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ABSTRACT

Cyclic multiaxial loadings of soft materials are usually studied throughout experiments involving
machines that prescribe a combination of uniaxial tension and torsion. Due to the large strain frame-
work, classical kinematic analyses of strain in uniaxial tension-torsion are usually very complex.
Based on this observation, the present papers proposes a method to both analyze and visualize a
strain measure during a duty cycle of uniaxial tension-torsion in large strain: based on the mathe-
matical properties of the Hencky strain tensor h, the method consists in projecting h onto a well-
chosen tensorial basis, whose constituting elements are described in terms of physical meaning.
Thanks to this decomposition, the history of h reduces to the time evolution of a 3-components vec-
tor α(t). This vector history can then be visualized as a path in the 3D space, rendering very visual
the complex kinematic phenomenon. As a second result, an original definition of the mean and the
amplitude of a strain path, based on the theory of the Minimum Circumscribed Spheres, is proposed.
This definition could be useful for fatigue studies, for instance.

Keywords kinematics · uniaxial tension-torsion · large strain · 3D visualization

ar
X

iv
:2

11
2.

08
94

5v
1 

 [
ph

ys
ic

s.
cl

as
s-

ph
] 

 1
4 

D
ec

 2
02

1



A PREPRINT - DECEMBER 17, 2021

1 Introduction

Kinematics basic equations of the uniaxial tension-torsion of a perfect cylinder under large strain are well-established
(see for example (Ciarletta and Destrade, 2014)), as it has now long been studied (from the work of Rivlin (1949)
in the mid twentieth century to very recent contributions of Valiollahi et al. (2019)). However, it remains a very
complex deformation to analyze, especially in large strain (Lectez et al., 2014). As an example, one could think
about the fatigue of rubber specimens when submitted to uniaxial tension-torsion: due to the large rotations of
material planes, the definition of a robust fatigue life criterion remains a hard task (Saintier et al., 2006; Mars, 2001),
and it is further rendered difficult when a phase shift is applied between the uniaxial tension and the pure torsion inputs.

In this paper, we investigate a uniaxial tension-torsion duty cycle prescribed to a solid cylinder to derive several new
results, from a kinematic point of view only (there will be no mention of stresses). Three types of loading conditions
are investigated: one where the uniaxial tension signal is in phase with the pure torsion signal, and two where there
is a phase shift between them. In Section 2, basic kinematics is recalled, along with the types of input signals used in
this paper. Recent developments on the decomposition of a special class of tensors onto a well-chosen tensor basis are
recalled in Section 2.3, then applied to the Hencky strain tensor in the particular case of the uniaxial tension-torsion of
a cylinder. Results are displayed in Section 3, and consist in two new developments: the graphical visualization of the
time evolution of tensors in a 3D space, and a definition (not unique) of both a mean tensor and an amplitude of the
cycle through the computation of Minimum Circumscribed Spheres. A physical interpretation of the decomposition
method is also proposed. Section 4 closes the paper.

2 Methods

The equations of the uniaxial tension-torsion of a perfect cylinder are derived in the following; they can be found
in several previous studies, e.g. Rivlin (1949); Ogden (1997); Ciarletta and Destrade (2014); Murphy (2015) among
others.

2.1 Framework and input signals

The problem notations are summarized in Figure 1.

Figure 1: Simultaneous tension-torsion of a perfect cylinder.

Consider a perfect cylinder, whose dimensions are its length L and radius A in the undeformed state, which become
l and a in the deformed state, respectively. A vertical displacement U and a twist angle α are both applied on the top
surface, while the cylinder is fixed at its bottom surface. The material is supposed to be homogeneous, isotropic, and
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incompressible. The undeformed (or reference) configuration is denoted (C0), and the actual deformed one is denoted
(C). The mapping χ transforms any point P0 of (C0) into P in (C). In what follows, capital letters (R, Z, etc.) are
used for quantities related to (C0), and lowercase letters for quantities relative to (C), unless otherwise mentioned.
(−→e1,
−→e2,
−→e3) is the cartesian coordinate system, and two cylindrical coordinate systems are used: (−→eR,−→eΘ,−→eZ) in the

reference configuration and (−→er ,−→eθ ,−→ez) in the deformed one.

