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T2S-MAKEP and T2T-MAKEP: A PUF-Based
Mutual Authentication and Key Exchange Protocol

for IoT devices

Abstract—Nowadays, more constrained devices are becoming
connected, building an extensive Internet of Things (IoT) net-
work, but suffering from many security issues. In particular,
authentication has become a severe research challenge for IoT
systems. Furthermore, confidentiality, integrity, and availability5

are considered the core underpinnings of information security
in general. Unfortunately, deploying conventional authentication
protocols for IoT devices in practice is challenging for two
main reasons. First, IoT devices have limited memory capacity,
processing power, and energy resources. Second, these protocols10

store secret keys in the IoT devices’ volatile memory, making
them vulnerable to physical attacks. Luckily, Physical Unclonable
Functions (PUF) has emerged as promising low-cost security
primitive. A PUF eliminates the need to store secret keys in
device memory, making it a potential alternative to deploying15

more secure and low-cost authentication protocol schemes for
IoT systems. Thing-to-Thing (T2T) or direct connection between
IoT devices represents a promising technique to enable things to
communicate directly without the need for a trusted third party.
This paper proposes two novel lightweight Mutual Authentication20

and Key Exchange Protocols (MAKEP) for IoT devices using
PUF. The first scheme, called T2S-MAKEP, ensures secure
communication for Thing-to-Server (T2S). The second, called
T2T-MAKEP, allows two endpoints of resource-constrained IoT
devices, each with an embedded PUF circuit, to communicate se-25

curely. Both proposed protocols, T2T-MAKEP and T2S-MAKEP,
allow for robust authentication without storing any information
on the device’s memory and simultaneously establish the session
key exchange. Our proposed protocols have been verified and
validated using the automatic security analysis checker, Verifpal.30

Index Terms—IoT Security, PUF-based authentication, Thing-
to-Thing authentication, Key Exchange Protocol, Fuzzy Extrac-
tor.

I. INTRODUCTION35

NOWADAYS, equipment and devices are rigged with
network connectivity, sensors, and a wide range of

communication protocols and techniques to communicate with
each other, constituting a so-called Internet of Things (IoT).
Such devices are widely used in many applications, starting40

from smart homes to public health. Wireless technology is
the most means of communication used by these devices to
transfer a large amount of data, making them a prime target for
cyber-attacks. Further, IoT devices face several security issues
that must be continuously managed and maintained, including45

authentication, privacy, access control, and data collection and
management [24]. However, ensuring secure communication
between these devices requires a robust authentication protocol
that refers to verifying identities and preventing malicious ones
from accessing the trusted IoT network and a secure session50

key for securing transmission after a successful authentication

phase. Unfortunately, any defect in the authentication protocol
allows an unauthorized thing to communicate, inject false data,
get access to confidential data, and launch dangerous attacks
with other things. 55

Generally, traditional symmetric or asymmetric crypto-
graphic algorithms require more processing power, large mem-
ory, and high energy sources to secure authentication and com-
munication. Nevertheless, the limitations in memory capacity,
processing power, and energy resources of the IoT devices 60

impede deploying conventional authentication protocols in IoT
networks. Further, IoT devices can be found in public areas,
and the conventional schemes store the secret keys on the local
volatile memory of the device, making them vulnerable to
physical attacks [29]. In such a situation, an adversary can 65

easily access physically to the IoT device and recuperate the
stored secret information or even clone the thing’s embedded
circuits. To overcome these limitations and issues, recently,
Physical Unclonable Functions (PUF) became a hot topic in
research and development by exploiting the physical disorder 70

of physical things. PUF can generate unique secret information
from the physical characteristics of the IoT device and use it
as a unique device fingerprint, making PUF a very efficient
solution for IoT authentication protocol.

In practice, Thing-to-Thing (T2T) and Thing-to-Server 75

(T2S) are two different authentication scenarios. In T2S,
the thing wants to authenticate and communicate with the
trusted server in the network. Besides, T2T or direct IoT end-
devices connection represents a promising technique to enable
things to communicate directly without the server’s interaction. 80

This work proposes a novel lightweight (T2S, T2T) Mutual
Authentication and Key Exchange Protocol for IoT devices
(T2S-MAKEP, T2T-MAKEP) using PUF.

A. Related work
Over the past decade, a substantial amount of research has 85

focused on the authentication and key exchange of IoT de-
vices. Specifically, extensive investigation has been carried out
on PUF-based authentication protocols for IoT applications.
These protocols utilize various types of PUFs, employ different
authentication mechanisms, and aim to offer a lightweight and 90

secure authentication scheme under diverse settings such as
smart grid, IoMT, and IoT.

Most of them are useful for authentication between an IoT
device with a trusted server [1, 9, 11, 14, 15, 20, 21, 22, 23,
25, 27], and some protocols take into consideration a thing- 95

to-thing authentication and the key exchange [2, 3, 32]. In
this section, we briefly review some recent IoT PUF-based
authentication protocols.
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Idriss et al.. [11] proposed a lightweight PUF-based protocol
that offers mutual authentication for IoT devices [11]. Instead100

of storing the challenge-response pairs (CRPs) on the server,
they save the CRPs trained soft model while challenges are
exchanged during the authentication process. This protocol
does not ensure communication reliability, especially error
correction. Following the same schema of using PUF without105

storing many CRPs on the server, [14]. [14] proposed a two-
way authentication protocol by relying on the PUF of a
device, where only one pair of CRPs is stored on the server
and for each successful authentication phase is ended by the
generation and storage of a new CRP pair. This protocol110

is vulnerable to physical attacks since it stores the used
secret response on the device rather than other variables that
are classified as secret. This scheme could be improved by
resuming some unused variables and enhancing its reliability.
Yanambaka et al. [27] presented a PUF-based authentication115

scheme for the Internet of Medical Things (IoMT) where both
the server and the IoMT are equipped with a PUF. The authors
used a secure database as a third party to store collected CRPs.
However, the exchanged messages between the IoMT and the
server has not been subject to any encryption or camouflage120

techniques that facilitate easily launching modeling attacks.
Also, error correction has not been taken into consideration.
Zheng et al. [32]. proposed a lightweight PUF-based mutual
authentication and a key-exchange protocol between IoT de-
vices (Peer-to-Peer) without the need of the trusted server,125

except in the setup phase. The protocol was designed for low-
cost and resource-limited devices, but awkwardly it needs to
store four variables for each device that wants to connect
with it. Some of this information is classified as private,
making them vulnerable to physical attack. This protocol is130

not practical because if a new device wants to communicate
with an already in-service device, Both have to go through a
setup phase with the server. Najafi et al. [23] presented a PUF-
based authentication protocol using a Convolutional Neural
Networks (CNN) as an alternative solution of using error-135

correction techniques. This protocol does not offer mutual
authentication, and many attacks are not considered, such as
modeling, man-in-the-middle and DoS attacks. Guan et al.
[9] proposed an identity PUF-authentication protocol for IoT
devices using the PUF outputs and the user password as two-140

factor authentication. Unfortunately, the user is implicated in
all authentication steps by receiving and transmitting data from
the device to the server. Furthermore, the protocol does not
take into consideration IoT constraints.

