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Abstract

In dynamic general equilibrium models featuring unsecured debt, the risk of default

and the absence of collateral pose significant challenges to debt sustainability. Tradi-

tional models focus on the largest permissible debt limits consistent with repayment

incentives and show that they inevitably form a bubble—-current debt must be ex-

actly rolled over indefinitely so that no effective repayment is ever made. This research

challenges this paradigm by shifting the focus on equilibria with more restrictive debt

limits. We establish that, under certain conditions, a credit rationing intervention can

make everybody in the economy better off. By reassessing the choice and impact of

debt ceilings in credit markets, we identify potential strategies to boost overall eco-

nomic efficiency and welfare. Our findings shed light on the dynamics of unsecured

debt markets and offer policymakers and economists a fresh perspective on managing

debt without collateral.
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1 Introduction

Understanding whether competitive debt markets with financial frictions are vulnerable

to potential inefficiencies or market failures is an important question in macroeconomics

with many relevant implications, especially since the Global Financial Crisis (e.g., Reinhart

and Rogoff 2009, Mian and Sufi 2009, Rajan 2011). It helps us understand if and when

prudential policy interventions are warranted (e.g., Holmstrom and Tirole 1997, Dávila and

Korinek 2018, Jeanne and Korinek 2019). However, asserting whether equilibria might be

constrained inefficient turns out to be more nuanced than it may appear.

Two broad strands of the literature provide different answers and implications. On the

one hand, a large and growing body of research analyses financial markets where debt is

partly secured by collateral.1 There, borrowing constraints depend on market prices of

goods or assets. Private agents fail to internalize the general equilibrium effects of their

individual decisions on market prices, and that failure could lead, for instance, to excessive

borrowing in equilibrium.

On the other hand, standard general equilibrium models with unsecured debt have found

it generally harder to show that competitive equilibria are constrained inefficient. In the

well-known class of single-commodity models widely used in applications, debt constraints

are endogenously determined by the threat of financial autarky, and competitive equilibria

are indeed constrained efficient. This occurs even though the debt constraints depend on

market prices. For instance, in the seminal work of Alvarez and Jermann (2000, 2001)2

1A nonexhaustive list includes, among others, Kiyotaki and Moore (1997), Lorenzoni (2008), Farhi

et al. (2009), Bianchi (2011), Bianchi and Mendoza (2011), Aiyagari and Gertler (1999), Caballero and

Krishnamurthy (2001, 2003), Jeanne and Korinek (2010), and Dávila and Korinek (2018).

2See also Kehoe and Levine (1993, 2001), Kocherlakota (1996), Bloise and Reichlin (2011).
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borrowing is subject to debt limits set at the largest possible levels such that the repayment

value (depending on asset prices) equals the autarkic value.

The risk of default and the absence of collateral pose substantial challenges to debt

sustainability when the default punishment is weaker than autarky. This is, in particular, the

case in models with complete markets and lack of commitment where the default punishment

induces a sort of restricted market participation. In a celebrated paper, Bulow and Rogoff

(1989) showed that unless default involves direct sanctions (partial seizure of endowments) or

leads to full exclusion from credit markets as in Eaton and Gersovitz (1981), it is impossible to

sustain positive levels of debt. If agents are allowed to save upon default, so exclusion is only

one-sided, borrowers with a large debt exposure would always prefer to declare bankruptcy

and invest their saved repayments. Creditors anticipate debtors’ incentives, and debt is

therefore unsustainable without additional sanctions.3

Bulow and Rogoff (1989) focus primarily on the demand side of the credit market, as-

suming the interest rate as a given factor. In contrast, Hellwig and Lorenzoni (2009) adopt a

broader perspective, examining debt sustainability within a general equilibrium framework.

Their model incorporates borrowing constraints by means of “not-too-tight” debt limits, sim-

ilar to those described in Alvarez and Jermann (2000), where interest rates and debt limits

are determined endogenously. Remarkably, they challenge Bulow and Rogoff’s findings by

demonstrating that low-interest rates can, in equilibrium, support sustainable debt. Interest

rates must be low because the not-too-tight debt limits inevitably form a bubble, enabling

borrowers to perpetually roll over their debt limit each period without actual repayment.

As not-too-tight debt limits are the maximum borrowing threshold that is still aligned with

repayment incentives, Hellwig and Lorenzoni (2009)’s result suggests that these bubbly lim-

its could be the most effective liquidity-provision mechanism to alleviate credit restrictions

stemming from the lack of commitment.

The main contribution of this paper is to challenge this conventional wisdom by showing

3Krueger and Uhlig 2006 provide a microfoundation of this default punishment in an optimal contracting

model where defaulting agents can start a new credit relationship with a competing principal.
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that restricting the amount of private credit more than what is traditionally deemed neces-

sary might lead to Pareto improvement. More precisely, our focus is on policy interventions

where regulators impose tighter, with respect to not-too-tight, debt constraints. We inter-

pret such interventions as a parsimonious representation of regulatory or prudential policies

constraining financial leverage. We illustrate that these policy interventions can increase the

ex-ante welfare of all economic agents.

Intuitively, though all agents are fully rational and forward-looking, they fail to internalize

how changes in the severity of credit restrictions affect equilibrium prices and, most crucially,

feedback on the value of the default option. In particular, tightening the debt constraints at

some period τ might increase bond prices or, equivalently, lower the implied interest rates

at the same date.In our setting where defaulters are subject to exclusion from credit (à la

Bulow and Rogoff 1989, and Hellwig and Lorenzoni 2009), this intervention might reduce the

value of the default in period τ since it is now more costly to smooth consumption over time

by saving only. Consequently, the not-too-tight debt limit at period τ increases, relaxing

the credit constraints at the previous period τ − 1. This opens the possibility for Pareto

improvement: the benefits from the relaxed debt constraint at period τ − 1 may compensate

for the costs of facing tighter constraints at period τ . This is the essence of the mechanism

we explore in this paper.

To elucidate the underlying mechanism, we first compare the laissez-faire equilibrium with

the allocations chosen by a constrained social planner who internalizes the broader market

impact of tighter debt constraints. Specifically, we show that a planner with the flexibility to

select among all possible equilibria with self-enforcing debt limits will not necessarily find it

optimal to select an equilibrium with not-too-tight debt limits. The difference with laissez-

faire is that the social planner internalizes the endogeneity of bond prices and the default

option to the aggregate level of liquid wealth, which decentralized agents take as given.