The mapping between reference and deformed configurations is

r =Rλ−0.5 , θ =Θ+ τλZ , z = λZ, (1)

where λ and τ are the stretch in the uniaxial tension direction and the twist angle per unit of deformed length, respec-
tively:

λ= l

L
and τ = α

l
= α

λL
. (2)

In this study, the inputs are : the extension λ(t), the angle per unit length τ(t) and the phase φ (which does not depend
on t) between these two. Three particular cases are considered all along the paper: one in-phase loading (φ= 0◦)and
two out-of-phase loadings (φ= 90◦ and φ= 180◦). Figure 2 shows the corresponding signals over a duty cycle.

(a) In-phase φ= 0◦. (b) Out-of-phase φ= 90◦.

(c) Out-of-phase φ= 180◦.

Figure 2: Loading conditions: extension λ(t) and angle by unit of deformed length τ(t).

2.2 Kinematics of the tension-torsion of a perfect cylinder in large strain

Following Equation (2), the deformation gradient tensor is

F = 1√
λ

(−→er ⊗−→eR+−→eθ ⊗−→eΘ)+R
√
λτ−→eθ ⊗−→eZ +λ−→ez ⊗−→eZ , (3)

and the corresponding left Cauchy-Green strain tensor, b = FFT , is

b = 1
λ
−→er ⊗−→er +

(
1
λ

+λ2τ2r2
)
−→eθ ⊗−→eθ +λ2τr (−→eθ ⊗−→ez +−→ez ⊗−→eθ)+λ2−→ez ⊗−→ez . (4)

3
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The principal stretch ratios {λi}i=1,2,3 are the square roots of the eigenvalues of b:

λ1 =

1
2

R2τ2λ+λ2 + 1
λ
−

√(
R2τ2λ+λ2 + 1

λ

)2
−4λ

0.5

λ2 =λ−0.5

λ3 =

1
2

R2τ2λ+λ2 + 1
λ

+

√(
R2τ2λ+λ2 + 1

λ

)2
−4λ

0.5
(5)

We also define the Hencky strain tensor, which properties are used in the next section. It can be derived from the right
stretch tensor, V = (b)

1
2 :

h = ln(V) = 1
2 ln(b). (6)

2.3 An original additive decomposition of h for tension-torsion loadings

Remark 1: In what follows, both the concepts of tensors and their representation as a matrix in a given basis are used.
As it is really important to differentiate them, a given tensor is written in bold letters A, and its representation as a
matrix in a given basis Bi is written ABi .

2.3.1 A recent decomposition for symmetric and zero trace tensors

In order to generate a database of admissible strain tensors, Kunc and Fritzen (2019) recently proposed a method to
decompose any tensor of the space E = {A ∈M3×3|AT = A,Tr(A) = 0} onto a tensorial basis. In the case of
mechanical tensors (strain or stress), such a space is a 5 dimensional space. Here, we apply this idea to the Hencky
strain tensor, as described hereafter. We define the usual scalar product < ., . > between two elements of E. It is
defined as: for two tensors A and B of E, the scalar product between A and B reads

<A,B>= A : B = tr(ATB) (7)

to which is associated the Froebenius norm ||.|| of a tensor A

||A||=
√

A : A =
√

tr(A2) (8)

Then we can define an orthonormal basis BE = {Y(1),Y(2),Y(3),Y(4),Y(5)} as proposed by Kunc and Fritzen
(2019), such that every element Y ∈ E can be written as follows

Y =
5∑
i=1

αiY(i) (9)

with ∀i ∈ {1, ..,5},αi = Y : Y(i) ∈ R.

2.3.2 Special case of the tension-torsion kinematics

By looking at the definition of the Hencky strain tensor (Eq. (6)) and the properties of the logarithm of a tensor, one can
see that the Hencky strain tensor h is a real-valued, symmetric tensor, and its trace is zero (due to the incompressibility
hypothesis). Hence, the application of Equation (9) to h is straightforward

h =
5∑
i=1

αiY(i) (10)

This equation can also be written using matrices in the cylindrical basis Bcyl = {−→er ,−→eθ ,−→ez}