Pu and Li [25] proposed a lightweight mutual authentica-145

tion protocol between unmanned aerial vehicles (UAVs) and
the ground stations while each UAV has its proper PUF.
Unfortunately, this protocol is unpractical since the error
correction is not considered in a UAV environment known
for its dramatic changes. Meng et al. [20] proposed a mutual150

authentication between IoT devices and the server. They rely
on PUF as the main security component in addition to hashing
functions and XORing operations. Aman et al. proposed a
PUF-based authentication protocol called RapidAuth [1] that
resists to physical attacks. With the help of using elliptic curve155

cryptography (ECC) as second security primitive rather than

PUF. This scheme does not consider the noise elimination that
plays a main role in the encryption and decryption messages
during the authentication steps.

Kim et al. [15] proposed a PUF-based IoT device authen- 160

tication protocol. They follow the same strategy presented in
[25] where the device stores only one CRP pair. In fact, using
the response as cryptographic key without correcting errors
makes the application of the proposed protocol impossible
since the key is generated from the responses. Muhal et al.[22] 165

proposed a PUF-based authentication protocol called PAS
(PUF Authentication Scheme). In the enrollment phase of
this protocol, both the device and the server store an initial
session secret key that will be used in the authentication phase.
Further, the device stores the initial session key, which allows 170

physical attacks. Unfortunately, the proposed protocol does not
use any error correction and noise elimination technique, mak-
ing it impractical. Mostafa et al. [21] proposed a lightweight
mutual two-factor authentication mechanism between a device
and a server. The proposed scheme uses the strong PUF for 175

the authentication process, whereas the weak PUF generates
a cryptographic key. This scheme does not present noise
elimination, making it impractical in real applications and
different environments.

Byun [3] propose a PUF-based end-to-end authentication 180

and key exchange protocol (AKE) for IoT devices. in this
schema, each end party has a distinct PUF-embedded circuit.
Except for the setup phase, which runs in a secure area, the
AKE is achieved between two IoT devices without the help
of the server. This makes it practical for decentralized IoT 185

networks. The proposed scheme is impractical in a real appli-
cation since each device needs to be a member of a network
has to go first through a setup phase where both devices
generate and exchange data used in the authentication phase.
Further, it does not fit with the IoT devices constraint like 190

memory and processing due to manipulated and stored data by
the device. The protocol is vulnerable to physical attacks and
helper data manipulation from the security side. Aman et al.
[2] present a light-weight mutual PUF-based authentication
protocols for IoT systems. They proposed two schemes: when 195

an IoT device wants to authenticate and communicate with its
trusted server and when an IoT device wants to communicate
with another IoT device without storing secrets on the local
device memory. Although the proposed protocol does not
store any information on the IoT, both presented scenarios 200

are impractical since they do not take error correction in the
authentication steps. Further, the server helps with the device-
to-device authentication steps.

B. Motivations

From the related work results, we have learned and observed 205

that:
• When IoT devices store secret or sensitive information

used in the authentication process, they are susceptible
to physical attacks where an advisory could steal the
stored secret information. Furthermore, if the trusted 210

server stores multiple CRPs, it could increase the risk
of modeling attacks when an attacker gains access to the
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server. On the other hand, if the challenge and response
are transmitted in plain text, the protocol becomes vulner-
able to machine learning attacks. Additionally, we have215

observed that:
• The existing protocols did not consider thing-to-thing

T2T authentication operation, and most of those that
achieve T2T rely on real-time or semi-real-time par-
ticipation of the server. Moreover, T2T protocols that220

don’t involve the server’s participation are vulnerable to
physical attacks since they store secret information on
the device. Additionally, many of these protocols are im-
practical due to their scheme, where each registered thing
went to communicate with other things of the network it225

has to go through a setup phase where the server and
both things exchange some information that will be used
during the authentication process. This means that in a
network composed of n things, and each thing has to
store n− 1 secret information. Furthermore, when a new230

thing wants to join the network, all the registered things
on service need to go through an update phase to add the
information of the new device to their local database.

• To ensure security, robustness, and resistance against
known protocol attacks, many proposed schemes com-235

bine PUF with other cryptographic primitives such as
Elliptic Curve Cryptography (ECC). Additionally, some
schemes employ techniques like data dissimulation and
obfuscation, such as the XORing function, to securely
exchange response and other sensitive information used240

in the authentication process, thus protecting against
adversaries.

• Since environmental variations significantly affect the
regeneration process of a stable response, they can intro-
duce noise and errors in the PUF’s output. Therefore, any245

PUF-based authentication protocol must include a noise
elimination and error correction process. One commonly
used solution for this problem is the Fuzzy extractor
technique, which utilizes public helper data variables
during the noise elimination phase. However, storing250

these variables in the local device memory makes them
vulnerable to manipulation attacks targeting the helper
data.

• Many authors fail to capitalize on the unique feature
of the PUF’s response, which enables the generation255

of a session key from the CRP. This session key can
be utilized for future communication without requiring
the involvement of an additional entity to deliberately
determine the session communication key. This can be
achieved at the end of each successful authentication260

phase.

C. Outlines

The reminding parts are depicted as follows: Preliminary
knowledge is presented in Section II, including Physical
unclonable function and fuzzy extractor. Then, our contribu-265

tions and the defined system model and security model are
presented in sections III and IV respectively. Our proposed
authentication schemes are elaborated in the next section. In

Section VIII, we give the formal and informal system security
analysis. In addition, we compare and discuss our proposed 270

protocols with the reviewed works. Finally, the conclusion and
future work are given in Section IX.

II. PRELIMINARIES

A. Physical Unclonable Functions

The PUF is a one-way function that exploits the unique 275

random imperfections found in the nano-scale level of the
structure of physical objects [10]. It is used to extract a piece
of unique information called the response from the physical
characteristics of the object that can be used as a unique
identity of the subject or as a cryptographic key. Due to 280

the randomness found on the conventional integrated circuits
caused by the manufacturing process variation, silicon PUF
[18] refer to PUF built using silicon chips. The Arbiter PUF
is the first and the most used silicon PUF, introduced by
Gassend et al.. In order to output the response, a PUF needs 285

an input called a challenge. When a challenge stimulates a
PUF circuit, the latter will interpret the challenge in the PUF
internal system using the complex physical function that is
unique to each PUF. Then, the PUF will output a response
that is unpredictable but repeatable. A couple of challenge 290

and the correspondent response forms CRP, representing the
unique identifier “fingerprint” of the IC or the device where
it is embedded on [6]. PUF has to produce the same response
for the same given challenge, and as the PUF is a one-
way function, it is impossible to predict a response from the 295

challenge or vice versa. Rather than, each PUF instance always
produces different responses for the same challenge compared
to other instances [19].

