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IDENTITY, INDIVIDUALITY, AND INDISTINGUISHABILITY IN PHYSICS AND MATHEMATICS

In this brief survey we discuss some of the scientific and philosophical problems and debates that underlie the notions of identity, individuality, and indistinguishability in physics and mathematics. We critically analyze the different positions for or against the existence of indistinguishable objects in different scientific theories, notably quantum mechanics and gauge theories in physics and homotopy type theory in mathematics. We argue that the different forms of indistinguishability that occur in many areas of physics and mathematicsfar from being a problem to be eradicated-exhibit a rich formal structure that plays a key role in the corresponding theories that needs to be properly understood.

Introduction

The notions of identity, individuality, and indistinguishability play a crucial role in philosophy, physics, and mathematics [START_REF] French | Identity in Physics. A Historical, Philosophical and Formal Analysis[END_REF][START_REF] Guay | Individuals Across the Sciences[END_REF]. 1 Whereas identity can be understood as a logical notion associated with the reflexive character of the relation of equality defined by the equal sign =, individuality is a more philosophical notion that makes reference to the fact that an individual entity is, in Lowe's terms, "the single object that it is [...] distinct from others" [100, p.75]. On the other hand, the notion of (in)distinguishability makes reference to the fact that an entity might be endowed with certain properties by means of which it can (or not) be distinguished from other entities (for a discussion of these different notions see the contribution by Arenhart to this volume [START_REF] Arenhart | A No-Individuals Account of Quantum Mechanics[END_REF]).

The notions of identity, individuality, and indistinguishability as well as their interrelations elicit in particular the following questions:

• Is identity a primitive relation (as Frege maintained2 ) or can it be defined in terms of other predicates, as in the Hilbert-Bernays definition? With regard to this question and related matters, see [START_REF] Caulton | On Kinds of Indiscernibility in Logic and Metaphysics[END_REF], [70, §5], [121, pp.63-64], [122, pp.12-15], and [START_REF] Saunders | Physics and Leibniz?s Principles[END_REF]. • Is identity a universal notion or is it always relative to a given ontological domain [START_REF] Bueno | Why Identity is Fundamental[END_REF][START_REF] Deutsch | Relative Identity, The Stanford Encyclopedia of Philosophy[END_REF][START_REF] Geach | Identity[END_REF][START_REF] Krause | Relativizations of the Principle of Identity[END_REF][START_REF] Savellos | On defining identity[END_REF]]? • Is it possible and/or necessary to conceive an ontology (or a philosophical logic) without a predicate of identity [START_REF] French | Identity in Physics. A Historical, Philosophical and Formal Analysis[END_REF]? Is it possible to philosophically conceptualize and mathematically formalize the notion of nonindividual ? What is the relationship between indiscernibility and nonindividuality? Does indiscernibility imply nonindividuality or we can conceive indiscernible individuals? • Should individuality be defined exclusively in terms of properties (as claim the defenders of the so-called bundle theory), in terms of the spatio-temporal localisation of the corresponding individuals (which can be included in the previous case if spatio-temporal localisation is understood as a property), or by appealing to some form of haecceity, Lockean substance, "primitive thisness" [START_REF] Adams | Primitive Thisness and Primitive Identity[END_REF], or "transcendental individuality" [START_REF] Post | Individuality and physics[END_REF]? • Can we accept the existence of differences solo numero, i.e., of numerical differences not grounded on qualitative differences [START_REF] Rodriguez-Pereyra | Leibniz's Principle of Identity of Indiscernibles[END_REF]? In McTaggart's terms, is the (numerically) diverse necessarily (qualitatively) dissimilar [89, ch.X, pp. [START_REF] Ladyman | The Hole Argument in Homotopy Type Theory[END_REF][START_REF] Leibniz | Philosophical Essays[END_REF][START_REF] Leitgeb | Criteria of Identity and Structuralist Ontology[END_REF][START_REF] Lombardi | Entanglement and Indistinguishability: Facing some Challenges from a New Perspective[END_REF][START_REF] Holik | Quasi-set theory: a formal approach to a quantum ontology of properties[END_REF][START_REF] Lowe | Individuation[END_REF][START_REF] Lyre | Holism and structuralism in U(1) gauge theory[END_REF]]? • How should we understand the mathematical notion of equality "="? Should it be understood in intentional or in extensional terms (e.g. the equality of functions)? As definitions and/or as propositions with a truth value? As expressing numerical equality or indiscernibility? As a relation of synonymy between names or as a relation between the denoted entities?

In physics, the ability to individualize, distinguish, and reidentify particles and other physical systems through time, and across different contexts, seems to be crucial for understanding their behavior (see [START_REF] French | Identity in Physics. A Historical, Philosophical and Formal Analysis[END_REF] and references therein). However, there is still much to be explored and understood about how, if, and under which conditions these notions can be defined in certain central chapters of contemporary physics, notably in quantum mechanics and the gauge theories of fundamental interactions. In the case of quantum mechanics, the statistics of identical particles challenge the understanding of the relations between identity, individuality, and indistiguishability inherited from classical physics (see Section 3 below). In particular, are quantum systems self-identical and distinguishable individuals? If not, what are the ontological categories that are needed to describe quantum systems? In the case of gauge theories such as general relativity and Yang-Mills theories, the fundamental role played by (local) symmetries seems to challenge the idea according to which indiscernible configurations should be simply-as Leibniz famously argued in the correspondence with Clarke [START_REF]The Leibniz-Clarke Correspondence[END_REF]-identified (see Section 4 below). In particular, are gauge symmetries a mechanism to control the representational redundancy associated to the existence of different coordinate systems or do they encode some deep fact about the "logic of nature" [START_REF] Martin | Gauge principles, gauge arguments and the logic of nature[END_REF]? Are gauge symmetries just the consequence of a mathematical "surplus structure" (Redhead) [START_REF] Redhead | The interpretation of gauge symmetry[END_REF], a mere "descriptive fluff" (Earman) [START_REF] Earman | Laws, symmetry, and symmetry breaking: Invariance, conservation principles, and objec-tivity[END_REF]? Can we simply get rid of these "ghosts" (Wigner) [START_REF] Wigner | Symmetry and conservation laws[END_REF] or do they play a fundamental role that has yet to be properly understood?

In mathematics, equality propositions of the form a = b are fundamental and omnipresent components of mathematical discourse. Even though if we might expect that the significance of such a basic building block of mathematics should be clear by now, the understanding of equalities is still under discussion. This problem acquired more relevance since the development of category theory (see for instance [START_REF] Awodey | Category Theory[END_REF]) and, more recently, of homotopy type theory [START_REF]Homotopy Type Theory: Univalent Foundations of Mathematics[END_REF][START_REF] Rijke | Introduction to Homotopy Type Theory[END_REF]. Very briefly, these theories convey different forms of generalizations of the relation of equality beyond the strict set-theoretic equality, like for instance the notions of isomorphism and equivalence of categories in category theory or the type-theoretic notion of propositional equality in homotopy type theory (see Section 5 below). These reconceptualizations of the mathematical notion of equality has been considered a "revolution" in the foundations of mathematics that questions set-theoretic foundations. How does this radical shift reshape our understanding of the notions of identity, individuality, and distinguishability? Is Leibniz's principle of the identity of indiscernibles (PII) still valid in this new setting? What consequences does this revolution have on the aforementioned debates in the foundations of physics?

The aim of this collection is to survey several aspects of the state of the art and the open debates regarding our understanding of the notions of identity, individuality, and indistinguishability, in both contemporary physics and mathematics. In this introductory article, we present a general overview of the questions that guide the research in these topics, and the different strategies to deal with them-making a special mention of the works included in this volume. We start by reviewing Leibniz's PII in Section 2. Next, we jump into the problem of quantum indiscernibility in Section 3, where we also discuss the non-standard logical frameworks that were inspired by the peculiar properties of quantum systems. In Section 4, we deal with the problem of gauge transformations and the problem of surplus mathematical structure in physical theories. In Section 5 we provide a brief overview of the debates about identity and indistinguishability in cutting edge areas of current mathematics. Finally, in Section 6, we draw some conclusions.