We then show how Pareto improvement is obtained in a simplified example featuring

an economy with two agents who face uncertainty only in the initial period. Once this

uncertainty is resolved, the economy becomes deterministic, with endowments alternating

between high and low values across periods. In this context, we first outline the symmetric
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Markov laissez-faire equilibrium with zero interest rates and constant debt limits. In this

equilibrium, the low-income agent borrows up to his debt limit while the high-income agent

saves.

The policy intervention in our model tightens the debt limits by a fraction ε at a specific

period τ while maintaining all other debt limits (before and after period τ , respectively) at

their largest permissible values, consistent with repayment incentives. Our key contribution

is examining the feedback effects of such a policy distortion on equilibrium prices and the

default option. It is worth remarking on an essential feature of our policy experiment. The

intervention in financial markets is not equivalent to modifying the default punishment,

which remains fixed throughout the paper. The reallocation is induced by tightening the

borrowing limits to lower levels than the largest self-enforcing ones.

In line with Hellwig and Lorenzoni (2009), our example with fully unsecured debt features

a laissez-faire equilibrium where debt limits are maximal, and the interest rate is inevitably

zero. One might assume that the inefficiencies we identify are inherently linked to these

low interest rates. However, we demonstrate that Pareto improvement is robust to more

stringent default punishments that give rise to a positive interest rate. Specifically, we

replicate our policy experiment in a setting where default induces not only exclusion from

credit but also deadweight endowment losses.4 To calculate the symmetric Markovian laissez-

faire equilibrium in this modified setting poses additional challenges that we overcome by

providing a novel and intuitive decomposition of not-too-tight debt limits into a fundamental

and a bubble component.5 This characterization is particularly useful for our analysis,

as it significantly streamlines the computation of laissez-faire equilibria, eliminating the

4In the context of sovereign default, these endowment losses correspond to a contraction in output, while

in consumer and corporate defaults, they represent legal repercussions such as recourse and seized collateral.

5The fundamental component equates to the present value of endowment losses and the bubble compo-

nent stands for the amount of credit agents can roll over indefinitely. Although this decomposition parallels

the characterization result of Hellwig and Lorenzoni (2009) in our modified setting, our result is not a

straightforward extension of their work. It relies on novel insights with no counterparts in models without

output losses.
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complexities of determining the fixed-point debt limits.

Regardless of how small the endowment loss might be, the laissez-faire equilibrium always

exhibits positive interest rates. We demonstrate that subject to the same policy intervention–

namely, tightening the debt limits at a specific period–the resulting new equilibrium still

yields a consumption allocation that Pareto dominates the laissez-faire allocation. This

confirms that a low-interest rate is not the reason for inefficiency in credit markets.

Related Literature. The idea that economies with limited commitment are prone to mar-

ket failures dates back to Kehoe and Levine (1993). When there is more than one commodity

and default cannot exclude agents from trading in spot markets, constrained efficiency might

fail because private contracts cannot internalize their effect on relative prices and the default

option. The logic there is conceptually the same as in incomplete markets economies where

redistribution of asset holdings, through the induced price changes, affect the spanning prop-

erties of the limited assets (Hart 1975, Stiglitz 1982, Geanakoplos and Polemarchakis 1986).

Similar results are also obtained in settings where contracting is subject to private informa-

tion (Greenwald and Stiglitz 1986). In the single good model studied here, however, there are

no spot markets or private information, and as a result, this mechanism is absent. Moreover,

Alvarez and Jermann (2000, 2001) show that competitive equilibria are constrained efficient

when the default option is autarky. We instead show that constrained inefficiency obtains

in economies with a single commodity when debt enforcement relies on a weak form of ex-

clusion (i.e., one-sided exclusion) from financial markets. Changes in the severity of credit

restrictions induce price changes in bond markets. These price changes, in turn, affect the

value of default and, therefore, the extent of risk sharing, potentially improving efficiency.

This source of inefficiency is not present in Alvarez and Jermann’s framework since the value

of default does not respond to changes in bond prices.

Our work is related to well-developed literature studying the emergence of pecuniary ex-

ternalities in production economies with collateral constraints. Gromb and Vayanos (2002)

show that both distributive and collateral externalities can emerge due to market segmen-

tation. Lorenzoni (2008) shows that financial distress might lead to fire sales whose ef-
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fects on asset prices are not internalized by highly leveraged investors. Dávila and Korinek

(2018) characterize pecuniary externalities in dynamic settings subject to reduced-form,

price-dependent collateral constraints. They distinguish between distributive and collateral

externalities and show that these two types can be quantified as a function of sufficient in-

tuitive statistics. In all of these works, because of capital accumulation, the reallocation of

resources is induced by a change in the level of investment. A planner can overcome market

failure by reducing aggregate investment ex-ante and, therefore, the size of the asset sales

in bad states. In contrast, this channel is absent in our pure exchange setup as aggregate

resources are fixed, and only their distribution can vary. The reallocation of resources is

solely induced by the tightening of the endogenously determined debt constraints.

Our paper also relates to the work of Gottardi and Kubler (2015), which studies the

effects of unexpected mandatory savings in an economy where agents can only take long

positions on contingent trees, the work of Guerrieri and Lorenzoni (2017), which studies the

effects of unexpected credit contractions in a heterogeneous-agent incomplete-market model

with exogenous borrowing limits, and the work of Aguiar et al. (2022), which studies Pareto-

improving fiscal policies in this kind of environment when the interest rate on the government

bond is below the growth rate. Our work differs from these studies by placing limited

commitment and the endogeneity of borrowing limits as a potential source of inefficiency in

debt markets at the forefront and center.

Finally, our work is related to a complementary strand of literature that focuses on macro-

prudential controls that take the form of Pigouvian taxes or subsidies to reduce pecuniary

externalities. Park (2014) studies optimal taxation in an Alvarez–Jermann production econ-

omy. There, a Ramsey planner internalizes how individual labor and saving decisions affect

aggregate labor, capital supply, wages, and thus the value of autarky. In our setting, the

planner internalizes how saving/borrowing choices (indirectly determined by consumption

choices) affect asset prices, the default value, and credit constraints. Jeanne and Korinek

(2010, 2019) and Dávila and Korinek (2018) provide a welfare rationale for the taxation of

capital flows to mitigate the financial amplification effects of fire sales in economies with

collateral constraints. In Farhi and Werning (2016), the focus is on demand externalities
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associated with the presence of nominal price rigidities. Though such externalities are quali-

tatively different from the pecuniary externalities we study here, Korinek and Simsek (2016)

argue that the two externalities interact and may mutually reinforce each other.