In addition to the manufacturing process variation, which
makes the birth of SPUF, the variations in the environmental 300

conditions such as temperature, power supply, and aging have
a significant impact on the stability of the SPUF outputs by
causing noise on their outputs [10, 12]. Hence, the noise can
cause one or more errors for the same challenge, resulting in
an incorrect response that differs from the initial generated one 305

[31]. Therefore, the new response could not be used directly
as a cryptographic key. On another side, the cryptographic key
may be used several times, so it must have the possibility of
the regeneration process of the same key. This problem can be
solved using the fuzzy extractor (FE) [4] technique, an error 310

correction solution to regenerate stable responses from PUF.

B. Fuzzy Extractor

Fuzzy Extractor (FE) introduced in [4] is designed for
extracting nearly uniform random string from noisy and non-
uniform random data with high entropy. FE is built from a 315

pair of algorithms to extract stable, reproducible information
from the PUF response; generation (Gen) and reproduction
(Rep). Gen takes the initial response and outputs uniform
random string data (refer to the cryptographic key) and non-
secret data called public helper data. In order to reproduce 320

the key from a noisy response, the reproduction algorithm
takes two inputs: the noisy response and the public helper
data. The reproduction succeeds only if the initial and noisy
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responses are close enough. As shown by Figure 1, given the
same challenge C1 as input to the same PUF module PUF1,325

in different temperatures T1 = 30K and T2 = 80k, the PUF
generates two different responses R1 and R′

1. We consider
the first response the initial, whereas the second is the noisy
response. We use the Gen procedure to generate the secret key
k and the public helper data P . Then, for the reproduction of330

the same key, we use the Rep procedure, which takes the noisy
response and P as input [28].

Fig. 1. Typical scheme for a fuzzy extractor.

C. PUF-based Authentication

As shown in Figure 2, PUF-based authentication protocols
can be accomplished through two distinct phases. Firstly,335

during the enrolment phase, the server has secure access to
the IoT device, applies a set of challenges, and then stores
their corresponding responses extracted from the PUF circuit
integrated within the device. The second phase is verification,
in which the server verifies the identity of the IoT thing. Then,340

the server randomly selects from its CRP database a challenge
that has never been used. Then, the IoT device generates its
corresponding response and sends it back to the server. If
the received response from the server-side matches the stored
one corresponding to the used challenge, then the IoT thing345

is authenticated and can have access to the IoT network.
Otherwise, the authentication fails.

Fig. 2. A PUF-based Authentications Protocol Overview.

III. OUR CONTRIBUTIONS

In response to the above-discussed limitations of the sur-
veyed PUF-based protocols, in this work, we use PUF as350

security primitive, where the CRPs of PUF are used by
connected things to authenticate themselves. According to
the related work, we can find two cases for the IoT devices
authentication process: thing-to-server and thing-to-thing. In
the first case, the IoT thing communicates with the server, and355

in the second, the IoT thing communicates with another thing
from the same network. This paper takes both authentication
cases by developing the following contributions.

1) We introduce two different PUF-based authentication
schemes: T2S-MAKEP for mutual authentication and 360

key exchange protocol between a thing and a server,
and T2T-MAKEP for a PUF-based thing-to-thing mutual
authentication and key exchange protocol between two
things.

2) To resist physical attacks, we develop and validate a pro- 365

tocol scheme that accomplishes authentication without
storing any secret or public information on the device’s
local memory.

3) For robust communication, our authentication mecha-
nism considers error and noise elimination using fuzzy 370

extractor techniques.
4) In addition, our solution allows device-to-device com-

munication without a full intervention of the sever.
5) Our developed protocols are verified and validated

through formal using Verifpal. Also, we ensured the 375

resilience of our protocols to the most known attacks
to IoT protocols.

IV. SYSTEM MODEL & SECURITY MODEL

This section presents the system and an adversary model
for security analysis of the proposed protocols. The system 380

model shows the network architecture where protocols could
be appliqued and the network component’s requirements to run
and use our protocols. The adversary model concerns threats
found on the system model, including different attacks that an
intruder can run. 385

A. System Model

As shown in Figure 3, we consider the same system model
of IoT as in [2, 17, 30, 32]. The network model mainly
contains two entities: Things and the server. Things could
include various sensor devices, and the server is responsible for 390

managing things and storing security parameters. Things can
communicate with the server, but they can communicate di-
rectly with other things through the internet network. Although
the considered system model is simple, the proposed protocol
can be applied to various complex IoT network models. In this 395

paper, we assume that:
• Each IoT thing is equipped with an embedded PUF

circuit.
• Any physical tampering with the PUF will irreversibly

modify the slight physical variations in the integrated 400

circuit, which in turn changes the PUF challenge-response
behaviour, or even destroys the PUF circuit.

• The IoT things have limited storage capacity and cannot
protect any stored secrets in their local storage memory.

• The server is considered the trusted party with no lim- 405

itation of resources that can be found only in a secure
area.

• The communication between the IoT thing microcon-
troller and its PUF component cannot be accessed only
through a secure channel [2]. 410
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Fig. 3. The system model of the proposed protocols.

• The proposed solution targets single-hop networks.

B. Adversary Model

The proposed protocol is designed keeping in mind the
following adversarial model where common assumptions are
made. The following assumptions are considered as the capa-415

bilities of the adversary.
• The adversary can capture things and obtain the crucial

stored values from their memory
• The adversary has complete control over the public chan-

nel, allowing them to intercept, revert, modify, replay, or420

even generate a completely fabricated message
• The Server’s attached database is currently not accessible,

and as a result, the secret information stored within the
database cannot be accessed by any potential adversaries

• By intercepting messages transmitted through insecure,425

public wireless channels, the adversary is able to acquire
knowledge of the messages. This knowledge enables the
adversary to craft a valid message, which can then be
inserted or modified as needed

• The adversary can disrupt the network using a denial of430

service attack
• The server situated in a highly secured environment

providing hardware/software network security solutions
like IDS/IPS, firewalls, anti-flooding and anti-DoS, etc.

V. T2T-MAKEP SCHEME435

This section presents the proposed Mutual Authentication
and Key Exchange Protocol for IoT devices equipped with a
PUF. Our protocol uses PUF for both IoT devices authentica-
tion cases, T2S and T2T, which need an initial or setup phase.
In addition to using PUF as a source of cryptographic key440

generation, the fuzzy extractor is also considered to reproduce
the same keys several times and hashing functions to uniform
the generated keys. Before presenting this step, we provide in
Table I the main notations used in this protocol.