Leibniz's Principle of the Identity of Indiscernibles

An underlying philosophical theme that connects the foundations of physics and mathematics is the discussion of the validity of Leibniz's PII (see [START_REF] Rodriguez-Pereyra | Leibniz's Principle of Identity of Indiscernibles[END_REF] and references therein). According to this principle two entities that are qualitatively identical (that is, indistiguishable) are also numerically identical, that is, one and the same entity. In other terms, there are no two things that share all their properties. In this way, Leibniz's PII forbids the existence of differences solo numero, i.e., of distinct individuals that are perfectly similar, of numerical differences that are not grounded on qualitative differences. Formally, Leibniz's PII can be formulated in second-oder logic as follows:

∀x∀y[∀P (P (x) ⇔ P (y)) ⇒ x = y] (1) 
Leibniz's principle is at the core of the philosophical discussions concerning the role played by the notions of identity, individuality, and discernibility in physics and mathematics. First, it should be stressed that the validity of the PII depends on the kind of properties included in the range of the universal quantifier ∀P in [START_REF]The Leibniz-Clarke Correspondence[END_REF]. For instance, including properties of the form x = a (where a denotes a given individual) makes the PII trivially true. Moreover, the validity of the PII might also depend on the significance of the equality symbol "=". Indeed, if the equality relation is weakened (or stretched) from strict (or numerical) equality to indiscernibility, then the PII becomes either a mere tautology, or an explicit definition of the equality relation qua indiscernibility (see Catren's contribution to this volume [START_REF] Catren | Abstraction, Equality, and Univalence[END_REF]).

If the PII holds, then entities can be completely individualized by specifying all their properties, which is certainly an appealing possibility. This is of special relevance for bundle theories, which state that individuals are nothing but bundles of properties, possibly related by a relation of compresence [START_REF] Russell | Human Knowledge, Its Scope and Limits[END_REF]Part IV.8]. By defining individuals as bundles of properties, these theories get rid of the metaphysical presupposition of an underlying substratum that would carry or instantiate these properties. Bundle theories find their origins in the work of British empiricists of the 18th century such as Berkeley and Hume and was later resumed by Russell [131, pp.97-98] and Ayer ([7], [6, p.42]). In other words, the PII provides a principium individuationis exclusively based on properties (see Lombardi's contribution to this volume for a bundle theory approach to the problem of defining individuality in quantum mechanics [START_REF] Lombardi | Entanglement and Indistinguishability: Facing some Challenges from a New Perspective[END_REF]). Besides its philosophical appeal, Leibniz's PII can be used to define identity along the Hilbert-Bernays approach [START_REF] Caulton | On Kinds of Indiscernibility in Logic and Metaphysics[END_REF][START_REF] Hilbert | Grundlagen der Mathematik[END_REF]. One of the main problems is that Leibniz's PII seems to be deprived of any form of logical or conceptual necessity (unless we include properties of the form x = a; see for instance Krause's contribution to this volume [START_REF] Krause | On Identity, Indiscernibility, and (Non-)Individuality in the Quantum Domain[END_REF]). Indeed, a standard avenue to refute the validity of Leibniz's PII has been the conceptual construction of counter-examples given by possible worlds containing numerically different and indiscernible entities (like Black's universe containing two similar spheres [START_REF] Black | The Identity of Indiscernibles[END_REF]). Moreover well-established physical theories like quantum mechanics provide empirically attested counter-examples. It is worth noting that Leibniz himself maintained that the PII is a metaphysical principle which is only valid for entities defined by "complete notions". This means that it cannot be extrapolated to abstract or "incomplete notions" (see for instance [96, p.32]).

On the other hand, accepting that the PII might not hold seems to be a possibility that many scholars would prefer to avoid. An interesting symptom of the resistance to relinquish the PII is provided by the debates in philosophy of mathematics around the objection proposed by Burguess and Keränen to mathematical structuralism [START_REF] Burgess | Review of Stewart Shapiro, Philosophy of Mathematics: Structure and Ontology[END_REF][START_REF] Keranen | The Identity Problem for Realist Structuralism[END_REF][START_REF] Ketland | Structuralism and the Identity of Indiscernibles[END_REF][START_REF] Ladyman | Mathematical structuralism and the Identity of Indiscernibles[END_REF][START_REF] Leitgeb | Criteria of Identity and Structuralist Ontology[END_REF][START_REF] Shapiro | Identity, Indiscernibility, and Ante Rem Structuralism: The Tale of i and -i[END_REF] (see also Wüthrich's translation of this identity problem for realist structuralism to the framework provided by spacetime physics [START_REF] Dieks | Weak Discernibility and the Identity of Spacetime Points[END_REF][START_REF] Muller | How to Defeat Wüthrich's Abysmal Embarrassment Argument against Space-Time Structuralism[END_REF][START_REF] Wüthrich | Challenging the Spacetime Structuralist[END_REF]). 3 On the physical side, the attempt to preserve Leibniz's PII at all costs led some scholars to follow Quine [START_REF] Quine | Grades of Discriminability[END_REF] in the introduction of different grades (absolute, relative, and weak) of discernibility [START_REF] Muller | Discerning Fermions[END_REF][START_REF] Muller | Discerning Elementary Particles[END_REF][START_REF] Saunders | Are Quantum Particles Objects?[END_REF] (see also [START_REF] Ketland | Identity and Indiscernibility[END_REF][START_REF] Ladyman | Identity and Indiscernibility in Philosophy and Logic, The Review of Symbolic Logic[END_REF]). Very briefly, these authors maintain that Leibniz's PII can be forced to be valid by relaxing or weakening the corresponding notion of discernibility (by including for instance irreflexive relations). In turn, it has been counterargued that these weaker forms of discernibility just restate the fact that the corresponding multiplicity of individuals (e.g. points in a homogeneous space) is purely numerical, without grounding these numerical distinction on qualitative differences (as the "spirit" of Leibniz's PII seems to require) [START_REF] Bigaj | The Principle of the Identity of Indiscernibles and Quantum Mechanics[END_REF][START_REF] Catren | On Gauge-Symmetries, Indiscernibilities, and Groupoid-Theoretical Equalities[END_REF][START_REF] Van Fraassen | Identity over Time: Objectively, Subjectively[END_REF]. From a more philosophical standpoint, the willingness to preserve Leibniz's PII at all costs results (at least partially) from the fact that if the PII were not valid, then the individuality of an entity would rely on some form of meta-physical notion of primitive thisness [START_REF] Adams | Primitive Thisness and Primitive Identity[END_REF], haecceity, bare or thin particular, Lockean substratum, or (in Post's terms) transcendental individuality [START_REF] Post | Individuality and physics[END_REF]. All these notions make reference to some form of nonqualitative support that would carry the corresponding properties and provide an ante-predicative form of individuation. In Post's terms, transcendental individuality "means something that transcends observable differences" [START_REF] Post | Individuality and physics[END_REF][START_REF] Bigaj | Identity and Indiscernibility in Quantum Mechanics[END_REF]. According to the scholars that understand individuals as bundles of properties, this possibility seems to be a mere metaphysical presupposition that we should better avoid. 4 3 Very briefly, the existence of elements in a structure with the same structural properties (i.e. of elements that entertain the same relations with other elements) seems to be an obstacle to the thesis that the different elements in a structure can be completely individualized by specifying their structural properties. 4 For instance, Russell writes: "The particular cannot be defined or recognized or known; it is something serving the merely grammatical purpose of providing the subject in a subject-predicate sentence such as 'this is