The plan of the paper is as follows. Section 2 introduces the baseline model environment

and defines self-enforcing and not-too-tight debt limits. Section 3 compares the laissez-faire

equilibrium with a social planner. Section 4 demonstrates that laissez-faire equilibria can be

Pareto inferior to equilibria with tighter debt constraints. Section 5 incorporates endowment

losses upon default and establishes that our findings on inefficiency are not contingent on

interest rates being lower than growth rates. Section 6 concludes. Detailed proofs and

technical arguments are available in the online appendix, where additional topics are also

explored.

2 General Model

Consider an infinite-horizon endowment economy with a single nonstorable consumption

good at each date. Time and uncertainty are both discrete. We use an event tree Σ to

describe the revelation of information over an infinite horizon. There is a unique initial

date-0 event s0 ∈ Σ, and for each date t ∈ {0, 1, 2, . . .}, there is a finite set St ⊆ Σ of date-t

events st. Each st has a unique predecessor σ(st) in St−1 and a finite number of successors

st+1 in St+1 for which σ(st+1) = st. The notation st+1 ≻ st specifies that st+1 is a successor

of st. The event st+τ is said to follow event st, also denoted st+τ ≻ st, if σ(τ)(st+τ ) = st.6

The set St+τ (st) := {st+τ ∈ St+τ : st+τ ≻ st} denotes the collection of all date-(t+τ) events

following st. Abusing notation, we let St(st) := {st}. The subtree starting at event st is

then given by:

Σ(st) :=
⋃
τ⩾0

St+τ (st).

6Formally, σ is a mapping from Σ \ {s0} to Σ such that σ(St+1) = St for every t ⩾ 0. We pose σ(1) := σ

and σ(τ+1) := σ ◦ σ(τ) for every τ ⩾ 1.
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We use the notation sτ ⪰ st when sτ ≻ st or sτ = st. In particular, we have Σ(st) = {sτ ∈

Σ : sτ ⪰ st}.

There is a finite set I of household types, each consisting of a unit measure of identical,

infinitely lived agents who consume a single perishable good. Preferences over (nonnega-

tive) consumption processes c = (c(st))st⪰s0 are represented by the lifetime expected and

discounted utility:

U(c) :=
∑
t⩾0

βt
∑
st∈St

π(st)u(c(st)),

where β ∈ (0, 1) is the discount factor, π(st) is the agent’s subjective belief of state st, and

u : [0,∞) → R is a utility function that is strictly increasing, strictly concave, continuous on

[0,∞), differentiable on (0,∞), and satisfies Inada’s condition limε→0[u(ε) − u(0)]/ε = ∞.

Given an event st, we denote by U(c|st) the lifetime continuation utility conditional on st,

as defined by:

U(c|st) := u(c(st)) +
∑
τ⩾1

βτ
∑

st+τ≻st

π(st+τ |st)u(c(st+τ )),

where π(st+τ |st) := π(st+τ )/π(st) is the conditional probability of st+τ given st. Agents’

endowments are subject to random shocks. We denote by yi = (yi(st))st⪰s0 the process of

positive endowments yi(st) > 0 of a representative agent of type i. For notational conve-

nience, we have written the primitives as if agents’ preferences and beliefs are homogeneous.

However, our arguments remain valid when agents have heterogeneous preferences and be-

liefs, and the only necessary change is to replace (u, β, π) with (ui, βi, πi).

2.1 Asset Markets with Self-Enforcing Debt Constraints

At any event st, agents can issue and trade state-contingent one-period bonds, each

one promising to pay one unit of the consumption good contingent on the realization of

a successor event st+1 ≻ st. Let q(st+1) > 0 denote the price, at event st, of the st+1-

contingent bond (the inverse of q(st+1) is the interest rate between st and st+1). Agent i’s

bond holdings are ai = (ai(st))st⪰s0 , where ai(st) ⩽ 0 is a liability, and ai(st) ⩾ 0 is a

claim. Each agent’s debt is observable and subject to certain (state-contingent and finite)
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debt limits Di = (Di(st))st⪰s0 . Given an initial bond holding ai(s0) and debt limits Di, we

denote by Bi(Di, ai(s0)|s0) the budget set of an agent who never defaults. It consists of all

pairs (ci, ai) of consumption and bond holdings satisfying the following budget flows and

debt constraints: for all st ⪰ s0,

ci(st) +
∑

st+1≻st

q(st+1)ai(st+1) ⩽ yi(st) + ai(st), (2.1)

and

ai(st+1) ⩾ −Di(st+1), for all st+1 ≻ st. (2.2)

We naturally restrict attention to allocations where the initial asset holdings clear the mar-

ket, i.e.,
∑

i∈I a
i(s0) = 0, and satisfy the debt constraints, i.e., ai(s0) ⩾ −Di(s0) for each i.

Similarly, contingent on an event sτ , we let Bi(Di, x|sτ ) be the set of all plans (ci, ai) satisfy-

ing restrictions (2.1) and (2.2) at every successor node st ⪰ sτ with initial claim ai(sτ ) = x.

Denote the contingent value function at event sτ , when agent i starts with financial wealth

x, by V i(Di, x|sτ ). It is defined as the largest continuation utility U(ci|sτ ) among all budget

feasible plans (ci, ai) ∈ Bi(Di, x|sτ ). When x = ai(sτ ), this will be the equilibrium value,

i.e., the payoff to each agent i along the equilibrium path following any event sτ .

