broadcast Protocol (PBP), the Randomized Dining Philosophers (RDP), and Leader Election Protocol (LEP) benchmarks5 . To compare the results of our approach, we verify PCTL properties on Probabilistic Automata (PA) models with and without our method applied. We measure and compare the number of states (#S), the number of transitions (#T), the time needed for the model construction (T c in seconds), and the time needed for the model verification (T v in seconds). We undertake this comparison with the aim of presenting empirical results that validate the efficiency and effectiveness of our approach.

For the PBP benchmark, we aim to measure "the minimum probability that the message sent by the base node 0 is successfully received by node j", where j ranges from 1 to 8. This property can be expressed in PCTL as follows:

P min =? [G ((active 0 ∧ ¬send 0 ) ⇒ F (¬active j ∧ ¬send j ))] (3) 
Following the PBP model and the decomposition rule (Definition 7), we decompose Property 3 into two properties, 4 and 5. Property 4 concerns the atomic propositions of node 0 and the propositions related to the interaction between nodes 0 and j. As per Definition 7, the propositions of Property 5 only belong to node j's propositions.

P min =? [G ((active 0 ∧ ¬send 0 ) ⇒ F (active j ∧ ¬send j ))] (4) 
P min =? [G ((active j ∧ ¬send j ) ⇒ F (¬active j ∧ ¬send j ))] (5) 
Table 1 shows the verification costs for these properties. Table 1: Verification Cost for PBP Benchmark

For the RDP benchmark, we aim to verify the proposition "if a philosopher is hungry, then eventually some philosopher eats". Here, "hungry" refers to any action prior to the "eat" action. This property can be expressed in PCTL as follows:

"hungry" ⇒ P ≥ 1[true U "eat"] (6) 
This benchmark does not incorporate interfaces, so we confine our experiments to the minimization algorithm. The verification costs of Property 6 are shown in Table 2, where #P hil denotes the number of philosophers. For the LEP benchmark, we evaluate "the minimum probability that two different processes do not have the same source". For two different processes P i and P j , the PCTL property for verification is expressed as follows: The above results demonstrate that our verification framework preserves the verification of PCTL properties while significantly reducing the verification size and time.

PRISM CR-Approach

#P hil #S #T T c T v Res #S #T T c T v Res 3
P min =? [(P i = P j ) ⇒ (source(P i ) = source(P j ))] (7) 

Conclusion

In this paper, we presented a verification framework aimed at enhancing the scalability of probabilistic model-checking. In particular, we targeted systems modeled as probabilistic automata, which accommodate both nondeterminism and probabilistic choice behaviors. Our proposed framework harnesses probabilistic abstraction to disregard and amalgamate behaviors deemed irrelevant to a specified PCTL property. In addition, we introduced a probabilistic compositional verification mechanism to optimize model-checking efficiency. This mechanism operates by decomposing a global PCTL property into local properties corresponding to the interfaces between PAs. We established the soundness of our algorithms by elucidating the relationship between the abstract and concrete PAs, demonstrating that this relationship upholds the satisfaction of PCTL properties. Considering our reliance on PRISM, we proposed dedicated syntax and semantics for PAs specified within this context. Finally, we substantiated the effectiveness of our approach by applying it to a benchmark.

Looking forward, we aim to extend our approach along several trajectories. First, we intend to integrate our algorithms within the PRISM model checker. Second, we plan to expand our proposed abstraction to address other formalisms such as probabilistic timed and priced automata, stochastic Petri nets, and SysML activity diagrams. Furthermore, we aim to investigate other abstraction approaches, specifically data abstraction targeting system features like time and data. Lastly, we propose to explore strategies to reduce property within the model.

A Appendix

Proposition 5 (Minimization Relation). Given two Probabilistic Automata, M and M ′ , we denote the probabilistic weak simulation of M by M ′ as M w M ′ , where M ′ is the result of a reduction process applied to M which abstracts away invisible actions, symbolized by M ′ = M ↓ ap .