Indistinguishability in Quantum Physics

Besides other fundamental features of quantum mechanics-such as superposition (and thereby indeterminacy), contextuality, and entanglement-the study of quantum indistinguishability became a central subject of research in the foundations of quantum theory literature [START_REF] Omar | Indistinguishable particles in quantum mechanics: an introduction[END_REF]. This topic gave raise to debates that range from philosophical stances associated to different interpretations of the quantum formalism [START_REF] Auyang | How is Quantum Field Theory Possible?[END_REF][START_REF] Bigaj | Identity and Indiscernibility in Quantum Mechanics[END_REF][START_REF] Bigaj | The Principle of the Identity of Indiscernibles and Quantum Mechanics[END_REF][START_REF] Dieks | Are 'Identical Quantum Particles' Weakly Discernible Objects[END_REF][START_REF] Dieks | Identical quantum particles as distinguishable objects[END_REF][START_REF] Dieks | Identical Quantum Particles and Weak Discernibility[END_REF][START_REF] Caulton | Issues of Identity and Individuality in Quantum Mechanics[END_REF][START_REF] French | Identity and Individuality in Quantum Theory. The Stanford Encyclopedia of Philosophy[END_REF][START_REF] French | Quantum Physics and the Identity of Indiscernibles[END_REF][START_REF] Margenau | The Exclusion Principle and its Philosophical Importance[END_REF][START_REF] Morganti | Weak Discernibility, Quantum Mechanics and the Generalist Picture[END_REF], to more technical issues, like the development of entanglement measures for indistinguishable particles [START_REF] Bellomo | n identical particles and one particle to entangle them all[END_REF][START_REF] Benatti | Entanglement in indistinguishable particle systems[END_REF][START_REF] Compagno | Dealing with indistinguishable particles and their entanglement[END_REF][START_REF] Dalton | Quantum entanglement for systems of identical bosons: I. General features[END_REF][START_REF] Dalton | Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests[END_REF][START_REF] Gigena | Many-body entanglement in fermion systems[END_REF][START_REF] Lo Franco | Quantum entanglement of identical particles by standard information-theoretic notions[END_REF][START_REF] Zander | Entropic entanglement criteria for Fermion systems[END_REF] or the characterization of quantum indistinguishability as a resource in quantum information theory [START_REF] Gigena | One-body entanglement as a quantum resource in fermionic systems[END_REF][START_REF] Lo Franco | Indistinguishability of elementary systems as a resource for quantum information processing[END_REF]. It is worth stressing that the advent of a second wave of quantum technologies allowed physicists to perform robust manipulations of individual quantum systems. Many of the "gedanken" experiments discussed by the founding fathers of quantum theory in the past can be now analyzed under the light of very accurate tests. Thus, there is no escape: the "shut up and compute" attitude is no longer an option for many working physicists trying to understand things like indistinguishability, entanglement, and contextuality among other puzzling features of quantum theory. A short but self-contained review of the different problems and possible solutions for dealing with the entanglement of indistinguishable quantum systems is presented in Majtey et al.'s contribution to this volume [START_REF] Majtey | Indistinguishable entangled fermions: basics and future challenges[END_REF]. Regarding the harnessing of quantum indistinguishability as a resource, see Piccolini et al. contribution and references therein [START_REF] Piccolini | Generating indistinguishability within identical particle systems: spatial deformations as quantum resource activators[END_REF]. For a more philosophical perspective on the problem of entanglement of identical particles, see Bigaj's [START_REF] Bigaj | Entanglement and Discernibility of Identical Particles[END_REF] and Lombardi's [START_REF] Lombardi | Entanglement and Indistinguishability: Facing some Challenges from a New Perspective[END_REF] contributions to this volume.

Quantum systems can be classified in two big classes: bosons and fermions. While the former have integer intrinsic spin and can occupy the same quantum state, the latter possess halfinteger spin and two of them cannot occupy the same state. 5 In particular, the Pauli exclusion principle forbids that two electrons have the same set of quantum numbers. This principle can be naturally derived from the symmetrization postulate in standard quantum mechanics [START_REF] Messiah | Symmetrization postulate and its experimental foundation[END_REF], but it can also be understood as a consequence of the spin-statistics theorem in quantum field theory [START_REF] Pauli | The connection between spin and statistics[END_REF]. The symmetrization of the states for aggregates of "identical" quantum systems leads to the well-known Fermi-Dirac and Bose Einstein statistics, which have many empirically well-tested consequences (like for instance superconductivity [START_REF] Yukalov | Basics of Bose-Einstein condensation[END_REF]). To date, there is no known experimental violation of the symmetrization postulate at the fundamental level (see for example [START_REF] Marton | Testing the pauli exclusion principle for electrons[END_REF] for a very accurate experiment). Since these properties of quantum systems determine the way in which atomic levels are filled, they play a key role in explaining the structure of matter.

But there is more. The notions of identity and individuality become problematic when we try to apply them to multiparticle quantum systems of the same kind. The problem is that there are experimental situations in which there is no operational procedure to distinguish between (for instance) two photons or two electrons (see De Barros and Holik's contribution to this volume, red'. And to allow grammar to dictate our metaphysic is now generally recognized to be dangerous. It is difficult to see how something so unknowable as such a particular would have to be can be required for the interpretation of empirical knowledge. The notion of a substance as a peg on which to hang predicates is repugnant" [132, Part IV, Ch.8]. 5 When we say "two of them", we are using the fact that in many circumstances it is physically meaningful to say that quantum field modes have well-defined occupation numbers. Therefore, assertions such as "there are two quanta in a given state" are meaningful. However it is worth stressing that this does not mean that we are necessarily endorsing an ontology of particles (for a clear conceptual analysis of the distinction between the notions of particle and quanta see [START_REF] Teller | An Interpretive Introduction to Quantum Field Theory[END_REF]Chap.2,).

where some simple examples are discussed in an introductory manner [START_REF] De Barros | Ontological Indistinguishability as a Central Tenet of Quantum Theory[END_REF]). Even worse, in certain cases, there is no robust operational way to re-identify a quantum system at different moments of time, as if a quantum system were not subject to the constraint of continuous existence that characterizes macroscopic objects. 6 Once a photon enters into an aggregate of indistinguishable photons, there is no meaningful way to reidentify it. The fact that these features lead to problems concerning the notions of identity, sameness, and individuality was soon recognized by Born [START_REF] Born | Experiment and Theory in Physics[END_REF] and Schrödinger [START_REF] Schrödinger | What is an Elementary Particle[END_REF], 7 and later stressed by Post [START_REF] Post | Individuality and physics[END_REF] and Manin [START_REF] Manin | Problems of present day mathematics[END_REF] among others. Now, should we push their analyses further and try to conceive (and even mathematically formalize) a rigorous notion of non-individual or the notions of identity and individuality might still be applicable to quantum systems (at least in certain regimes or approximations)? In fact, the landscape of possible interpretative positions about the status of the notions of identity, individuality, and indistinguishability in quantum physics is organized by a massive cleavage between the so-called received view -based on the thesis that quantum particles of the same type are absolutely indiscernible (which implies for some authors their non-individuality)-(see [START_REF] French | Identity in Physics. A Historical, Philosophical and Formal Analysis[END_REF] and Krause's contribution to this volume [START_REF] Krause | On Identity, Indiscernibility, and (Non-)Individuality in the Quantum Domain[END_REF]) and the alternative views (see Dieks' [41] and Bigaj's [START_REF] Bigaj | Entanglement and Discernibility of Identical Particles[END_REF] contributions to this volume). Whereas Born and Schrödinger clearly stated that quantum particles do not behave as individuals [START_REF] Born | Experiment and Theory in Physics[END_REF][START_REF] Schrödinger | Science and Humanism[END_REF], Post argued that "non-individuality has to be introduced right at the start" (rather than introducing individuality by using labels and then wiping it out by using symmetries under permutations of the labels) [120, p.19]. Later on, Manin argued that standard set theory might not provide an adequate formal framework to work with aggregates of "identical quantum particles" [102, p.36]. 8 Then, Krause and collaborators took seriously the challenge of "developing a totally new [formal] language" to deal with quantum non-individual "particles". In Quine's terms: "If a familiar article, say an earthenware jug, disappears from your room, you are quite sure that somebody must have taken it away. If after a time it reappears, you may doubt whether it really is the same one-breakable objects in such circumstances are often not. You may not be able to decide the issue, but you will have no doubt that the doubtful sameness has an indisputable meaning-that there is an unambiguous answer to your query. So firm is our belief in the continuity of the unobserved parts of the string!" [START_REF] Schrödinger | What is an Elementary Particle[END_REF]. 7 It is worth quotient Schrödinger at length: "Democritus and all who followed on his path up to the end of the nineteenth century, though they had never traced the effect of an individual atom [...], were yet convinced that the atoms are individuals, identifiable, small bodies just like the coarse palpable objects in our environment. It seems almost ludicrous that precisely in the same years or decades which let us succeed in tracing single, individual atoms and particles, and that in various ways, we have yet been compelled to dismiss the idea that such a particle is an individual entity which in principle retains its 'sameness' for ever. Quite the contrary, we are now obliged to assert that the ultimate constituents of matter have no 'sameness' at all. When you observe a particle of a certain type, say an electron, now and here, this is to be regarded in principle as an isolated event.