TABLE I
AUTHENTICATION PROTOCOL’S SYMBOLS.

Symbols Definitions
IDA The identity of an IoT thing A
Regreq Registration request
Authreq Authentication request
CA,i The ith challenge of the device A
h(.) One-way hash function
PUFA The PUF of the device A
RA,i A response of the challenge CA,i

R′
A,i A noisy response of CA,i

Gen(.) Generation procedure of Fuzzy Extractor
Rep(.,.) Reproduction procedure of Fuzzy Extractor
KA,i Extracted key from RA,i

PA,i Helper data of RA,i

TS Timestamp
|| Concatenation symbol

A. Setup phase 445

Contrarily to the most existing PUF-based authentication
protocols that store a considerable number of CRPs, our
authentication mechanism stores only one pair. Thus, it mini-
mizes the security threat due to the confidentiality of the stored
data and resources of the server database [15]. When a new 450

device needs to be added as a member of the network, it goes
first with the server through the setup phase that is executed
in a trusted and secure environment. As presented in Figure 4,
the setup phase should respect the following steps to perform a
secure connection between Thing−A and Trusted−server. 455

• Thing − A sends its identity IdA in plain text to the
Trusted− server with a registration request Regreq.

• Trusted− server generates randomly a challenge CA,i,
and sent it to Thing −A within IDA.

• Thing − A inputs this challenge, CA,i, into its PUF 460

component to output the corresponding response RA,i =
PUFA(CA,i). Then, Thing−A sends to the server: IDA

and RA,i.
• Using the generation procedure of fuzzy extractor Gen,

the Trusted−server extracts the secret key KA,i and the 465
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Thing −A

Generate:RA,i

RA,i=PUFA(CA,i)

Trusted− server

Generate: (KA,i, PA,i)
(KA,i, PA,i)=Gen(RA,i)

Store: IDA, h(IDA), CA,i,KA,i, PA,i

Generate:CA,i

{IDA, Regreq}

{IDA, CA,i}

{IDA, RA,i}

End

Fig. 4. T2S-MAKEP’s setup Phase.

public helper data PA,i, (KA,i, PA,i)=Gen(RA,i). Then,
the server computes the hash of the device identity and
stores IDA, h(IDA), CA,i,KA,i, PA,i on its local secure
database.

• At the end, Trusted− server informs Thing−A about470

the end of the registration/setup phase.

B. T2S-MAKEP Protocol

To show how a thing can be identified and authenticated
after its successful registration in a secure environment, we
present first our proposed mutual authentication scheme be-475

tween the IoT device and the server, called T2S-MAKEP. The
thing and the server achieve mutual authentication since they
are only the entities that know about the generated secret key
for a given challenge in the setup phase and stored on the
trusted server. The server stores only one pair of CRPs to480

avoid attacks on the server. One of the most vital points of
our protocol is that the device does not store any secret and
public information, which avoids physical attacks.

Our scheme compares the stored response in the setup phase
with the new generated one for the same given challenge to485

check the device’s identity. Unfortunately, generating the same
response for the same challenge in different environments and
conditions such as voltage and temperature makes the response
noisy and hazarded compared to the original one. This step is
processed differently in our case, so to generate the secret key490

and store it safely on the server for the authentication process,
the error correction technique has been adopted to eliminate
the noise and ensure the comparison operation. More precisely,
the proposed protocol considers the noise elimination process
using the fuzzy extractor.495

On the other side, the server and the IoT device exchange
securely a session key that corresponds to the used secret key.
It is used to protect and secure the communication between
things and the server. As shown in Figure 5, the authentication
process between the IoT device (Thing-A) and the server500

(trusted-server) is running in three steps as follows.
In Step (1), Thing-A generates a timestamp TS1 and

calculates a hash value m1 = h(IDA, TS1) of its identity

IDA and TS1. Then, it sends the hash of its identifier h(IDA),
the authentication request Authreq, TS1 and m1 message to 505

the server.
In Step (2), upon receiving the message from the IoT device,

the server checks in its database if the received h(IDA)
exists. If it does not, the server rejects the authentication
request. Else, the server verifies the received message integrity 510

by calculating h(IDA, TS1) message and matches both the
calculated hash messages within the received one. If the
matching fails, the server rejects the authentication request.
Otherwise, the server makes sure that the message was not
corrupted or tampered during the transmission phase. To 515

calculate the message m2 = h(IDA, CA,i, PA,i,KA,i, TS2),
the server retrieves CA,i, PA,i,KA,i that belongs to the IDA

from its database to its memory, and it generates a timestamp
TS2. Finally, the server sends the stored challenge CA,i, the
helper data correspondent to this challenge PA,i, TS2 and the 520

message m2 to Thing −A.
In Step (3), once Thing−A receives the server response, it

regenerates the response proper to the received challenge R′
A,i

= PUFA(CA,i) that is considered noisy. Then, it reproduces
the secret key KA,i from the noisy response R′

A,i using the 525

fuzzy extractor reproduction process KA,i= Rep(R′
A,i, PA,i).

To verify the integrity of the received message from the server,
it calculates h(IDA, CA,i, PA,i,KA,i, TS2), and compares it
with the received m2 message. This provides the first factor
for authenticating the server, where Thing − A verifies the 530

authenticity of the server based on the success of matching
the messages m2. This can be successful because the server is
the only entity in the network that knows the secret key KA,i

generated from the response RA,i of CA,i. If the comparison
fails, the connection is rejected by the IoT device. Other- 535

wise, the IoT device generates a timestamp TS3, computes
a new challenge CA,i+1 = h(CA,i||KA,i), and generates
the corresponding response of the new computed challenge
RA,i+1=PUFA(CA,i+1). Finally, the device calculates m3 =
h(IDA, TS3, kA,i, RA,i+1), encrypts the new response with 540

the reproduced secret key m4 = (RA,i+1)KA,i
, and sends back

the calculated messages m3 and m4 with TS3.
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Upon receiving the message from Thing − A, the server
decrypts m4 using the stored secret key KA,i, and verifies
the integrity of the received data by calculating m3. Then, it545

compares the received and the calculated hash messages. If the
matching fails, the server terminates the connection. Else, the
server verifies the authenticity of the IoT device as a successful
matching of these two hash messages. It means that the IoT is
authenticated, and the server communicates with the right IoT550

device. In this step, the server and the IoT device can use the
secret, and the exchanged key KA,i as session key to secure
communication during the current session.

After a successful authentication of the IoT device, the
server generates a new secret key and its corresponding555

helper data from the new generated response RA,i+1, using
the fuzzy extractor generated procedure, (KA,i+1, PA,i+1) =
Gen(RA,i+1) and calculates the new challenge CA,i+1 =
h(CA,i||KA,i). Finally, the server replaces the used informa-
tion CA,i, PA,i,KA,i by the new one CA,i+1, PA,i+1,KA,i+1560

to be used in a future authentication process.