So far, debt limits are arbitrary. We next move to the endogenous determination of the

debt limits, which are a critical determinant of equilibrium allocations and payoffs. Debt

limits represent the maximal amount of debt that borrowers can issue. In general equilibrium,

they also represent the maximal amount of liquidity (or storage of value) that savers can

access. We follow Alvarez and Jermann (2000) and provide a microfoundation for the level of

debt limits by assuming that agents have limited commitment. We consider an environment

where agents cannot commit to their financial contracts and may opt for default. We denote

by V i
def(s

t) agent i’s value of the default option at event st, and we impose that the debt

limits reflect the fact that repayment is always individually rational. Specifically, we say that

debt limits Di are self-enforcing if debtors prefer to repay even the maximum debt allowed,

i.e.,

V i(Di,−Di(st)|st) ⩾ V i
def(s

t), for all st ⪰ s0. (2.3)
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We say that Di are not too tight if (2.3) always holds with equality, i.e., borrowers are

indifferent between repaying and defaulting:

V i(Di,−Di(st)|st) = V i
def(s

t), for all st ⪰ s0. (2.4)

Given future debt limits (Di(sτ ))sτ≻st , the level Di(st) satisfying (2.4) is interpreted as the

largest self-enforcing debt limit contingent on event st. We say that Di are too tight if they

are self-enforcing and (2.3) holds with strict inequality at some event st ≻ s0.

Definition 2.1. Given a family of default value functions (V i
def)i∈I , we call a self-enforcing

equilibrium (q, (ci, ai, Di)i∈I) a collection of state-contingent bond prices q, a consumption

allocation (ci)i∈I , a bond holdings allocation (ai)i∈I , and a family of debt limits (Di)i∈I such

that:

(a) the plan (ci, ai) of agent i is optimal among budget feasible plans in Bi(Di, ai(s0)|s0);

(b) the debt limits Di of agent i satisfy the self-enforcing condition (2.3);

(c) markets clear:
∑

i∈I c
i =

∑
i∈I y

i and
∑

i∈I a
i = 0.

When the debt limits of all agents satisfy condition (2.4), we use the term not-too-tight

equilibrium. It is reasonable to expect that in a competitive market, competition among

lenders should naturally lead them to offer as much credit as possible without violating

borrowers’ incentive to repay. Hence, we will also use the term laissez-faire equilibrium as a

synonym for not-too-tight equilibrium. Similarly, when the debt limits are too tight, we use

the term too-tight equilibrium.

The default value Vdef is the key object determining the not-too-tight debt limits. We con-

sider a framework where all assets are seized upon default, and debtors lose access to credit

while retaining the ability to save (by purchasing other people’s debt). As a consequence,

the value of default for any agent i at any event st is given by:

V i
def(s

t) = V i(0, 0|st) := sup{U(ci|st) : (ci, ai) ∈ Bi(0, 0|st)}, (2.5)
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The condition (2.4) then reads as follows:

V i(Di,−Di(st)|st) = V i(0, 0|st), for all st ⪰ s0. (2.6)

The assumption that agents can save after default follows Bulow and Rogoff (1989) and

Hellwig and Lorenzoni (2009) but contrasts with Alvarez and Jermann (2000) who assume

that defaulting agents can neither borrow nor save. This weaker form of punishment captures

the idea that it is much easier for market participants to coordinate on not purchasing the

claims issued by a borrower with a “bad reputation” than to enforce an outright ban from

financial markets. Most importantly, Krueger and Uhlig (2006) provided micro-foundations

for this default punishment by analyzing dynamic equilibrium risk-sharing contracts between

profit-maximizing intermediaries and agents facing income uncertainty. They showed that

our default value coincides with the endogenously determined outside option in the model

they study.

2.2 Weak and Exact Rollover

Hellwig and Lorenzoni (2009) proved that not-too-tight debt limits necessarily form a

bubble that captures the possibility of exactly rolling over debt indefinitely. Formally, a

process Di of debt limits is not too tight (for the default punishment described by (2.5)) if,

and only if,

Di(st) =
∑

st+1≻st

q(st+1)Di(st+1), for all st ≻ s0. (2.7)

It is straightforward to verify that if there is a strict inequality in (2.7), then debt limits

are self-enforcing and too tight.

Proposition 2.1. Fix an event sτ ∈ Σ and assume that

Di(st) ⩽
∑

st+1≻st

q(st+1)Di(st+1), for all st ⪰ sτ (2.8)

with a strict inequality in at least one successor event st ⪰ sτ . Then V i(Di,−Di(sτ )|sτ ) >

V i(0, 0|sτ ).
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The characterization of not-too-tight and too-tight debt limits, framed in terms of the

exact or weak rollover, facilitates the computation of equilibria. It sidesteps the typical

complexities associated with the fixed-point process of identifying self-enforcing debt limits:

as the default values depend on prices (given that defaulting agents retain the ability to save),

they are influenced by equilibrium allocations and, consequently, the debt limits themselves.

The usefulness will become clear when we conduct our policy intervention experiments in

Sections 4.

3 A Ramsey Program

In models where financial frictions stem from limited commitment, the prevailing view

is that borrowing should adhere to the most lenient debt constraints that align with the

financial friction. As articulated by Krueger and Uhlig (2006), not-too-tight debt limits

should emerge organically in a competitive credit market, where competition among lenders

would allow borrowers to take on the maximum debt that still aligns with repayment in-

centives. This perspective is bolstered by the notion that such debt limits facilitate optimal

risk-sharing. While this may hold in a partial equilibrium context with static prices, its

validity becomes dubious in general equilibrium scenarios where prices and debt limits are

endogenously determined.

Hellwig and Lorenzoni (2009) demonstrated that debt can be sustained in a bubbly equi-

librium where debt limits are not too tight. Our research investigates potential equilibrium

alternatives to the conventional laissez-faire paradigm. We question whether it’s possible to

move beyond bubbly equilibria and identify an equilibrium characterized by too-tight debt

limits that Pareto outperforms the laissez-faire equilibrium.

To motivate our investigation, we analyze a social planner problem that faces the same

participation constraints as the markets. To formalize the planner’s problem, we start be

recalling standard properties satisfied by our market equilibrium concept.

Consider a self-enforcing equilibrium (q, (ci, ai, Di)i∈I). The value of default V i
def(s

t) =

V i(0, 0|st) depends on market prices. To clarify this dependence, we make a slight abuse
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of notation and write V i
def(q|st). The Principle of Optimality implies that U i(ci|st) =

V i(Di, ai(st)|st). As debt limits are self-enforcing, we deduce that the consumption pro-

cess ci satisfies the participation constraints

U i(ci|st) ⩾ V i
def(q|st), for every st ⪰ s0.