Even if you do observe a similar particle a very short time later at a spot very near to the first, and even if you have every reason to assume a causal connection between the first and the second observation, there is no true, unambiguous meaning in the assertion that it is the same particle you have observed in the two cases. [...] And I beg to emphasize this and I beg you to believe it: It is not a question of our being able to ascertain the identity in some instances and not being able to do so in others. It is beyond doubt that the question of 'sameness', of identity, really and truly has no meaning." [133, pp.121-122]. 8 In Manin's words: "I would like to point out that this is rather an extrapolation of commonplace physics, where we can distinguish things, count them, put them in some order, etc. New quantum physics has shown us models of entities with quite different behavior. Even 'sets' of photons in a looking-glass box, or of electrons in a nickel piece are much less Cantorian than the 'set' of grains of sand" [102, p.36].

terms, a non-individual is an entity without identity, that is, an entity a for which the proposition a = a does not apply. These ideas fueled the development of non-standard set-theoretic frameworks inspired in quantum theory and based on non-reflexive logics (see [START_REF] French | Identity in Physics. A Historical, Philosophical and Formal Analysis[END_REF]Ch.6 & 8]). In this context, the standard notion of identity is not a primitive notion, and the axioms are chosen in such a way that the objects at stake mimic collections of indistinguishable quantum systems.

The most widely discussed of these approaches is quasi-set theory (see Krause's contribution to this collection [START_REF] Krause | On Identity, Indiscernibility, and (Non-)Individuality in the Quantum Domain[END_REF] and references therein). Very briefly, quasi-set theory formalizes the notion of a collection of indistinguishable entities that lack self-identity. In particular, the non-standard features of quasi-set theory were used to develop an alternative approach to the description of quantum systems by constructing a Fock space that no longer uses the symmetrization of states to mimic quantum statistics [START_REF] Holik | Indistinguishability right from the start in standard quantum mechanics[END_REF]. While quasi-set theory is focused on quantum non-individuality, other approaches such as quaset theory capture other features of quantum mechanics, such as indefinite properties [START_REF] Chiara | Quasiset Theories for Microobjects: A Comparison[END_REF]. A quantum mereology-in which the notion of quantum uncertainty and undefined number of components are related to logical undecidability-was also proposed in [START_REF] Da Costa | A formal framework for the study of the notion of undefined particle number in quantum mechanics[END_REF] (see also [START_REF] Holik | Open problems in the development of a quantum mereology and their ontological implications[END_REF]).

It is worth addressing here the relation between the notions of non-individual and indistinguishability in the conceptual framework provided by Leibniz's PII. Indeed (as mentioned above), if we accept properties of the form x = a, then Leibniz's PII is trivially true, which means that indistinguishable entities are forbidden (briefly, each entity a is unambiguously distinguished by the property of being identical to itself). Hence, we can hold space for indistinguishable entities by questioning Quine's thesis that there is "no entity without identity" [124, p.23]. Formally, this can be done by suspending the universal application of the mathematical relation of equality and, a fortiori, that of self-identity. Since expressions of the form x = a might no longer be applicable, the trivial validity of Leibniz's PII is blocked. All in all, an ontology in which self-identity is not necessarily a well-formed proposition can accommodate indistinguishable entities.

Taking sides with the received view, Barros and Holik claim in their contribution that quantum indistinguishability is not only a crucial and independent feature of quantum systemsbesides entanglement and superposition-, but also that it is deeply connected with the notions of quantum interference and contextuality [START_REF] De Barros | Ontological Indistinguishability as a Central Tenet of Quantum Theory[END_REF]. In their contribution they discuss simple (but well-established) experiments under this light, and analyze several of the so-called "quantum paradoxes" from the standpoint provided by an ontology of non-individuals. According to their analysis, most of the problems discussed in the foundations of quantum theory implicitly assume that the entities at stake are individuals, that is, entities obeying the classical laws of identity. They argue that the motivations underlying Bell's theorem and the assumptions that lead to the Kochen-Specker contradiction, do not follow if the assumption that quantum systems are individuals is dropped. By using an ontology based on (quantum) bundles of properties in which the PII is not valid, Lombardi's contribution analyzes the problem of entanglement of indiscernible quantum systems [START_REF] Lombardi | Entanglement and Indistinguishability: Facing some Challenges from a New Perspective[END_REF] (see also [START_REF] Holik | Quasi-set theory: a formal approach to a quantum ontology of properties[END_REF]). Lombardi's main claim is that many of the philosophical problems that appear when analyzing entanglement of indiscernible particles are dissolved when we consider them in the light of an ontology of non-individuals. The contribution by Becker Arenhart [START_REF] Becker Arenhart | A No-Individuals Account of Quantum Mechanics[END_REF] analyzes the interpretation of quantum entities in terms of non-individuals from a different perspective. The author defends the position that quantum entities are better described as nomological objects, that is, as classes of objects but not as single individuals. According to this author, this explains why the theory fails to provide tools to decide whether quantum entities are individuals or not. With this move, the author claims, the problem of individuality disappears, since it is out of the scope of the theory.

At the opposite side of the aforementioned cleavage, Bigaj's and Dieks's contributions to this volume propose different types of critique of the received view [START_REF] Bigaj | Entanglement and Discernibility of Identical Particles[END_REF][START_REF] Dieks | Emergence and Identity of Quantum Particles[END_REF]. On the one hand, Dieks denies that the notion of particle is more than just a convenient approximation valid in certain regimes. From the standpoint of quantum field theory, the notion of a (semi-classical) particle associated to the Fock space representation is an emergent concept which does not belong to the fundamental ontology (which seems more suitably described by using a notion of "one individed physical whole" associated to a quantum field). In the general case of a coherent superposition of (anti)symmetrized product states, the concept of particles is simply not relevant. But when the notion of particle is applicable, particles are distinguishable (defined by one particle states) and posses physically defined identities. In this way, the received view is challenged by assuming that in the last instance quantum systems are not (individual or non-individual) particles. On the other hand, Bigaj analyzes in his contribution how the components of a composite system can be individuated by using physical properties represented by projectors rather than by relying on labels (see also [START_REF] Bigaj | Identity and Indiscernibility in Quantum Mechanics[END_REF]). He goes on to argue that the concept of particle might still be applicable in the case of entangled states in a manner that depends on the selection of a particular individuating framework (like a projective decomposition of the identity) or on some form of physical process like decoherence. In the wake of the works by Ghirardi, Marinatto and Weber [START_REF] Ghirardi | Entanglement and Properties of Composite Quantum Systems: A Conceptual and Mathematical Analysis[END_REF][START_REF] Ghirardi | Entanglement and Properties[END_REF][START_REF] Ghirardi | General criterion for the entanglement of two indistinguishable particles[END_REF], Bigaj also analyses the relation between the notion of entanglement and the non-factorizability that merely arises from the (anti)symmetrization of a product state. In Kastner's contribution to this collection [START_REF] Kastner | Quantum Haecceity[END_REF], a notion of quantum haecceity is proposed in the framework of Kastner's transactional interpretation of quantum theory. This author maintains that the exchange of labels associated to a symmetrization of the wave function should be understood as an exchange of a quantum form of "transcendental individuality" or "primitive thisness" that Kastner calls quantum haecceity. According to Kastner, quantum haecceity endows quantum systems with a "quasi-individuality" that encodes the potential for different outcomes in a measurement process. In turn, such physical measurement processes entail the distinguishability of the different components.