C. T2T-MAKEP Protocol
In this section, we detail the proposed mutual authentication

and key exchange protocol between two things (Thing-A
and Thing-B). By following T2T-MAKEP rules, things could565

authenticate and communicate each to others without a real
participation of the trusted server. As shown in Figure 6, T2S-
MAKEP is used as an essential step at the first stage of T2T-
MAKEP executions that are detailed as follows.

When an IoT end-device Thing−A wants to communicate570

with another end-device Thing−B, first in Step (1), Thing−
A generates a timestamp TS1 and calculates a message m1,
where m1 = h(IDA, h(IDB), TS1) to ensure the integrity of
the T2T communication request message. Then, the IoT device
sends the hash of its identifier h(IDA), the hash of Thing−575

B identifier h(IDB), the authentication request Comreq, the
message m1 and TS1 to the server.

In Step (2), upon receiving the message from ThingA, the
server checks the validity of ThingB identity by checking
h(IDB) in its database. If the finding fails, the server rejects580

the authentication request. Otherwise, the server follows steps
of Section V-B to launch T2S-MAKEP process and verify
the authenticity of the IoT device lunched the communication
request (ThingA).

At the end of the T2S-MAKEP phase, if the authen-585

tication fails, the server rejects the authentication request.
Else, Thing − A is authenticated and the message of the
communication request was not corrupted or tampered during
the transmission phase. Then, the server retrieves the corre-
spondent stored data of Thing − B: IDB , CB,i, PB,i, KB,i590

and generates a timestamp TS2.
After that, the server calculates both messages m2 and m3,

where m2 = h(IDA, CB,i, PB,i, KB,i, TS2) which is used
to guaranty the integrity of the transmitted data. In addition,
m3 = (KB,i)KA,i

is a result of the cryptographic operation595

on the secret key KB,i using the secure session key KA,i

established at the end of T2S-MAKEP phase. Finally, the
server sends CB,i, PB,i,TS2,m2 and m3 to the device that
lunched the communication request Thing −A.

In Step (3), once Thing − A receives the server re- 600

sponse, it decrypts m3 by using the T2S-MAKEP session
key KA,i. Then, it verifies the integrity of the received
response by calculating m2 using the decrypted message
KB,i and the non-encrypted received data (CB,i, PB,i, and
TS2). If the verification fails, the connection is rejected. 605

Else, Thing − A generates a timestamp TS3 and calculates
m4 = h(CB,i, PB,i,KA,i, TS3), m5 = (KA,i)KB,i

and
S = h(KB,i ⊕ KA,i) which is the new session key used to
secure the communication between the two things by Xoring
the secret keys of both devices. Finally, Thing − A sends 610

the hashed identity of h(IDB), the communication request
Comreq , the challenge CB,i, the helper data PB,i, a timestamp
TS3, the control of the integrity m4 and the encrypted message
m5.

Afterwards,Thing − B uses its PUF component and 615

generates the response of the received challenge R′
B,i =

PUFB(CB,i), which is considered as a noisy response. Then,
it reproduces the original secret key KB,i from the noisy
response through the fuzzy extractor reproduction process
KB,i = Rep(R′

B,i, PB,i). It uses this key to decrypt the 620

received encrypted message m5, then the result KA,i is used
to calculate and verify the integrity of m4. If the verification
passed, the IoT end-device Thing − B makes sure that the
message was not tampered during the transmission phase. Also
since only the server has a secret key KB,i, the device request- 625

ing the connection is trusted with the same trusted network
and server. Finally, Thing − B calculates the new session
key S = h(KB,i ⊕KA,i) used to secure the communication
with Thing − A. At this step, both IoT end-devices could
communicate securely using the secret session key S. 630

Finally, in Step (4) Thing − B and the server ex-
ecute the needed operations to update the used in-
formation CB,i, PB,i,KB,i by the new generated one
CB,i+1, PB,i+1,KB,i+1

VI. SECURITY ANALYSIS 635

In this section, we first introduce briefly various attacks
against IoT PUF-based authentication protocols. Then, we
present the informal and formal security analysis of our pro-
posed protocols (T2S/T2T-MAKEP). For the informal security
analysis, we check the robustness of the proposed proto- 640

col against the presented attacks. Formally, we analyze our
proposed protocols using the automatic security verification
checker, Verifpal [16].

A. Attack Scenarios

A brief definition about the most known IoT systems attacks 645

[14, 21] that an attacker can launch on an IoT authentication
protocol is presented in Table II.

B. Informal security analysis

Our proposed mutual authentication mechanism is robust
against the attacks presented in Section VI-A. This strength 650

comes from using PUF without storing any information (secret
or not) in the local memory of the IoT end devices. Rather
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Thing −A

Generate: TS1

Calculate: m1 = h(IDA, TS1)

Generate:R′
A,i

R′
A,i=PUFA(CA,i)

Reproduce: KA,i

KA,i = Rep(R′
A,i, PA,i)

Calculate and verify:
m2

Yes

Generate: TS3

Calculate: CA,i+1

CA,i+1 = h(CA,i||KA,i)
Generate:RA,i+1

RA,i+1=PUFA(CA,i+1)
Calculate:

m3 = h(IDA, TS3, kA,i, RA,i+1)
m4 = (RA,i+1)KA,i

Trusted− server

h(IDA) in the pairing list?

Yes

Calculate and verify:
m1

Yes

Retrieve: CA,i, PA,i,KA,i

Generate: TS2

Calculate: m2 = h(IDA, CA,i, PA,i,KA,i, TS2)

Decrypte: m4

Calculate and verify:
m3

Yes

Generate: (KA,i+1, PA,i+1)
(KA,i+1, PA,i+1) = Gen(RA,i+1)

Delete: CA,i, PA,i,KA,i

Store: CA,i+1, PA,i+1,KA,i+1

Step(1): {h(IDA),Authreq, TS1,m1}

Step(2):{CA,i, PA,i, TS2,m2}

Step(3): {TS3,m3,m4}

Secure communication session established using KA,i

Reject

Reject

Reject

Reject

Fig. 5. T2S-MAKEP protocol’s scheme.

than, no sensitive information is transmitted in clear during the
authentication process of both proposed protocols. A defence
assessment of each presented attack scenario is given in the655

following points.
• Resisting to message analysis attack. In both schemes,

secret keys, session keys, and responses are confidential
and cannot be accessible by an attacker despite the fact
the possibility of intercepting the authentication mes-660

sages. This is achieved by encryption and hashing the
transmitted messages and not storing them locally.