4
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hBcyl =
5∑
i=1

αiY
(i)
Bcyl

(11)

where the Y (i)
Bcyl

can be defined as

Y
(1)
Bcyl

=
√

1
6

[ −1 0 0
0 −1 0
0 0 2

]
Bcyl

,Y
(2)
Bcyl

=
√

1
2

[ −1 0 0
0 1 0
0 0 0

]
Bcyl

,Y
(3)
Bcyl

=
√

1
2

[ 0 0 0
0 0 1
0 1 0

]
Bcyl

Y
(4)
Bcyl

=
√

1
2

[ 0 0 1
0 0 0
1 0 0

]
Bcyl

,Y
(5)
Bcyl

=
√

1
2

[ 0 1 0
1 0 0
0 0 0

]
Bcyl

(12)

However, the expression of the left Cauchy-Green tensor (Eq. (4)) implies that, in the cylindrical basis, hBcyl has the
following form:

hBcyl =
[ −(a+ b) 0 0

0 a c
0 c b

]
Bcyl

(13)

Hence, decomposing hBcyl onto the Y (i)
Bcyl

basis yields instantly α4 = α5 = 0, so

hBcyl =
3∑
i=1

αiY
(i)
Bcyl

(14)

where the Y (i)
Bcyl

are defined in Equation (12(1,2,3)):

Remark 2: we draw the attention of the reader to the fact that the expression of the matrices Y (1)
Bcyl

,Y
(2)
Bcyl

,Y
(3)
Bcyl

is an

arbitrary choice. Indeed, one could for example invert the 1 and −1 in Y (2)
Bcyl

, and the corresponding set would remain
a basis.

Remark 3: the particular expression of hBcyl as described in Equation (12) depends on the choice of the basis the
problem has been expressed in. Here, the cylindrical basis is a natural choice due to the nature of the deformation. A
provides a detailed insight on this particular issue.

Now, Equation (14) provides a powerful tool to represent the tensor h: instead of representing it as a matrix hBcyl ,
it is more interesting to write it as a 3-components vector {α1,α2,α3}, which can be visualized as a point in a 3D
space, as proposed by Chen et al. (2012).

Remark 4: by looking at Equation (13), one could a prima facie think about representing the tensor h with the vector
[a,b,c]T directly. However, the corresponding matrix family would not be linearly independent (the matrices are not
all orthogonal to each other), hence it would not be a matrix basis as it is the case for the Y (i)

Bcyl
.

2.4 Physical interpretation of the additive decomposition of h

The new expression of hBcyl , as expressed in Equation (14) can be further analyzed. Indeed, it is possible to analyze the

Y
(i)
Bcyl

in terms of "elementary" deformations: type of deformation (tension, pure shear, etc.), intensity and direction.
From Equation (12), we propose below a kinematic analysis of these three transformations:

5
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• Y (1)
Bcyl

represents the uniaxial tension along the −→ez axis, with an intensity λ= exp
(

2√
6

)
= 2.26. To highlight

this, it is possible to rewrite Y (1)
Bcyl

as follows:

Y
(1)
Bcyl

=


ln
(

exp
(
− 1√

6

))
0 0

0 ln
(

exp
(
− 1√

6

))
0

0 0 ln
(

exp
(

2√
6

))

Bcyl

(15)

• Y (2)
Bcyl

is the planar tension along the −→eθ axis, −→ez being blocked, with an intensity λ= exp
(

1√
2

)
= 2.03:

Y
(2)
Bcyl

=

 ln
(

exp
(
− 1√

2

))
0 0

0 ln
(

exp
(

1√
2

))
0

0 0 ln(1)


Bcyl

(16)

• To understand better Y (3)
Bcyl

, one can define its exponential and consider this new matrix V (3)
Bcyl

as representing
the corresponding stretch tensor V in the cylindrical basis:

V
(3)
Bcyl

= exp
(
Y

(3)
Bcyl

)
= exp


 0 0 0

0 0 1√
2

0 1√
2 0



Bcyl

=
[ 1 0 0

0 1.26 0.77
0 0.77 1.26

]
Bcyl

(17)

Now, as described by Thiel et al. (2019), V (3)
Bcyl

is the shear deformation in the plane (−→eθ ,−→ez), with an intensity

α= arcsinh−1 (0.77) = 0.71.

As an illustration, we propose in Figure 3 a graphical representation of the aforementioned deformations, in 3D and in
the (−→eθ ,−→ez) plane.