Another avenue to question the thesis that indistinguishable entities should be understood as non-individuals-and to defend the thesis that the notion of indistinguishable individuals makes sense (see for instance [START_REF] Auyang | How is Quantum Field Theory Possible?[END_REF])-is to exclude predicates of the form x = a from the formulation of Leibniz's PII. This restriction can be justified by arguing that the property x = a (whose unique truthmaker is a) just encodes the numerical distinction between a and other entities, without grounding this numerical distinction on a qualitative dissimilarity. 9 Moreover, a is just a label denoting an entity. If the corresponding entity is equipped with discerning properties, then we can just use these properties to individualize a instead of the predicate x = a. Equivalently (along the lines of the descriptivist theory of names), we can define the label a as a shorthand for the individualizing bundle of properties of the corresponding entity. If a is indistinguishable from other entities, then the predicate x = a discerns the entity at stake only when we define the reference of the label a by means of a demonstrative act or indexical sign. Hence, the individuality of such an entity still relies on some form of primitive thisness. All in all, the argument according to which the predicate x = a defines a discerning property can be soundly put into question. If we exclude this predicate from the universal quantifier in (1), then the PII is no longer trivially valid. We can then hold space for indistinguishable entities without relinquishing the notions of equality and self-identity.

In order to conclude this section, it is also worth noting that quantum indistinguishability might be considered as a particular form of indistinguishability which differs from the classical indistinguishability associated to different classical objects that share all their properties, like Black's indistinguishable spheres [START_REF] Black | The Identity of Indiscernibles[END_REF] or Boltzmann particles. Indeed, we can in principle distinguish two different forms of indistinguishability. What we could call classical indistinguishability refers to entities a) that are perfectly alike and b) that are endowed with some form of "transcendental individuality" or "primitive thisness" [START_REF] Post | Individuality and physics[END_REF] (see also [START_REF] French | Identity in Physics. A Historical, Philosophical and Formal Analysis[END_REF]Sect.1.3]). 10 As Post argues, this form of classical indistinguishability underlies Boltzmann statistics, in which configurations related by an exchange of indistinguishable parties are counted as different [120, p.15]. By contrast, (what we could call) quantum indistinguishability might be understood as a stronger (or "absolute") form of indistinguishability in which entities a) are perfectly alike and b) lack "transcendental individuality" or "primitive thisness". This could explain why configurations related by an exchange of indistinguishable particles are counted as one configuration. The situation is somehow similar to what happens in gauge theories, in which configurations related by a gauge symmetry define one and the same physical (or coordinate-independent) configuration in the reduced phase space of the theory (see Section 4). The analogy could be pushed further by noting that in both cases the corresponding symmetries (the exchange symmetries and the gauge symmetries respectively) play a similar role, namely that of depriving the corresponding labels or coordinates of any intrinsic physical meaning. In this way, both exchange or gauge symmetries remove representational redundancy, "surplus structure" (Redhead [START_REF] Redhead | The interpretation of gauge symmetry[END_REF]) or "descriptive fluff" (Earman [START_REF] Earman | Laws, symmetry, and symmetry breaking: Invariance, conservation principles, and objec-tivity[END_REF]) (see [START_REF] Caulton | Qualitative Individuation in permutation-invariant quantum mechanics[END_REF] and [142, pp.25-35] for such a gauge-oriented interpretation of exchange symmetries). 11 Rather than introducing non-physical labels together with a formal mechanism intended to deprive the labels of any physical meaning, we could prefer an intrinsic formalism that avoids using such "surplus structure" right from the start (like the Fock space formalism in quantum field theory or the reduced phase space description in gauge theories). However-as we shall see in the next section-the thesis that fundamental physical symmetries like exchange symmetries or gauge symmetries are nothing but a mere formal device by means of which we can get rid of a previously introduced representational redundancy is not devoid of problems. 10 For other discussions regarding the applicability of the notion of "primitive thisness" to quantum systems see [START_REF] Bigaj | Exchanging Quantum Particles[END_REF], [START_REF] Huggett | Atomic Metaphysics[END_REF], [START_REF] Huggett | Identity, Quantum Mechanics and Common Sense[END_REF], [142, pp.16-35], as well as Kastner's contribution to this collection [START_REF] Kastner | Quantum Haecceity[END_REF].

11 By pushing this similarity between exchange symmetries and gauge symmetries, Margeneau argues that Pauli's exclusion principle, "by merely stipulating antisymmetry, automatically introduces correlations between the states of the two particles. Although the correlations are of non-dynamical origin, arising as they do a formal principle of symmetry, they have the same physical effects as if were due to forces [...] There is an interesting and far-reaching parallelism between the general principle of relativity and the exclusion principle. The former creates physically perceptible forces out of the metric of space; by endowing its equations with the formal property of invariance it is able to account for the phenomenon of gravitation, no reference being made to the ordinary concept of force. The exclusion principle imposes another formal property, antisymmetry, upon the state functions of quantum physics and thereby yields correlations which are tantamount to forces. The physicist in fact calls them exchange forces without any apparent embarrassment" [103, pp.195-196].

Indistinguishability in Gauge Theories

The notion of symmetry is intimately related to the notion of indistinguishability. Briefly, a symmetry transformation is a non-trivial operation acting on a given configuration such that the initial and the final states are indistinguishable. It is a well known fact that symmetries play an essential role in physics [START_REF] Brading | Symmetries in Physics. Philosophical Reflections[END_REF][START_REF] Weyl | Symmetry[END_REF]. A fundamental step in the understanding of the physical importance of the notion of symmetry was the discovery by Emmy Noether of the relation between (global) symmetries (defined by a finite dimensional Lie group) of the corresponding Lagrangian and conserved quantities (i.e. quantities that do not change under the temporal evolution of the system). Noether's second theorem encodes a generalization of this result to local symmetries, that is, to symmetries defined by an infinite-dimensional Lie group [START_REF] Brading | Symmetries and Noether's theorems[END_REF][START_REF] Kosmann-Schwarzbach | The Noether theorems: Invariance and conservation laws in the twentieth century[END_REF][START_REF]The Philosophy and Physics of Noether's Theorems : A Centenary[END_REF]. In this case, the existence of local symmetries leads to the existence of relations between the canonical variables of the Hamiltonian formulation called constraints [START_REF] Dirac | Lectures on Quantum Mechanics[END_REF][START_REF] Earman | Tracking down gauge: an ode to the constrained Hamiltonian formalism[END_REF][START_REF] Henneaux | Quantization of gauge systems[END_REF]. The importance of Noether's results cannot be overestated since it provides the mathematical foundations of one of the most important achievements of the XXth century physics, namely the geometrization of the fundamental interactions. Whereas general relativity provides a geometric description of the gravitational interaction, Yang and Mills successfully extended-in the wake of previous work done by Weyl-this geometrization program the other fundamental interactions, namely, electromagnetism and the string and weak nuclear forces [START_REF] O'raifeartaigh | The dawning of gauge theory[END_REF][START_REF] Yang | Conservation of isotopic spin and isotopic gauge invariance[END_REF]. The mathematical structures of these theories share a common formal feature, namely, the presence of so-called gauge symmetries given by the invariance of the physical predictions under local gauge transformations, that is, under spacetime-dependent transformations of the local coordinate systems (for the formulation of general relativity as a gauge theory see [START_REF] Catren | Geometric Foundations of Cartan Gauge Gravity[END_REF] and references therein). The geometrization of the fundamental interactions program was then crowned by the recognition that these interactions can be modeled by means of a beautiful mathematical theory, namely the theory of (Ehresmann and Cartan) connections on principal fiber bundles [START_REF] Catren | Geometric Foundations of Cartan Gauge Gravity[END_REF].