Proof. The proof of Proposition 1 centers around the establishment of a relationship or correspondence between the states of M and M ′ . This correspondence takes the form of a mapping realized through the development of a weight function.

Step 1: Construction of the Weight Function: The weight function is a critical tool used to build a bridge between each state of the original Probabilistic Automaton M and the states in the minimized automaton M ′ . This function, denoted as △, effectively measures how much each state in M contributes to each state in M ′ by associating states in M to those in M ′ according to certain probability values. This function is the centerpiece of our proof.

Step 2: Application of the Minimization Rules: To minimize M into M ′ , we apply a set of rules (as outlined in Definition 3). The minimization rules serve to reduce the complexity of M by abstracting away certain transitions. This process is denoted as M ′ = M ↓ ap , which signifies that M ′ is obtained from M by abstracting away invisible actions.

Step 3: Verification of the Weight Function: After applying the minimization rules, it is crucial to confirm that the weight function we initially set up still accurately maps the states of M to their corresponding states in M ′ . To do this, we ensure that for each state s in M , the sum of weights associated with s equals to the corresponding distribution in M ′ . This step verifies that the behavior of M and M ′ is indeed the same, despite the reduction in transitions.

Through this thorough process, we demonstrate that the weight function can successfully map the states of M and M ′ , thereby validating the weak simulation relation, and hence proving the proposition. 1 with the same M 2 . Mathematically, this is expressed as

M 1 w M ′ 1 ⇒ M 1 i M 2 w M ′ 1 i M 2 .
Proof. The proof of Proposition 2 relies on the previously established Probabilistic Weak Simulation Relation (Proposition 1) and the specific details of the PA composition (Definition 2). More specifically, we must show that each transition in the composed M 1 i M 2 can be simulated by a corresponding transition in M ′ 1 i M 2 , which in turn relies on the definition of weak simulation. ⊓ ⊔ Theorem 3 (Soundness). The minimization rule, as specified in Definition 6, is sound.

Proof. The soundness of the minimization rule can be proven by combining the results of Proposition 2 and Property 1. In detail, Property 1 ensures that minimization preserves the PCTL properties, and Proposition 2 guarantees that the weak simulation preserves the composition. Hence, the combination of these two results ensures that the minimization process, which involves both reducing M 2 to M ′ 2 and composing M 1 with M ′ 2 , does not affect the satisfaction of φ by the composed system, confirming the soundness of the minimization rule.

⊓ ⊔ Proposition 7. The decomposition of the PCTL property φ using the decomposition operator ♮ for the parallel composition M 1 i M 2 is sound.

Proof. The proof of Proposition 4 is built upon Definition 2 and Definition 7. It proceeds by using structural induction on the structure of PCTL formulas.

As an example, consider the "until" operator "U". Let φ = α 1 U α 2 where α 1 ∈ AP M1 and α 2 ∈ AP M2 . From here, we can deduce the following:

1. φ 1 = α 1 U α(i) and φ 2 = α(i)U α 2 , as per Definition 7. 2. From the hypothesis, it is assumed that M 1 i M 2 |= α 1 U α(i) and M 1 i M 2 |= α(i)U α 2 . 3. According to the semantics of PCTL, we have M 1 i M 2 |= (α(i)U α 2 ) ∧ (α 1 U α(i)).
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			PRISM		CR-Approach
	#P roc #S #T	T c	T v Res #S #T T c	T v Res
	3	27 108 0.023 0.005 1	8 24 0.0 0.005 1
	4	81 432 0.028 0.034 1 16 64 0.020 0.031 1
	5	243 1620 0.113 0.249 1 32 160 0.036 0.041 1
	6	729 5832 0.154 0.893 1 64 384 0.044 0.43 1
	7	6561 69984 0.327 9.994 1 128 896 0.047 0.49 1

Table 3 :

 3 Verification Cost For LEP Benchmark

http://www.i1.informatik.uni-bonn.de/baier/projectpages/LIQUOR/LiQuor

http://www.prismmodelchecker.org/benchmarks