Euler equations imply that

q(st) ⩾ qi(st) where qi(st) := βπ(st|σ(st)) u′(ci(st))

u′(ci(σ(st)))
,

with an equality if the participation constraint is not binding: U i(ci|st) > V i(D,−Di(st)|st).7

In particular, we can assume without any loss of generality that the equilibrium price must

satisfy

q(st) = max
i∈I

qi(st).

We use these equilibrium conditions to construct a constrained maximization problem for a

social planner that faces the same participation constraints as the markets.

Formally, a social planner chooses a strictly positive consumption allocation (ci)i∈I and

a strictly positive price process q = (q(st))st≻s0 such that

(a) markets clear, that is,
∑

i∈I c
i =

∑
i∈I y

i;

(b) participation constraints are satisfied

U i(ci|st) ⩾ V i(q|st), for all st ⪰ s0;

(c) the price q is given by q(st) = maxi∈I q
i(st).

The pairs (q, (ci)i∈I) satisfying the above properties (a), (b), and (c) are called socially fea-

sible. Given some strictly positive welfare weights (λi)i∈I , the problem of the constrained

social planner is to maximize ∑
i∈I

λiU i(ci|s0)

7As debt limits are self-enforcing, we have V i(D,−Di(st)|st) ⩾ V i
def(q|st).
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over all socially feasible pairs (q, (ci)i∈I).

When defining the default value, the social planner is constrained to take the asset prices

as determined by the largest individual marginal rates of substitution. In contrast to indi-

viduals in a competitive equilibrium, the social planner internalizes that saving/borrowing

choices (indirectly determined by consumption choices) affect asset prices, the default value,

and credit constraints.

Our setup is equivalent to the problem of a constrained Ramsey planner who maximizes

social welfare among all possible competitive equilibria with self-enforcing debt limits. This

follows from the following implementation result.8

Proposition 3.1. For every socially feasible pair (q, (ci)i∈I), we can find self-enforcing debt

limits (Di)i∈I and an allocation (ai)i∈I of bond holdings such that (q, (ci, ai, Di)i∈I) is a self-

enforcing competitive equilibrium.

The striking observation is that the constrained social planner will not necessarily find

optimal to select a competitive equilibrium with not-too-tight debt limits. Indeed, consider

a social planner choice (q, (ci)i∈I). According to Proposition 3.1, this choice can be imple-

mented as a self-enforcing competitive equilibrium (q, (ci, ai, Di)i∈I). Consider an agent i

and an event st such that U i(ci|st) > V i
def(q|st). If debt limits where not-too-tight, we would

necessarily have ai(st) > −Di(st), and therefore q(st) = qi(st). This means that when we

have simultaneously

U i(ci|st) > V i
def(q|st) together with q(st) > qi(st),

then the debt limits are too tight as we must have ai(st) = −Di(st) and therefore

V i(Di,−Di(st)|st) = U i(ci|st) > V i
def(q|st).

To clarify this point, we analyze the first-order conditions of the constrained social planner

problem. Consider a solution (q, (ci)i∈I). Given an arbitrary event st, we let Inb(st) the set

8The proof is constructive and postponed to Appendix ??.
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of agents whose participation constraint does not bind, i.e.,

Inb(st) = {i ∈ I : U i(ci|st) > V i(q|st)},

and we let I⋆(st) the set of agents whose individual valuation qi(st) coincides with the price

q(st), i.e.,

I⋆(st) = {i ∈ I : q(st) = qi(st)}.

Let µ(st) be the Lagrange multiplier for the market clearing condition, ξi(st) ⩾ 0 the La-

grange multiplier for the participation constraint, and χ(st) the Lagrange multiplier for the

definition of the implied price. The equality constraint q(st) = maxi∈I q
i(st) can be written

as

0 = q(st)− βπ(st|σ(st))max
i∈I

f(ci(st), ci(σ(st)))

where the function (x, y) 7→ f(x, y) is defined by

f(x, y) :=
u′(x)

u′(y)
.

The mapping H(·|st) : (0,∞)I → R defined by, for any x = (xi)i∈I ,

H(x|st) := max
i∈I

hi(x|st) where hi(x|st) := f(xi, ci(σ(st)))

is not necessarily differentiable. However, it follows from Danskin’s Theorem (see Theo-

rem 10.22 in Clarke (2013)) that H(·|st) is a regular locally Lipschitz function whose gener-

alized gradient is given by

∂H(x|st) = co{∇hi(x|st) : i ∈ I⋆(st)}

Similarly, for every st+1 ≻ st, the mapping G(·|st+1) : (0,∞)I → R defined by, for any

x = (xi)i∈I ,

G(x|st+1) := max
i∈I

gi(x|st+1) where gi(x|st+1) := f(ci(st+1), xi)

is not necessarily differentiable. Nonetheless, the function G(·|st+1) is a regular locally

Lipschitz function whose generalized gradient is given by

∂G(x|st+1) = co{∇gi(x|st+1) : i ∈ I⋆(st+1)}.
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This implies that, for every st, there exists α(st) ∈ ∆(I) with support in I⋆(st), and for

every st+1 ≻ st, there exists γ(st+1) ∈ ∆(I) with support in I⋆(st+1) such that the first-order

condition associated with the choice ci(st) is

βtπ(st)u′(ci(st))

[
λi + ξi(s0) +

ξi(s1)

βπ(s1)
+ . . .+

ξi(st)

βtπ(st)

]
+
u′′(ci(st))

u′(ci(st))

[ ∑
st+1≻st

χ(st+1)q(st+1)γi(st+1)− χ(st)q(st)αi(st)

]

= µ(st). (3.1)

The first-order condition associated with the choice q(st) is

χ(st) =
∑
i∈I

ξi(s0)
∂V i(·|s0)
∂q(st)

(q) + . . .+ ξi(st)
∂V i(·|st)
∂q(st)

(q). (3.2)

As the RHS of (3.2) is nonpositive, we must have χ(st) ⩽ 0.