The problem of understanding the epistemic and/or ontological scope of the notion of gauge symmetry is one of the main conceptual issues posited by these theories (see for instance [START_REF] Belot | Symmetry and Gauge Freedom[END_REF][START_REF] Brading | Are Gauge Symmetry Transformations Observable?[END_REF][START_REF] Catren | Geometric Foundations of Classical Yang-Mills Theory[END_REF][START_REF] Catren | On Gauge-Symmetries, Indiscernibilities, and Groupoid-Theoretical Equalities[END_REF][START_REF] Earman | Laws, symmetry, and symmetry breaking: Invariance, conservation principles, and objec-tivity[END_REF][START_REF] Greaves | Empirical consequences of symmetries[END_REF][START_REF] Healey | Gauging what's real. The conceptual foundations of contemporary gauge theories[END_REF][START_REF] Kosso | The Empirical Status of Symmetries in Physics[END_REF][START_REF] Martin | On continuous symmetries and the foundations of modern physics[END_REF][START_REF] Martin | Gauge principles, gauge arguments and the logic of nature[END_REF][START_REF] Redhead | The interpretation of gauge symmetry[END_REF][START_REF] Van Fraassen | Laws and Symmetry[END_REF]). We could summarize the conundrum posited by gauge symmetries by saying that the presence of symmetry transformations which by definition do not produce any observable effect seem to have nonetheless direct (or at least indirect) empirical significance (some examples are listed below). Also here the landscape of philosophical interpretations of gauge symmetries is organized around two massive opposing views, namely the possition which has been called the received view (based on the thesis that gauge symmetries do not have direct empirical significance) [START_REF] Martin | On continuous symmetries and the foundations of modern physics[END_REF], and the corresponding alternative views. On the one hand, the presence of gauge symmetries is understood as a mere consequence of the mathematical "surplus structure" [START_REF] Redhead | The interpretation of gauge symmetry[END_REF] resulting from the fact that a unique physical configuration can be described by using different coordinate systems [START_REF] Brading | Are Gauge Symmetry Transformations Observable?[END_REF][START_REF] Healey | Gauging what's real. The conceptual foundations of contemporary gauge theories[END_REF][START_REF] Kosso | The Empirical Status of Symmetries in Physics[END_REF]. 12 In Witten's terms, "gauge symmetries are redundancies in the mathematical description of a physical system rather than properties of the system itself" [START_REF] Witten | Symmetry and emergence[END_REF]. According to this argumentative line, the act of choosing a particular gauge adds non-physical structure, and the corresponding gauge symmetry guarantees that the physical or "observable" predictions do not depend on this arbitrary choice (i.e. that they are invariant under gauge transformations). It would always be possible-at least in principle-to project the coordinate-dependent description to a coordinate-independent one in which all the redundant "surplus structure" is quotiened out (see for instance the notion of reduced phase space in [START_REF] Dirac | Lectures on Quantum Mechanics[END_REF][START_REF] Henneaux | Quantization of gauge systems[END_REF]). According to the received view, the fact that a coordinatedependent description might be useful to perform certain calculations should not blind us to the fact that the election of such a description is only a matter of convenience.

According to the critics of the received view, the presence of gauge symmetries cannot be reduced to a mere redundancy of the mathematical representation, but rather encodes some deep fact about the "logic of nature" [START_REF] Martin | Gauge principles, gauge arguments and the logic of nature[END_REF] that has to be properly understood [START_REF] Catren | On Gauge-Symmetries, Indiscernibilities, and Groupoid-Theoretical Equalities[END_REF][START_REF] Greaves | Empirical consequences of symmetries[END_REF][START_REF] Rovelli | Why gauge?[END_REF]. The main argument to justify the search for a deep meaning of gauge symmetries is that these symmetries seem to have non-trivial physical consequences, notably [START_REF]The Leibniz-Clarke Correspondence[END_REF] the relation between gauge symmetries and fundamental physical interactions encoded in the heuristic gauge principle [START_REF] Yang | Conservation of isotopic spin and isotopic gauge invariance[END_REF] (see also [START_REF] Catren | Geometric Foundations of Classical Yang-Mills Theory[END_REF][START_REF] Gomes | The Gauge Argument A Noether Reason[END_REF][START_REF] Martin | On continuous symmetries and the foundations of modern physics[END_REF][START_REF] Martin | Gauge principles, gauge arguments and the logic of nature[END_REF][START_REF] Teller | The Gauge Argument[END_REF]), 13 (2) the role played by gauge symmetries in renormalization theory [143],

(3) the role played by gauge symmetries in the definition of the so-called topological solutions-like instantons-associated to fiber bundles that are topologically non-trivial, (4) and the supposed "physical reality" of the gauge potential in the Aharonov-Bohm effect and similar escenarios [START_REF] Earman | The role of idealizations in the Aharonov-Bohm effect[END_REF][START_REF] Healey | Nonlocality and the Aharonov-Bohm Effect[END_REF][START_REF] Lyre | Holism and structuralism in U(1) gauge theory[END_REF][START_REF] Maudlin | Ontological Clarity via Canonical Presentation: Electromagnetism and the Aharonov-Bohm Effect[END_REF][START_REF] Maudlin | Healey on the Aharonov-Bohm Effect[END_REF][START_REF] Nounou | A fourth way to the Aharonov-Bohm effect[END_REF].

In order to try to unravel the mysteries of gauge symmetries, different research avenues have been explored. Rovelli, for instance, argues that gauge symmetries are a manifestation of the relational nature of physical observables. 14 In turn, Greaves and Wallace use Galileo's ship thought experiment [START_REF] Galileo | Dialogues Concerning the Two Chief World Systems[END_REF] to argue that local symmetries can have empirical significance or observable consequences [START_REF] Greaves | Empirical consequences of symmetries[END_REF] (see also [START_REF] Belot | Fifty Million Elvis Fans Can't be Wrong[END_REF][START_REF] Teh | Galileo's Gauge: Understanding the Empirical Significance of Gauge Symmetry[END_REF][START_REF] Wallace | Isolated systems and their symmetries, part I: General framework and particle-mechanics examples[END_REF][START_REF] Wallace | Isolated systems and their symmetries, part II: Local and global symmetries of field theories[END_REF][START_REF] Wallace | Observability, Redundancy, and Modality for Dynamical Symmetry Transformations[END_REF]). Very briefly, the empirical significance of a symmetry would result from the fact that a transformation acting on a subsystem of the universe might have non-trivial observable effects associated to the relation between the subsystem and the reference system provided by the corresponding environment. 15 A different line of argumentation clings to the fact that a symmetry transformation produces by definition states that are, strictly speaking, indiscernible. However, this strict indiscernibility cannot be used as an argument in favor of the thesis that gauge symmetries are mere mathematical redundancies since the very group(oid)-theoretical structure of these indiscernibilities is an essential feature of the corresponding theory. The epistemic fact that a given physical configuration can be described by means of different coordinate systems is a consequence of an intrinsic geometric structure that characterizes the theory at stake. For instance, the fact that observables in relativistic physics in flat spacetime must be Poincaré invariant is not a mere epistemic constraint that removes the "surplus structure" given by the existence of different frames of reference. Poincaré invariance 13 Briefly, the gauge principle encodes the heuristic fact that the a global symmetry of a Lagrangian can be made local by adding a gauge field, that is, a potential of a physical interaction. 14 According to Rovelli, "[g]auge invariance is not just mathematical redundancy; it is an indication of the relational character of fundamental observables in physics. These do not refer to properties of a single entity. They refer to relational properties between entities: relative velocity, relative localization, relative orientation in internal space, and so on. Gauge interactions describe the world because Nature is described by relative quantities that refer to more than one object. [...] Gauge is ubiquitous. It is not unphysical redundancy of our mathematics. It reveals the relational structure of our world" [START_REF] Rovelli | Why gauge?[END_REF]. 15 In Greaves and Wallace's terms, "a transformation can be a symmetry of a subsystem of the world without being a symmetry of the whole world. As such, the transformation gives rise to a different state of affairs, but has no detectable consequences for measurements confined to the subsystem" [65, p.60].