Remark 5: Following the Remarks 1 and 2, the current kinematic analysis is entirely dependent on both the basis
chosen for expressing the problem (here the cylindrical basis) and the choice of the expressions of the Y (i)

Bcyl
. This is

clearly highlighted in A.

6
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Figure 3: Top: 3D representation of the three basis tensors
(

Y(1),Y(2),Y(3)
)

expressed in the cylindrical coordinate

system. Bottom: corresponding 2D representations in the (−→eθ ,−→ez) plane.
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3 Applications

3.1 3D visualization of strain paths

As it has been concluded in the Section 2.3 it is now possible to visualize in 3D the time evolution of hBcyl (when
dealing with fatigue phenomena for example) as a 3D path, instead of a series of matrices. We now directly apply
this result to the uniaxial tension-torsion of a perfect cylinder. The three loading conditions described in Figure 2
are prescribed to the cylinder, and the Hencky strain tensor is computed at the surface of the cylinder (R = 7 mm,
arbitrary strictly positive choice). The output is the temporal evolution of hBcyl(t), from which are computed the
temporal evolutions of the αi: {α1(t),α2(t),α3(t)}. The corresponding results are shown in Figure 4.

(a) In-phase uniaxial tension-torsion - λ = 1.39, τ =
0.124 rad.mm−1, φ= 0◦.

(b) Out-of-phase uniaxial tension-torsion - λ = 1.39, τ =
0.124 rad.mm−1, φ= 90◦.

(c) Out-of-phase uniaxial tension-torsion - λ = 1.39, τ =
0.124 rad.mm−1, φ= 180◦.

Figure 4: Path in the 3D space
(
Y

(1)
Bcyl

,Y
(2)
Bcyl

,Y
(3)
Bcyl

)
of the Hencky strain tensor for different loading conditions. The

arrows show the time evolution.

As the loading conditions are cycles, all the paths are closed. The phase between λ and τ is clearly depicted through
the shape of the path: when in-phase (φ = 0◦) or in phase opposition (φ = 180◦), the responses are "symmetric"

8
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hence creating a curvy line path. When a different phase is applied (φ= 90◦ for instance), the path is not a curvy line
anymore.

3.2 A definition of a mean and an amplitude for strain paths

A very useful feature used in fatigue studies is the Haigh diagram (Haigh, 1917; Gänser et al., 2007): it represents
fatigue tests in a space Smean−Samp, S being a mechanical quantity such as a strain measure or a stress for instance.
An application to elastomers can be found in Champy et al. (2021). From this perspective, we propose an original
definition for the mean and the amplitude of a path (or series) of tensors, that could be used for Haigh diagrams. The
new description of a tensor via vectors as shown in Equation (9) has allowed us to visualize the paths of the Hencky
strain tensor in a 3D space (Fig. 4). The present derivation is based on the Minimum Circumscribed Circles (MCS)
considered by Dang Van et al. (1989) for metal fatigue, who encircles the path of the shear stress τ(t) to determine a
mean shear τm defined as the center of the minimum circumscribed circle to the path τ(t). It permits the reduction of
the complex evolution of a mechanical quantity to a scalar that can be used in a fatigue criterion, for instance. For a
very clear and detailed discussion on this subject, the reader can refer to the excellent paper of Papadopoulos (1998).

Let us consider again a path of Hencky strain tensors {h(t)}(0≤t≤T ), where T is the period of the duty cycle. All
these tensors belong to a 5-dimensional space. From Section 2.3, we have the following equivalence:

{h(t)}(0≤t≤T ) = {α1(t), ..,α5(t)}(0≤t≤T ) (18)

where A(t) = {α1(t), ..,α5(t)}(0≤t≤T ) is a vector of time dependent functions.