• Resisting to replay attack. By considering an attacker was
able to intercept old authentication messages and want to

replay them, she/he cannot forge the current transmitted 665

message since a valid timestamp is assigned at each
transmitted message. Further, except for the identity of
IoT end devices, all parameters are updated after each
new session. Consequently, replay attacks are prevented
efficiently. 670

• Resisting to denial of service attacks. Only two types
of entities could be found in both proposed protocols, a
server and the IoT end-device. However, the DOS attack
is infeasible on the server side due to its high computation
power [14]. So, this attack is considered only on the ToT 675

end-device side. The attack can be done in three cases:
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Thing −A

Generate: TS1

Calculate: m1 = h(IDA, h(IDB), TS1)

Decrypt: m3

Verify: m2

Yes

Generate: TS3

Calculate: m4 = h(CB,i, PB,i,KA,i, TS3)
m5 = (KA,i)KB,i

S = h(KB,i ⊕KA,i)

Thing −B

R′
B,i=PUFB(CB,i)

KB,i = Rep(R′
B,i, PB,i)

Decrypt: m5

Verify: m4

Yes

Calculate: S = h(KB,i ⊕KA,i)

Generate: TS4

CB,i+1 = h(CB,i||KB,i)
RB,i+1=PUFB(CB,i+1)

m6 = h(IDB , TS4, kB,i, RB,i+1)
m7 = (RB,i+1)KB,i

Trusted− server

h(IDB) in the pairing list?

IoT-Device-A is authenticated ?

Yes

Retrieve: IDB , CB,i, PB,i,KB,i

Generate: TS2

Calculate: m2 = h(IDA, CB,i, PB,i,KB,i, TS2)
m3 = (KB,i)KA,i

Decrypte: m7 and verify: m6

Yes

(KB,i+1, PB,i) = Gen(RB,i+1)
Delete: CB,i, PB,i,KB,i

Store: CB,i+1, PB,i+1,KB,i+1

Step(1) {h(IDA), h(IDB),Comreq, TS1,m1}

Step(2) {CB,i,PB,i,TS2,m2,m3}

Step(3) {h(IDB),Comreq ,CB,i, PB,i,TS3,m4,m5}

T2S-MAKEP

Secure communication session using S

Step(4): {h(IDB), TS4,m6,m7}

Reject

Reject

Reject

Fig. 6. T2S-MAKEP protocol’s scheme.
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TABLE II
ATTACK SCENARIOS.

Attack Scenario Definition
Message Analysis An attacker tries to intercept the transmitted information between the communication

entities.
Replay The attacker stores the transmitted information of the valid authentication operation to

exploit them in a future authentication.
Denial of Service An attacker tries to disrupt temporarily/indefinitely the IoT device’s services by flooding

the targeted device with an overflow of authentication requests.
Physical attack An attacker attempts accessing physically to the device and obtain the stored secret.
Man-in-the-middle/Injection An attacker injects data and changes the transmitted messages between authenticated

devices.
Helper data manipulation Any manipulation of the helper data by an attacker caused errors on the result of the

response’s reproduction.
Modeling Collecting CRPs datasets and constructing machine learning techniques to offer the

possibility of predicting the correct response related to a given challenge.

in step (2) for the T2S-MAKEP scheme and step (2)
and step (3) for the T2T-MAKEP scheme. In each step,
after receiving the message by the device, it checks the
integrity of the received packet by computing its one680

hash function. Further, the probability that the random
guessing of the hashing value to pass the verification
process is negligible due to the confidentiality of the
secret key included in each hashed value. As a result,
the Dos attack is not practical in our scheme.685

• Resisting physical attack. In both schemes, IoT end-
devices, do not store any secret or sensitive information in
their local memory. Further, one of the assumptions of the
target system model is that the communication between
the PUF circuit and the IoT device’s micro-controller is690

considered secure. Thus, making our proposed protocols
secure against physical attacks, even if An attacker cap-
tures ioT end-devices.

• MITM and Injection attack: All the authentication mes-
sages do not include any secret or sensitive information in695

plaintext in our proposed protocols. The only exchanged
data in plaintext during authentication are the thing’s
identity, timestamps, challenges and public helper data.
Also, any secret is hashed or encrypted using a one-way
hashing function or a generated secret key known only700

by the authentication entities. A MITM attack will not
benefit from any captured data in such settings. Thus, the
proposed protocol is secure against this type of attack.

• Modeling attack. This type of attack is based on capturing
a set of CRPs. In our mechanism, only the challenge was705

communicated from the server to the IoT end-devices
in plaintext. So, even if an attacker could intercept the
authentication’s messages, she/he will see only the chal-
lenge, which will be useless for launching a modelling
attack. This mechanism makes this attack not applicable710

in our proposed schemes.
• Helper data manipulation: In our mechanism, the helper

data is securely stored on the server and transmitted to
the IoT end-devices in plaintext to reproduce secret keys.
So, this parameter can be manipulated only during its715

transmission. Further, each helper data is transmitted with
a hashed message of helper data and other additional
information. The hashed value guarantees that the public
helper data was not manipulated during the transmission.

So, this attack is not feasible in our protocols. 720

C. Formal security analysis

In order to analyze our proposed protocols formally, we
have selected Verifpal, a modern tool dedicated to the formal
verification of the security of cryptographic protocols. It is in-
spired by some older formal verification tools such as ProVerif, 725

and it covers the most well-known model, Dolev-Yao, which
is a modelling technique for verifying cryptographic protocols
[5]. To model and check how much our developed protocols
are secure using Verifpal, we must first define whether our
schemes will be analyzed under a passive or active attacker. A 730

passive attacker can observe the communication messages over
the network and cannot inject or modify these messages. Con-
trarily, an active attacker can observe, modify, and inject new
messages. In our case, we chose the active one who can alter
the authentication messages and inject its data. Secondly, we 735

have to define the different principles (devices and the trusted
server) taking part in our communication system, including the
active attacker. Then, we describe the authentication messages
being communicated between the model’s parts across the
network. Finally, we query Verifpal about what we would like 740

to test, for example, the confidentiality of the exchanged data
and the authentication of the participants.

1) Verifying Security of T2S-MAKEP Protocol: Here, we
use Verifpal to verify the security robustness of T2S-MAKEP
by checking its possible vulnerabilities during the authenti- 745

cation phase, especially the authenticity, confidentiality, and
freshness of the exchanged messages. The first proposed
protocol introduced in Section V-B is translated into Verifpal
scripts and evaluated using Verifpal’s queries.