rather results from the fact that the underlying spacetime is assumed to have a particular symmetry, which is an intrinsic property of this particular spacetime [START_REF] Catren | On Gauge-Symmetries, Indiscernibilities, and Groupoid-Theoretical Equalities[END_REF]. 16 It is also worth noting that the most sophisticated mathematical formalism for dealing with gauge symmetries-namely, the so-called BRST formalism [START_REF] Henneaux | Quantization of gauge systems[END_REF]-does not proceed by quoting out the gauge symmetries, but rather by unfolding the higher structure that they convey. Rather than removing the degrees of freedom that are nothing by "pure gauge" (at least according to the received view), the BRST formalism increases the original number of variables by introducing the so-called ghosts, ghosts of ghosts, and so on and so forth. 17 All in all, the problem of analyzing the significance of physically indistinguishable configurations in gauge theories remains an open and fruitful field of research in both physics and philosophy of physics.

Revisiting Mathematical Equality

Let's consider now the role played by the notions of identity, individuality, and indistinguishability in mathematics. Of course, the notion of equality (and a fortiori the notion of identity) is fundamental in mathematics. 18 To a first approximation this notion has a seemingly paradoxical character: whereas equality propositions of the form a = b state-in a somewhat contradictory manner-that two different things are equal, identity propositions of the form a = a state-in a somewhat tautological manner-that a thing is identical to itself. This paradoxical nature of the notion of equality has been stressed by Wittgenstein in the following terms: "[...] to say of two things that they are identical is nonsense, and to say of one thing that it is identical with itself is to say nothing at all" [153, §5.5303]. But if this is so, then we could ask with Quine "[o]f what use is the notion of identity if identifying an object with itself is trivial and identifying it with anything else is false?" And Quine answers, "[...] the useful statements of identity are those in which the named objects are the same and the names are different, it is only because of a peculiarity of language that the notion of identity is needed. If our language were so perfect a copy of its subject matter that each thing had but one name, then statements of identity would indeed be useless." [125, pp.208-9]. In other terms, the only non-trivial use of the notion of identity would be according to Quine that of encoding the relation of synonymy between linguistic expressions.

Quine's stance seems to fall short of what is required to understand even elementary mathematical statements like 27 × 37 = 999. Since the two different expressions compute to the same value 999, we could say that they are literally equi-valent. But of course, 27 × 37 and 999 are different qua arithmetic expressions since they convey different computational contents. The use of the symbol = can then be understood as an abuse of notation resulting from the fact that the two expressions yield the same numerical value after performing the corresponding computation.

reference, is derivative rather than fundamental. Each of these concepts can only be defined by reference to some objective geometrical structure of space time itself, in order to make sense of the qualifier 'inertial'. So we ought to begin with the intrinsic geometry, not with coordinate systems or reference frames" [107, p.67]. 17 According to Henneaux and Teitelboim, "It is a remarkable occurrence that the road to progress has invariably been toward enlarging the number of variables and introducing a more powerful symmetry rather than conversely aiming at reducing the number of variables and eliminating the symmetry" [69, p. xxiii].

18 See Muller's contribution to this volume for an analysis of the notion of identity in Aristotle's philosophy and the history of the equal sign = [START_REF] Muller | Aristotle on Identity: Close Enough![END_REF].

In other terms, 27 × 37 and 999 are in the same equivalence class defined by the equivalence relation "two arithmetic expressions a and b are equivalent if they yield the same numerical value after computation". In Frege's terms, we could say that 27 × 37 and 999 express different senses (or modes of presentation) of the same reference. Indeed, by introducing the Fregean distinction between sense and denotation, Girard describes the situation in the following terms: "This equality [27 × 37 = 999] makes sense in the mainstream of mathematics by saying that the two sides denote the same integer [...]. This is the denotational aspect, which is undoubtedly correct, but it misses the essential point: There is a finite computation process which shows that the [references] are equal. It is an abuse [...] to say that 27 × 37 equals 999, since if the two things we have were the same then we would never feel the need to state their equality. Concretely we ask a question, 27 × 37, and get an answer, 999. The two expressions have different senses and we must do something (make a proof or a calculation [...]) to show that these two senses have the same [reference]." [63, pp.1-2]. Is it possible to make this kind of abuse of notation rigorous? Is it possible to define a notion of equality that explicitly encodes this computational dimension? Is it possible to introduce a notion of equality that somehow takes into account Fregean distinction between sense and reference? Now, the notion of mathematical equality (and, a fortiori, the notion of identity) has undergone a far-reaching process of reconceptualization that started with the development of category theory, continued with the enhancement of the latter to higher category theory, and has recently entered into a new phase with the development of homotopy type theory in the early new millennium [START_REF]Homotopy Type Theory: Univalent Foundations of Mathematics[END_REF][START_REF] Rijke | Introduction to Homotopy Type Theory[END_REF] (see also Catren's contribution to this volume [START_REF] Catren | Abstraction, Equality, and Univalence[END_REF] and references therein). Category theory made clear that the notion of strict equality is indeed too strict. This fact motivated the "stretching" of the notion of strict equality into the notion of isomorphism. It soon became clear that a full-fledged development of this weakening of the notion of strict equality requires to extend category theory to higher category theory. In turn, we could say that homotopy type theory focus on the sector of higher category theory that encodes this extension of the notion of equality, namely the higher categories known as ∞-groupoids. Very briefly, the main new ingredient of homotopy type theory is the structure given by the so-called propositional equality between terms of a type. Given two terms of a type a, b : X, the propositional equality a = X b is itself a type whose terms are the concrete identifications between a and b, that is, the proofs that a and b are equal (which means that the proposition is false if the type a = X b is empty). Since two proofs p, q : a = X b of a propositional equality are not necessarily equal (i.e. the uniqueness of identity proofs principle does not hold), a propositional equality a = X b might envelop a complex structure of higher identifications. It follows that a type has the structure of an ∞-groupoid which-according to the so-called homotopy hypothesis-can be understood as a geometric object known as homotopy type.