The MCS problem, as described by Papadopoulos (1998), consists in resolving the min-max problem (i.e. finding both
the radius R and the center hC ) described by

solution = argmin
YC

{
max

0≤t≤T
‖hC −h(t)‖

}
︸ ︷︷ ︸

R

(19)

Now, it can be adapted to our notations; by combining Eqs. (18) and (19), one can rewrite the min-max problem using
only the 5-components vector A(t) and the Euclidean distance: the MCS problem consists in resolving (i.e. finding
the radius R and the center AC = {αC1 , ..,αC5 }) the following expression

solution = argmin
AC

{
max

0≤t≤T

∥∥∥AC −A(t)
∥∥∥}︸ ︷︷ ︸

R

(20)

We illustrate the MCS problem for a 3D case in Figure 5 by finding the circumscribed spheres to the three paths shown
in Figure 4. The corresponding centers h(C) = {α(C)

1 ,α
(C)
2 ,α

(C)
3 } and radii R are given in Table 1.

φ α
(C)
1 α

(C)
2 α

(C)
3 R

0◦ 0.068 0.077 0.361 0.375
90◦ 0.053 0.091 0.357 0.414
180◦ 0.019 0.105 0.348 0.526

Table 1: Coordinates and radius of the center for each MCS computed for the three paths.

The position of h(C) depends on the choice of the basis of expression of the problem (here the cylindrical basis), but
the radius does not. This argument is discussed in A. Note that in the 5D case (if h is represented by a matrix without
zeros), the MCS and the path exist and are well-defined, but they cannot be easily visualized.

Remark 5: By construction, the centers of the MCS are tensors, hence they are subjected to tensor properties and
calculus rules.

9
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(a) In-phase uniaxial tension-torsion - λ = 1.39, τ =
0.124 rad.mm−1, φ= 0◦.

(b) Out-of-phase uniaxial tension-torsion - λ = 1.39, τ =
0.124 rad.mm−1, φ= 90◦.

(c) Out-of-phase uniaxial tension-torsion - λ = 1.39, τ =
0.124 rad.mm−1, φ= 180◦.

Figure 5: Visualization of the MCS for the three loading conditions.

4 Conclusion

The present paper provides new tools to handle the time evolution of tensors that are both symmetric and traceless.
Through the projection of such a tensor on a well-chosen basis, it has been shown that, in the particular case of the
uniaxial tension-torsion of a cylinder under large strain, it is possible to visualize in 3D the time evolution of this type
of tensor. Moreover, a new definition of the mean and amplitude of a duty cycle has been proposed, based on the idea
of Minimum Circumscribed Spheres. It is believed that it could be useful for some research fields such as fatigue life
prediction, where handling a full duty cycle is usually very complicated. A physical interpretation of the elements
constituting the tensor basis has also been proposed: even though their definition highly depends on the choice of
the basis of expression of the problem, their analysis could help to better understand some complex deformations by
decomposing them into multiple elementary ones. To go further, it would be interesting to study these developments in
a more general context, such as when incompressibility is not assumed. For more classical criteria (involving a stress
tensor or an energy for instance), an extension to stress tensors can be considered, assuming that the mathematical
underlying properties are verified beforehand.

10
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A Change of basis: proof and example

A.1 Proof

So as to compute the coefficients αi of the decomposition of any zero-trace symmetric tensor, we simply apply the
usual formula for the rotation of a matrix: let h ∈E, and BI and BII two bases of the cartesian space in which one can
express the tensor h through two matrices hBI and hBII , respectively. The formula that links these matrices reads as
follows:

hBII = P−1hBIP = P−1
5∑
i=1

αiY
(i)
BI
P =

5∑
i=1

αiP
−1Y

(i)
BI
P︸ ︷︷ ︸

=A(i)
BII

(21)

where P is the rotation matrix from BI to BII. Here, A(i)
BII

is the representation in BII of a new tensor A ∈E, to which
one can apply again the rotation formula on the Y(i) basis. Its representation as a matrix in the basis BII is:

A
(i)
BII

=
5∑
j=1

β
(i)
j Y

(j)
BII

(22)

Combining Equation (21) and (22) leads to:

hBII =
5∑
i=1

αi 5∑
j=1

β
(i)
j Y

(j)
BII


=α1

(
β

(1)
1 Y

(1)
BI

+β
(1)
2 Y

(2)
BI

+ ...+β
(1)
5 Y

(5)
BI

)
+ ...

+α5
(
β

(5)
1 Y

(1)
BI

+β
(5)
2 Y

(2)
BI

+ ...+β
(5)
5 Y

(5)
BI

)
(23)

Finally regrouping the Y (j)
BI

together:

hBII =
(
α1β

(1)
1 +α2β

(2)
1 + ...+α5β

(5)
1

)
Y

(1)
BI

+ ...