• Reachability and Secrecy: The first objective of T2S- 750

MAKEP protocol is to guarantee the reachability and
secrecy of the shared secrets between the IoT end-device
and the trusted server. Using Verifpal, we show that
the considered secrets ida, hka1 and ra2 are secretly
shared between Thing − A and the server (i.e. these 755

secrets cannot be obtained, deleted or altered by an active
attacker). To test this property, the following variables are
declared.

knows private ida
knows private hka1 760
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knows private ra2
knows private is a Verifpal’s predefined primitive used
to declare private information. The first variable is de-
clared private to guarantee the anonymity of Thing-A
identity. The second is the secret and the session key.765

The last one is the new generated response used to
generate the new secret key that will be used for future
authentication. At the end of the model, we ask Verifpal
for the next confidentiality query of the privates used
information. The confidentiality query is the most basic of770

all Verifpal queries, which are used to test if an attacker
could obtain the private information communicated be-
tween Thing−A and the server during the authentication
phase. Those queries are expressed as follows to check
the confidentiality of id a, h k a 1, and r a 2.775

confidentiality? id a
confidentiality? h k a 1

confidentiality? r a 2

• Mutual Authentication: The second objective of the
proposed T2S-MAKEP scheme is the mutual authentica-780

tion between the IoT device and the server, which adds
more resistance to the protocol against man-in-the-middle
and replay attacks. To test this security property under
Verifpal, we use the following two authentication queries:

authentication? Trusted server −→ Ting a: msg1785

authentication? Thing a −→ Trusted server: msg2
The first query checks if Thinga can authenticate the
Trusted server based on the received message msg1 in
step (2) of T2S-MAKEP scheme. This operation succeeds
because msg1 results from a one-way hash function,790

which contains the secret key hka1 known only by the
server and is communicated in the setup phase. So, this
secret information guarantees that msg1 comes from an
authentic entity, the Trusted server. Also, in the second
authentication query, the server authenticates Thinga795

based on the value of the secret key that is reproduced
using FE on the noisy generated response. This step
succeeds because only Thing a could use its PUF to
regenerate the same stored key corresponding to the
stored one on the server. Both queries guarantee mutual800

Authentication.
• Freshness: In addition to the above-specified security

properties, freshness of the transmitted messages is also a
pillar requirement. Freshness query is useful for detecting
replay attacks, where an attacker could manipulate one805

message to make it seems valid in two different contexts.
To assert this property, the following Verifpal queries are
declared, where each tested message contains a timestamp
value that guarantees the freshness of data.

freshness? msg1810

freshness? msg2
freshness? msg3

As shown in Figure 7, our proposed T2S-MAKEP scheme
ensure mutual authentication between the server and the IoT
end-devices. It also proves the reachability and secrecy of815

the shared keys and information. In addition, it satisfies the
freshness of messages during communication.

Fig. 7. T2S-MAKEP’s Verifpal code execution result.

2) Verifying Security of T2T-MAKEP Protocol: This section
presents the security analysis for our proposed T2T-MAKEP
protocol between two IoT end-devices. This analysis follows 820

the same verification and security properties specification as
the same analysis paradigm of T2S-MAKEP. We do not repeat
the T2S-MAKEP authentication step between Thing−A and
the trusted server to avoid repetitions. Thus, we consider that
Thing − A is successfully authenticated, and our analysis 825

started from Step (2) of T2T-MAKEP scheme (6).

Fig. 8. T2T-MAKEP’s Verifpal queries code.

As shown in Figure 9, in addition to the IoT end-device
identity ida, hka1 and hkb1 that are secret keys of Thinga
and Thingb respectively; sa and sb are equals calculated
session keys between both devices (sa = sb). After the dec- 830

laration of these device, we check their confidentiality using
the confidentiality query. Further, by using the authentication
query, we verify the mutual authentication property between
the participants in our scheme.

Based on the exchanged m2 and m4, and the encrypted ones 835

m3 and m5, we check the freshness of m2 and m4 using the
freshness query. Then, we verify if both IoT end-devices could
calculate the same secret session key S, using the equivalence
query between the generated keys (sa) and (sb) by Thinga by
Thingb, respectively. 840

Figure 9 shows that T2T-MAKEP has successfully achieved
mutual authentication between the IoT end-devices. Further,
the confidentiality of secret information and the freshness of
the messages are guaranteed. In addition, the generation of the
same and unique secret session key generation is satisfied by 845

both devices.

Fig. 9. T2T-MAKEP’s Verifpal code execution result.
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VII. PERFORMANCE ANALYSIS

In this section, we present the performance analysis of our
proposed protocols and compare it with the most existing and
relevant protocols in the literature, those consider our proto-850

col’s features like mutual authentication and error correction.
In practice, we propose to implement our proposed mechanism
using the SHA-2 (hash standard algorithm) since it is already
implemented in well-known security applications such as
Transport Layer Security (TLS) and Secure Sockets Layer855

(SSL). Further, it has been incorporated within a large number
of commercial security integrated circuits. In comparison to
SHA-3, SHA-2 has a broader range of hardware and software
support, making it simpler and faster to implement. Also, we
assume the use of 128-bit block ciphers such as CLEFIA [13]860

and AES [21] for encryption and decryption. First, we evaluate
our protocol in terms of its computational complexity.

A. Computational Complexity

The computational complexity of the authentication process
is determined by the number of primary operations performed865

and their frequency. Initially, the fundamental operations of the
proposed and compared schemes are hashing (NH ), encryption
and decryption (NE), PUF (NP ), and the error correction
(NF ). Figure 5 and Figure 6 can be used to figure out how
evaluating the identified criteria.870

TABLE III
T2S-MAKEP’S COMPUTATIONAL COMPLEXITY COMPARISON.

Works IoT Device Server
[8] 7NH+2NP +1NF +4NE 7NH+1NF +3NE

[26] 7NH+2NP +1NF +4NE 7NH+1NF +4NE

[20] 7NH+2NP +1NF +4NE 7NH+1NF +4NE

T2S-MAKEP 4NH+2NP +1NF +1NE 4NH+1NF +1NE

Table III lists the primary operations run in the proposed
mutual authentication protocol, T2S-MAKEP. And as illus-
trated in Fig. 10 and Fig. 11, the same operators are required
in [8], [26] and [20] schemes to achieve the authentication
phase. Table III indicates that they all have the same number of875

PUF and fuzzy extractor operations. In comparison, the T2S-
MAKEP scheme utilizes fewer hash operations. Additionally,
by treating the xor operation as a cryptographic operation, our
proposed protocol contains only one encryption (device) and
one decryption (server) operation, whereas [8]’s scheme con-880

tains four in the device side and three in server side. [26] and
[20] contain four encryption/decryption in both sides. Thus,
the computational complexity of T2S-MAKEP mechanism is
lower since hashing, encryption, and decryption operations in
the others schemes are higher than in our proposed one.885

On the other hand, Table IV shows the main operations
carried out by IoT devices to achieve end-to-end authentica-
tion. We compare the proposed T2T-MAKEP’s protocol with
[32] and [2] , which allow device-to-device authentication.
Regarding error correction consideration, we can still conclude890

that our protocol has a slight advantage compared with the
protocol in [2]. In general, the computation costs of T2T-
MAKEP’s scheme are similar to those of [32]. However, we
do not consider the update phase in [32] that grows their
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Fig. 10. The Computational Complexity on the device side.
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operations considerably, making the computational complexity 895

of the proposed protocols lower than the compared ones.