The main ontological stance at the base of homotopy type theory-namely that the fundamental mathematical objects are given by ∞-groupoids or homotopy types-can be understood as the most refined development to date of the history that starts with Galois' introduction of the notion of group in the beginning of the 19th century (see [START_REF] Catren | On the Notions of Indiscernibility and Indeterminacy in the Light of Galois-Grothendieck Theory[END_REF] for a conceptual discussion of Galois theory). By addressing the problem of finding solving formulas for polynomial equations, Galois was confronted with the existence of solutions to polynomial equations of the form p(x) = 0 (with p(x) ∈ K[x], where K is a field) such that no K-relation could discern them. Galois' breakthrough was the invention of a new mathematical notion-the notion of groupwhich encoded the structure defined by the indiscernible solutions. In this way, group theory was born as a mathematical "theory of ambiguity" (as Galois himself dubbed it [55, p.94]) that formalizes the limits of a given arithmetic language (the field K) to discern solutions of polynomial equations over K. In Galois theory, groups encode the structure of that which cannot be "said" in a given arithmetic language, namely the numerical difference between solutions that are indiscernible with respect to that language. 19 The lesson that we can draw from this story that begins with Galois theory and culminates (at least for the moment) with homotopy type theory is that differences that make no difference might carry nonetheless a rich mathematical structure. In order to conclude this section, it is also worth noting that the problem of deciding whether Leibniz's PII holds or not in homotopy type theory is still under discussion (see [START_REF] Catren | Abstraction, Equality, and Univalence[END_REF] and [START_REF] Ladyman | Identity in Homotopy Type Theory: Part II: The Conceptual and Philosophical Status of Identity in HoTT[END_REF] for two different approaches to this question).

Conclusion: Who is Afraid of Indiscernibles?

In this brief survey we have analyzed different ways in which the notions of identity, individuality, and indistinguishability are used in physics and mathematics, and revisited some of the philosophical questions they elicit. In order to conclude this survey, we will take the risk of making abstraction of the details of the different local debates and types of indistinguishabilities that we have described-both in the foundations of quantum and gauge physics and in the foundations of mathematics-and try to focus on (what we think it is) an emerging global pattern. Interestingly enough, we can recognize a sort of unique cleavage that traverses these different research areas, which is defined by the attitude towards the existence of indiscernibles.

On one side of this cleavage, there is a tradition that tries to foreclose by all means the existence of indiscernibles. Since indiscernibles are associated to differences that make no difference-e.g. gauge symmetries, exchanges of identical particles, substitutions salva veritate, differences solo numero-, it is tempting to consider them as a symptom of a metaphysical or representational "surplus structure" that should be removed at some point. A possible strategy consists in denying the very existence of indiscernibles by looking for-eventually hidden-distinguishing properties (as it is done in some approaches to quantum theory) or by introducing, in the wake of Quine, weaker grades of discernibility. Other strategies (like in certain interpretations of gauge theories) proceed by considering the presence of indiscernibles as a symptom of a representational redundancy. In mathematics, different proofs of the same proposition, different computations that yield the same result, or different intensional definitions of the same object (like different mathematical expressions that define the same functional correspondence between the domain and the codomain) also appear to be a mere surplus structure that we can discard at some point. In Wittgenstein's terms, we could safely "throw away the ladder after [we have] climbed up it" [153, §6.54]. According to this argumentative line, the progress of scientific understanding would move in the direction of recognizing the merely descriptive, representational or even subjective nature of this type of "surplus structure". Symmetry principles, Leibniz's PII, or different forms of extensional truncations would allows us to distinguish the essential, intrinsic, or empirically accessible content from what Earman called "descriptive [or constructivist] fluff". Different coordinate representations of the same physical configuration, different proofs of the 19 It is worth noting that, in the framework of Galois theory, the K-indiscernibilities at stake are purely epistemic rather than intrinsic, since they can be broken by passing to a larger field K ⊃ K endowed with a higher "resolving power". What cannot be discerned in a given arithmetic language (the field K), can be discerned in a field extension of that language. The so-called Galois correspondence encodes the correspondence between different arithmetic languages (field extensions K ⊃ K) and the corresponding Galois groups of indiscernibilities. same proposition, different constructions of the same mathematical object, different senses of the same reference, different intentional presentations of the same extensional concept, all these differences that seem to make no difference are considered as nothing but representational artifacts that we should carefully distinguish from the intrinsic properties of the objects at stake.

On the other side, there is a tradition-that can be traced back at least to Leibniz and Galoisthat accepts at face value the existence of indiscernibles in physics and mathematics. According to this tradition, the problem posited by the existence of indiscernible entities cannot be solved by trying to eliminate indiscernibilities-by introducing different grades of discernibility a la Quine, by assuming the existence of hidden discerning properties, by quotienting out gaugedependent quantities, or by truncating the homotopic structure-but rather by introducing new mathematical formalisms capable of encoding the very structure carried by indiscernibles. The main motivation to do so is that in certain situations the truncation of this "surplus structure" leads to different kinds of pathological constructions, like the so-called "bad quotients" associated to group actions that are not free, or the problems encountered when trying to define moduli spaces for objects with non-trivial automorphisms in algebraic geometry. On this side of the divide, progress does not move in the direction of quoting out the differences that make no difference, but rather in the direction of "resolving" the mathematical structure that they present.

It is also worth noting that the question of identity plays a key rol in the different strategies intended to hold space for indiscernibles that we have briefly described. According to the authors that advocate an ontology and a logic of non-individuals, indiscernibles can be introduced by suspending the universal application of the self-identity predicate x = a. We could say that in this approach, the notions of no-identity, non-individuality, and indiscernibility go together. By contrast, the mathematical approaches based on homotopy type theory seem to hold space for indiscernibles a) by expanding or stretching the mathematical notion of equality beyond strict equality and b) by understanding equalities as types of proofs. In this framework an entity a : X might have a non-trivial identity in the sense that there might be different inequivalent proofs of the proposition a = X a (this is typically the case when a has non-trivial symmetries or automorphisms). In this way, the attempts to hold space for indiscernible entities seems to lead either to entities without identity or to entities with a non-trivial identity. The common point is that in both cases it seems necessary to go beyond set-theoretic foundations in order to cope with indiscernible entities. That being said, the scope of this comparison is limited by the fact that the corresponding notions of indiscernibility are not necessarily the same. Whereas the notion of non-individual was forged to deal with quantum indiscernibility, the canonical example of indiscernibility formalized by homotopy type theory is the indiscernibility between two pathconnected points in a space. It is also worth noting that the project of going beyond set-theoretic foundations in order to hold space for indiscernible objects does not depend on any ontological thesis about the ultimate nature of the corresponding indiscernibilities. Even if indiscernible objects arise as a result of a process of abstraction (as Leibniz claimed [96, p.32]) or as a consequence of the limitations of the corresponding language (as it is the case in Galois theory), or if they are objects that emerge in certain regimes or under certain approximations, once they are there they present a rich mathematical structure that has to be properly understood.

Independently of the reader's position with respect the understanding of indiscernibilities in physics, mathematics, and philosophy, there is no doubt that the discussions around these topics provide important and currently active vectors of innovation in these different disciplines.

In what follows we shall use the terms indistinguishability and indiscernbility as synonyms. In certain domains (like quantum theory), the former is generally used, while in others (e.g. the philosophical discussions about Leibniz's principle of the identity of indiscernibles) the latter is preferred.

"Since any definition is an identity, identity itself cannot be defined"[57, p.80]. 1

This assumption of continuity for macroscopic objects has been described by Schrödinger in the following

This point was stressed by Bigaj and Ladyman in the following terms: "Of course, PII is trivial if the way in which the things differ is in being distinct. Hence, the true metaphysical significance of the principle is arrived at if it is true even when restricted to qualitative or non-identity-involving properties [...]"[START_REF] Bigaj | The Principle of the Identity of Indiscernibles and Quantum Mechanics[END_REF].

This position could be traced back to Kretschmann's objection against the supposed physical scope of the principle of general covariance in general relativity[START_REF] Norton | General covariance, gauge theories, and the Kretschmann objection[END_REF].

This point has been clearly stressed by Maudlin as follows "[...] the notion of [...] an inertial frame of