In a laissez-faire equilibrium, if the participation does not bind, U i(ci|st) > V i(q|st), then

q(st) = qi(st). Equivalently, we have

Inb(st) ⊆ I⋆(st). (3.3)

If χ = 0,9 then the solution of the social planner problem satisfies Inb(st) ⊆ I⋆(st) (and

implements a competitive equilibrium with not-too-tight debt limits). Indeed, assume χ = 0

and assume i ∈ Inb(st), i.e., agent i is unconstrained at event st. This implies that ξi(st) = 0

and

µ(st) = βtπ(st)u′(ci(st))

[
λi + ξi(s0) +

ξi(s1)

βπ(s1)
+ . . .+

ξi(σ(st))

βtπ(σ(st))

]
= βπ(st)u′(ci(st))

[
µ(σ(st))

π(σ(st))u′(ci(σ(st)))

]
= qi(st)µ(σ(st)).

For any other agent j ̸= i, as ξj(st) ⩾ 0, we have µ(st) ⩾ qj(st)µ(σ(st)). We have thus

proved that

qi(st) =
µ(st)

µ(σ(st))
⩾ max

j∈J
qj(st) = q(st)

9This occurs if the value of the default option does not depend on q, as in the case where autarky is the

default punishment .
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and we get the desired result: i ∈ I⋆(st).

When χ ̸= 0, it is conceivable that the social planner chooses a solution (q, (ci)i∈I) such

that q(st) > qi(st) even if U i(ci|st) > V i(q|st). Indeed, although ξi(st) = 0 and αi(st) = 0,

there is still the term

u′′(ci(st))

u′(ci(st))

[ ∑
st+1≻st

χ(st+1)q(st+1)γi(st+1)

]

that can be strictly positive.10 The objective of the next section is to illustrate, using a

simple example, that the constrained social planner can implement an allocation Pareto

superior to a laissez-faire allocation by choosing too-tight debt limits.

4 Tightening Debt Constraints

We propose to show that a policy intervention to tighten debt constraints can lead to

Pareto improvements over the laissez-faire allocation. Our model envisions a scenario where

a credit agency or the government enforces these too-tight debt limits. We interpret these

interventions as a streamlined representation of regulatory or prudential policies crafted to

curtail financial leverage.

What is the intuition for our (constrained) inefficiency results? As the value of default

depends on market prices, there is a pecuniary externality that agents do not internalize in a

competitive environment. In particular, we will show that reducing the borrowing capacity

at a period τ reduces the credit volume, increases bond prices, or, equivalently, lowers the

implied interest rates. This impact on prices has a negative feedback effect on the value of

the default option at periods t < τ since it is now more costly to smooth consumption over

time by saving only. This implies that the not-too-tight debt limits at periods t < τ can be

looser than their level before the intervention. Pareto improvement can be obtained when

the benefits from the relaxed credit conditions at periods t < τ compensate the costs of the

tighter credit conditions in period τ .

10Recall that χ(st+1) ⩽ 0, γi(st+1) ⩾ 0, u′(·) > 0 and u′′(·) < 0.
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To illustrate this intuition in the most straightforward possible manner, we consider a

simpler version of the standard example presented in Hellwig and Lorenzoni (2009). There

are two agents facing uncertainty only during the initial period. The economy is thereafter

a deterministic one, in which, every other period, agents’ endowments switch from a high

value to a low value. Within this setting, we perform the following exercise. We first

construct a Markov laissez-faire equilibrium (q, (ci, ai, Di)i∈I), in which after the realization

of uncertainty, the economy settles in a cyclical and symmetric steady-state equilibrium

where debt limits are not too tight. We then construct another equilibrium (q̂, (ĉi, âi, D̂i)i∈i),

supported by the same allocation of initial financial claims, but with debt constraints being

too tight at a single period τ . We then show that the consumption allocation (ĉi)i∈I Pareto

dominates the consumption allocation (ci)i∈I of the laissez-faire equilibrium.

4.1 Primitives of the Example

There are two agents I = {a, b} who enter the market with an identical endowment

y0 > 0 and no financial claims (i.e., aa(s0) = ab(s0) = 0). There is uncertainty only at the

initial period t = 0, described by two possible states za ̸= zb. After realizing the state zi,

the economy becomes deterministic where agents’ endowments switch between a high value

yh and a low value yl with yh > yl. Realizing state zi means that the agent i starts with

the high endowment at t = 1. The beliefs are homogeneous, with each agent assigning the

probability πh = 1/2 (πl := 1 − πh) of getting the high (low, respectively) endowment at

t = 1. Since there is uncertainty only at the initial period, we simplify notation by writing

a generic process (x(st))st⪰s0 as follows: x(s0) = x0 and x(st) = xt(z) if st ⪰ (s0, z) with

z ∈ {za, zb}.11 The representation of the event tree is as in Figure 4.1.

For future reference, we point out that the symmetric first-best allocation of this economy

obtains when both agents consume their endowment at t = 0 and the perfect risk-sharing

consumption level cfb := (yh + yl)/2 at every period t ⩾ 1.

11The event tree Σ can be formally defined as follows: S0 := {s0} and for every t ⩾ 1, St = {(za, t), (zb, t)}.

The binary relation ≻ is defined as follows: (z, 1) ≻ s0 and (z, τ) ≻ (ζ, t) when z = ζ and τ > t.
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y(s0) = (y0, y0)

y1(z
a) = (yh, yl) (za, 1)

y2(z
a) = (yl, yh) (za, 2)

π(za) = (πh, πl)

y1(z
b) = (yl, yh)(zb, 1)

y2(z
b) = (yh, yl)(zb, 2)

π(zb) = (πl, πh)

Figure 4.1: Event tree and endowments.

4.2 Laissez-Faire Equilibrium

We recall the characteristics of the laissez-faire equilibrium presented in Hellwig and

Lorenzoni (2009). It is a symmetric Markov equilibrium: at period t = 0, both agents

borrow up to the debt limit dlf against their high-income state and save contingent on their

low-income state. After resolving the uncertainty at period t = 1, the economy settles in

a cyclical steady-state where the low-income agent borrows up to the not-too-tight debt

limit dlf while the high-income agent saves.

Proposition 4.1. Assume interest rates at autarky are negative, i.e., βu′(yl) > u′(yh).