B. Communication Overhead

Total bytes sent and received during the authentication
process is what we mean by ”communication overhead”. Table
VI lists the message parameters and their sizes, which we use 900

to figure out the length of each message that’s being sent.

TABLE VI
AUTHENTICATION MESSAGES’ PARAMETER VALUES.

Message Parameters Size in Bits
Authreq /Comreq 1
Hash function 256
Timestamps 48
Challenge 128
Helper data 64
Encrypted data 128
Device identity 48

Based on the values in Table VI and the protocol steps in
Figures 5 and 6, we infer that the transmitted bytes in the T2S-
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TABLE IV
T2T-MAKEP’S COMPUTATIONAL COMPLEXITY COMPARISON.

Works [32] [2] T2T-MAKEP
IoT Device A 4NH+1NP +4NE+1NF 7NH+2NP +4NE 8NH+1NP +4NE+1NF

IoT Device B 4NH+1NP +4NE+1NF 5NH+2NP +3NE 4NH+2NP +3NE+1NF

TABLE V
COMPARISON’S SUMMARY BETWEEN T2T-MAKEP AND THE REVIEWED PUF-BASED AUTHENTICATION PROTOCOLS
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Idriss et al. [11] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗
Kaveh et al. [14] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓
Yanambaka et al. [27] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
Zheng et al. [32] ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓
Najafi et al. [23] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
Guan et al. [9] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗
Pu and Li [25] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗
Meng et al. [20] ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Aman et al. [1] ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓
Kim et al. [15] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗
Muhal et al. [22] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗
Mostafa et al. [21] ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓
Byun [3] ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓
Aman et al. [2] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

T2S-MAKEP ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
T2T-MAKEP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MAKEP scheme are 186 bytes, which is higher than [8] and
[26], which have similar transmitted bytes of 150 bytes.On905

the other hand, to calculate the communication overhead of
the T2T-MAKEP protocol, we consider only the transmission
between IoT end devices and compare it with the proposed
mechanism in [32]. The communication overhead of the T2T-
MAKEP protocol is 110 bytes, and 126 bytes for Zheng et al.’s910

protocol. As a result, the communication overhead in our
proposed mutual authentication scheme is lower than Zheng
et al.’s mechanism by 12.7%.

C. Storage Constraints

Compared to the most surveyed IoT PUF-based mutual915

authentication protocols that store a large number of CRPs
on the server-side for each device, our proposed mutual
authentication protocols are very efficient in terms of storage
requirements. Since the server keeps only one CRP pair for
each device’s new authentication and the IoT device does920

not store any secret or non-secret information in the device’s
memory. Making our mechanism more scalable for a large
number of IoT devices that could be deployed in the system.
Contrarily, the IoT devices in [8, 26, 32] have to keep secret
information in their local memory.925

VIII. COMPARISON AND DISCUSSION

In this section, we run a comparison between our proposed
schemes and the existing work reviewed in Section I-A. Our

comparison summarised in Table V is based on the following
characteristics. ✓ means that the protocol considers the 930

characteristics. However, ✗ means the inverse of the previous
statements.

1) T2T and T2S schemes to indicate if the considered ar-
chitecture supports one of both authentication schemes.

2) PUF-based authentication shows if the referred protocol 935

uses PUF only as a security primitive to achieve au-
thentication successfully or it needs other computational
primitives like the elliptic curve. We do not consider
one-way functions, hashing and XORing as complex
security primitives. 940

3) Formal/informal security analysis this criteria specify
the type of the analysis. Formal relies on sound math-
ematics approaches to show the correctness of the pro-
posed protocol, whereas informal refers only to a textual
description. 945

4) Mutual authentication shows if the protocol supports
mutual authentication between all authenticated entities.

5) Session key generation indicates if the referred protocol
generates a session key to secure the communication
after each successful authentication. 950

6) Practicality checks if the protocol is portable, scalable,
and robust.

7) Error correction indicates if errors and noise in re-
sponses are considered.

8) Thing storage shows if the IoT device does not store any 955
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secret or non-secret information that helps to accomplish
the authentication process.

9) Confidentiality indicates if the protocol’s secret informa-
tion is kept confidential during the authentication phase.

10) Freshness checks if the exchanged messages are received960

with respect to precise variables like timestamp, which
help not to use an old message in a new authentication.

We found that most of the studied IoT protocols are
designed for the T2S authentication protocol scheme, except
two [3, 32] that support T2T and only one ([2]) covers both965

T2S and T2T. From a technical point of view, most of the
protocols use one-way and hashing functions to ensure the
confidentiality of secret information. Instead of using these two
functions, two contributions [1, 9] use another cryptographic
algorithm such as Elliptic Curve. In terms of correctness970

validation and performance evaluation, most of the reviewed
protocols do not apply formal and informal security analysis
techniques. Regarding the authentication, some of them do not
offer mutual authentication [9, 11, 15, 23, 27], nor generate
a session key for securing the communication after each975

successful authentication operation [1, 9, 11, 15, 23, 27].
Further, most of the studied schemes do not consider error
correction, which plays a vital role in the practicality of a
protocol. Also, for the leakage resilience, we observe that
some of the protocols store sensitive information on the local980

memory of the IoT device. In addition, most of the reviewed
protocols ensure the confidentiality of the transmitted secret
information but less guarantee the freshness of the transmitted
messages.

IX. CONCLUSION985

In this paper, we have developed a thing-to-thing mutual
authentication and key exchange protocol for IoT devices
(T2T-MAKEP), where a thing wants to communicate with an-
other. First, it has to authenticate with trusted server using the
T2S-MAKEP scheme. In practicality, our schemes guarantee990

error correction and noise elimination using a fuzzy extractor
solution. Further, T2T-MAKEP does not need an update phase
without storing any secret or non-secret information on the
local memory of the IoT end-device. Also, at the end of each
successful authentication phase, our schemes generate a ses-995

sion key and exchange it securely between the communicated
entities. In addition, by relying on formal and informal security
analysis, we proved that our developed protocols are secure
against the most existing attacks, especially physical attacks.
Further, it satisfies all pillar security requirements.1000

In a nutshell, we point out our targets to extend and improve
this contribution by the following future works.

• Deploying the proposed protocol with a blockchain archi-
tecture that exploits a PUF based on the different nodes
devices.1005

• Considering the energy consumption in our protocol by
optimizing the exchanged messages while preserving the
communication’s reliability.

• Apply the protocol on autonomous vehicles.
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