+
(
α1β

(1)
5 +α2β

(2)
5 + ...+α5β

(5)
5

)
Y

(5)
BI

(24)

Equation (24) provides a formula to compute the expression of the αi in a rotated basis, that can be denoted αrot
i :{

hBII =
∑5
j=1α

rot
j Y

(j)
BII

αrot
j =

∑5
k=1αkβ

(k)
j

(25)

where the αk are the coefficients of the projection hBI of h in the initial basis BI, and β(k)
j is the jth coefficient of the

kth matrix Y (k)
BII

in the new basis BII.

A.2 Example on the case of the uniaxial tension-torsion of a perfect cylinder

Let illustrate the previous Equation (25) for the uniaxial tension-torsion of a perfect cylinder. As described in Section 2,
the Hencky tensor h can be represented, in the cylindrical basis Bcyl, by a symmetric matrix with zeros in components
−→er ⊗−→eθ and −→er ⊗−→ez . This leads to a reduced projection on the Y(i) basis consisting of only three components:
{α1,α2,α3}. Here, the cylindrical basis is rotated three times, according to one direction at each step, so that none of
the elements of the final basis is a principal direction of the Hencky tensor h. The rotations are defined as follows:
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1. A first rotation by an angle δ1 (= 75◦ for illustration) around the axis −→ez produces a new basis BI =(−→e1
(1),−→e2

(1),−→ez
)

. The rotation matrix between Bcyl and B1 reads:

PBcyl→B1 =
[ cos(δ1) −sin(δ1) 0

sin(δ1) cos(δ1) 0
0 0 1

]
Bcyl

(26)

2. A second rotation by an angle δ2 (= 110◦ for illustration) around the axis −→e1
(1) produces a new basis BII =(−→e1

(1),−→e2
(2),−→e3

(2)
)

. The rotation matrix between B1 and B2 reads:

PB1→B2 =
[ 1 0 0

0 cos(δ2) −sin(δ2)
0 sin(δ2) cos(δ2)

]
B1

(27)

3. A last rotation by an angle δ3 (= 38◦ for illustration) around the axis −→e2
(2) = −→e2 produces a new basis

B2 = (−→e1,
−→e2,
−→e3). The rotation matrix between B2 and B3 reads:

PB2→B3 =
[ cos(δ3) 0 −sin(δ3)

0 1 0
sin(δ3) 0 cos(δ3)

]
B2

(28)

Combining the three rotations into one, the Hencky tensor is rotated by the following global rotation matrix:

PBcyl→B3 = PB2→B3PB1→B2PBcyl→B1 (29)

Figure 6 shows both the cylindrical basis Bcyl and the final basis B3.

Figure 6: Representation of the cylindrical basis Bcyl (black) and the rotated basis B3 (red).

In B3, h is a priori represented by a complete matrix, i.e. without zero coefficients. Using the same loading conditions
as in the paper (λ = 1.39, τ = 0.124 rad.mm−1, φ = 180◦), both the evolutions of αi and αrot are displayed in
Figure 7. They correspond to the coefficients of the projection of hBcyl and hB3 respectively.

Finally, Table 2 presents some results related to the computation of the MCS applied to both hBcyl and hB3 :

• The MCS have the same radius.
• The position αC

i of the center of each MCS is obviously different, but applying the rotation formula to the
center hCBcyl

shows the relationship between the centers of both MCS : P−1hCP = hrotC
.

13



A PREPRINT - DECEMBER 17, 2021

Figure 7: Evolution of the {αi(t)}{i=1,..,5} and {αrot
i (t)}{i=1,..,5} for out-of-phase uniaxial tension-torsion (λ =

1.39, τ = 0.124 rad.mm−1, φ = 180◦). Both lines (black and red) correspond to a different expression of the same
tensor.

Tensor Radius αC
1 αC

2 αC
3 αC

4 αC
5

h 0.526 0.019 0.105 0.348 0 0
hrot 0.526 0.221 0.061 0.173 -0.223 -0.023

P−1hCP - 0.221 0.061 0.173 -0.223 -0.023
Table 2: Properties of the MCS computed for each basis: Bcyl et B3.
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