Then, there exists an equilibrium (q, (ci, ai, Di)i∈I) with not-too-tight debt limits where for

each z ∈ {za, zb} and every i ∈ I:

(i) debt limits equal Di
t(z) = dlf , for t ⩾ 1;

(ii) consumption is: ci0 = y0 at t = 0, cit(z
i) = clfh and cit(z

j) = clfl , for t ⩾ 1;

(iii) net asset positions are ait(z) = −dlf (i.e., the debt limit binds) if yit(z) = yh, and

ait(z) = dlf if yit(z) = yl, for t ⩾ 1;

(iv) prices are given by q1(z) = βπlu
′(clfl )/u

′(y0) and qt+1(z) = qlf = 1, for t ⩾ 1.

The proof of the proposition is standard (and, therefore, omitted). Debt limits are

trivially not-too-tight as dlf = qlfdlf . The equilibrium net trade xlf := (1 + qlf)dlf = 2dlf is
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determined by the first order condition

1 = qlf = β
u′(clfl )

u′(clfh)
= β

u′(yl + xlf)

u′(yh − xlf)
.

At t = 1, the continuation utilities are U lf
h = [u(yh−xlf)+βu(yl+xlf)]/(1−β2) for the high-

income agent and U lf
l = [u(yl+x

lf)+βu(yh−xlf)]/(1−β2). As the equilibrium is symmetric,

both agents share the same time 0 expected utility U lf
0 := u(y0) + (β/2)(U lf

h + U lf
l ).

We let Ah := −u′′(clfh)/u′(clfh) and Al := −u′′(clfl )/u′(clfl ) denote the absolute risk-aversion

at the laissez-faire consumption levels clfh and clfl respectively. When u is the CRRA utility

function with risk-aversion coefficient γ > 0, the contingent consumption and the net trade

values satisfy

clfh = αh(yh + yl), clfl = αl(yh + yl) and xlf = αlyh − αhyl

where the coefficients αh and αl are given by

αh =
β−1/γ

1 + β−1/γ
and αl =

1

1 + β−1/γ
.

We let ζ := yh/yl denote income dispersion. Observe that interest rates at autarky are

negative if, and only if, β1/γζ > 1.

4.3 Pareto-Improving Policy Intervention

We are interested in equilibria where debt limits are self-enforcing but not necessarily

not-too-tight at every period. For clarity in our presentation, we center our discussion on

equilibria where agents borrow up to their debt limits contingent on high income, denoted

by dt, and save contingent on low income. Such equilibria are uniquely determined by the

sequence (qt+1, dt)t⩾1 where qt+1 is the asset price at date t.12 Here, net trade is given by

xt := dt + qt+1dt+1. Consumption for the high-income agent is given by ch,t = yh − xt,

while for the low-income agent, it is cl,t = yl + xt. At t = 0, both agents consume their

endowment y0, and the two contingent bonds share the same price q1.

12The debt limit contingent on low income need not be specified since our focus is on equilibria where

agents save to hedge against the low-income shock.

21



The conditions ensuring the optimality of individual choices are, at t = 0,

q1 = βπl
u′(yl + x1)

u′(y0)
⩾ βπh

u′(yh − x1)

u′(y0)
; (4.1)

and, for any t > 1,13

qt+1 = β
u′(yl + xt+1)

u′(yh − xt)
⩾ β

u′(yh − xt+1)

u′(yl + xt)
. (4.2)

We propose a targeted policy intervention that tightens debt constraints for a single

period, thereby achieving an equilibrium allocation that is Pareto superior to the laissez-faire

allocation. Specifically, we set τ = 2 and construct an equilibrium where the low-income

agent faces a too-tight debt limit d3 at date t = τ . Formally, the equilibrium has the following

features:

(a) For periods t ∈ {0, 1}, there is no intervention, and the debt limit dt+1 is not too tight.

(b) At period t = 2, a policy intervention imposes a debt limit d3 := (1− ε)q4d
lf .

(c) At period t = 3, the high-income agent starts with the too-tight debt level d3. Since the

intervention is over, the debt limit reverts to its laissez-faire level dlf , which is not too

tight given future debt limits.14

(d) For t ⩾ 4, the laissez-faire equilibrium prevails: dt = dlf and qt+1 = qlf .

By construction all debt limits are self-enforcing. In particular, Proposition 2.1 assures that

this is the case for d3. It follows that d3 is too tight when ε > 0.

We refer to the above as an equilibrium with ε-tight debt constraints, and we use the

notation (qt+1(ε), dt(ε)) to emphasize the dependence on the tightening coefficient ε. Our

contribution amounts to identifying a set of parameter values for which such equilibria exist

and feature a consumption allocation that is Pareto superior to the laissez-faire allocation.

We summarize our main result below.

13To ensure that consumption is positive, we also need that −yl < xt < yh for every t ⩾ 1.

14The not-too-tight debt limits d1 and d2 though may differ from dlf as d3 is too-tight.
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Theorem 4.1. If the interest rate at autarky is negative (i.e., βu′(yl) > u′(yh)), then, for

sufficiently small ε > 0, there exists an equilibrium with ε-tight debt constraints that Pareto

dominates the laissez-faire equilibrium provided that the following condition holds:

0 < Alx
lf − 1 < β(Ahx

lf + 1). (4.3)

For the CRRA utility function characterized by a risk-aversion coefficient γ > 0, negative

interest rates at autarky occur if, and only if, γ > f(β|ζ), where f(β|ζ) is the value of γ that

satisfies β1/γζ = 1. The sufficient condition (4.3) can be rewritten as:

ζ + 1 < γ(ζ − β−1/γ) <
1 + β

1− β1+1/γ
(ζ + 1). (4.4)

Both functions γ 7→ γ(ζ − β−1/γ) and γ 7→ γ(ζ − β−1/γ)(1 − β1+1/γ) are strictly increasing.

Therefore, condition (4.4) is equivalent to:

g(β|ζ) < γ < h(β|ζ),

where g(β|ζ) is the value of γ that solves ζ + 1 = γ(ζ − β−1/γ) and h(β|ζ) the value of γ

that solves γ(ζ − β−1/γ)(1− β1+1/γ) = (ζ + 1)(1 + β).

In Figure 4.2(a), we plot the functions f(·|ζ), g(·|ζ), and h(·|ζ) when income dispersion

is ζ = 2. The green area represents the set of primitive values (β, γ) where the intervention

is Pareto improving.15

Denote by U0(ε) the common expected and discounted utility at t = 0.16 We let ce(ε) be

the certainty equivalent of the expected continuation utility at t = 1. This consumption level

is determined by the equation U0(ε) = u(y0) + βu(ce(ε)). Figure 4.2(b) offers an alternative

illustration when β̄ = 0.9 by plotting the difference of the certainty equivalent consumption,

ε 7→ ce(ε)− ce(0). Pareto improvement obtains if, and only if, ce(ε)− ce(0) > 0.

15The red area represents the set of primitive values (β, γ) where a laissez-faire equilibrium with trade

does not exist.

16It is formally defined as U0(ε) = u(y0) +
1
2

∑
t⩾1 β

t [u(yl + xt) + u(yh − xt)] .
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(a) Set of primitive values (β, γ) (b) ce(ε)− ce(0)

Figure 4.2: Tightening Debt Constraints at τ = 2 is Pareto improving.

In the following sections, we elucidate the intuition and furnish the analytical under-

pinnings for Theorem 4.1. In the equilibrium scenario with ε-tight debt constraints, the

economy undergoes a transitional phase before reverting to the laissez-faire regime at pe-

riod t = 4. A crucial step in this analysis is determining the not-too-tight debt limits d1 and

d2 that prevail during this intervention period. This task is particularly challenging since the

powerful characterization result of Hellwig and Lorenzoni (2009) cannot be directly applied.

Specifically, the condition that d1 and d2 should not be too tight does not automatically

imply that they permit the exact rollover of debt. Therefore, their determination cannot

be solely based on the equilibrium price specifications. This deviation from the standard

approach is a direct consequence of our policy experiment, which prescribes a specific debt

limit d3 that disrupts the usual not-too-tight conditions for future debt limits.

To overcome this issue, it becomes necessary to compute the value functions for periods

t ∈ {1, 2} that correspond to both equilibrium and out-of-equilibrium paths. The debt limits

d1 and d2 then emerge as non-trivial solutions to the not-too-tight condition, as expressed

in Equation 2.6.
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4.4 Equilibrium Construction

To streamline the exposition, we break down the construction of the equilibrium into

several steps. We begin by identifying the equilibrium variables for period t = 3 and then

proceed backward to ascertain the corresponding variables for periods t ∈ {2, 1}. At t = 4

the economy settles down at the laissez-faire equilibrium described in Proposition 4.2.

The intervention forces the high-income agent to start at period t = 3 with a level of

debt

d3(ε) = (1− ε)q4(ε)d
lf . (4.5)

To support the laissez-faire steady state next period, this agent must save dlf while the low-

income agent must find it optimal to borrow the same amount. In this case, the net trade

and equilibrium price at period = 3 are jointly determined by the following two equations

q4(ε) = β
u′(yl + xlf)

u′(yh − x3(ε))
and x3(ε) = (2− ε)q4(ε)d

lf . (4.6)

The first equation is the FOC of the high-income agent, while the second equation is obtained

by substituting d3(ε) in x3(ε) = d3(ε) + q4(ε)d
lf that stands for net trade.

It follows from a straightforward application of the Implicit Function Theorem that there

exists ε > 0 and continuously differentiable functions q4 : [0, ε̄] → (0,∞) and x3 : [0, ε̄] →

(0,∞) satisfying (4.6) and such that q4(0) = qlf = 1 and x3(0) = xlf . To be optimal for the

low-income agent to issue the maximum debt level dlf , we must have that

q4(ε) ⩾ β
u′(clfh)

u′(yl + x3(ε))
. (4.7)

As x3(0) = xlf and q4(0) = 1 > βu′(clfh)/u
′(clfl ), we can reduce ε̄ > 0 so that (4.7) is also

satisfied for every ε ∈ [0, ε̄]. Differentiating the FOC in (4.6) at ε = 0, we get that

q′4(0) =
Ahx

lf

2(Ahxlf + 1)
> 0 and x′3(0) = − 1

Ah

q′4(0) < 0.

Figure 4.3 plots the functions ε 7→ q4(ε) and ε 7→ x3(ε) for CRRA utility with different

values of γ. The income dispersion coefficient and discount factor values are set to ζ = 2

and β̄ = 0.9. Observe that the higher the tightening coefficient ε, the lower the consumption
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smoothing (i.e., the function ε 7→ x3(ε) is decreasing), and the higher is the asset price q4(ε)

(or, equivalently, the lower is the implied interest rate). The contraction of net trade reflects

the lower debt ceiling as ε increases. Indeed, d3(0) = dlf and d′3(0) = (q′4(0)− 1)dlf < 0.

(a) Price q4(ε) (b) Net Trade x3(ε)

Figure 4.3: Equilibrium variables at t = 3 as functions of the tightening coefficient ε

Tightening debt constraints at period t = 2 reduces net trade at t = 3. This reduction

proves, at first instance, to be disadvantageous when viewed from an ex-ante standpoint.

Specifically, the time 0 expected utility is given by:

U0(ε) := u(y0) +
1

2

∑
t⩾1

βtφ(xt(ε)) where φ(x) := u(yh − x) + u(yl + x).

When xt < xfb, it holds that φ′(xt) > 0. However, these changes produce secondary effects

through their feedback on the equilibrium variables of previous periods. In particular, as

we illustrate below, these changes alter the default value in periods t ∈ {1, 2}, affecting the

not-too-tight debt limits d1 and d2. If default values reduce, d1 and d2 might exceed the

laissez-faire limit dlf . This might lift net trade over the laissez-faire value xlf , increasing

ex-ante utility. There is scope for Pareto improvement when the reduction in utility due to

the contraction of net trade at period t = 3 is offset by the increase in utility due to the

expansion of net trade in periods t ∈ {1, 2}.
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4.4.1 Computing the Not-Too-Tight Debt Limit at t = 2

We now turn our attention to the equilibrium variables for period t = 2, specifically

focusing on establishing the not-too-tight debt limit d2. This is equivalent to determining

the net trade x2.

The high-income agent starts with debt d2(ε) and saves the amount d3(ε). This position

is accommodated by the low-income agent who borrows the same amount. Net trade at this

period therefore equals x2(ε) = d2(ε) + q3(ε)d3(ε). The FOC associated with these saving

and borrowing decisions are, respectively,

q3(ε) = β
u′(yl + x3(ε))

u′(yh − x2(ε))
and q3(ε) ⩾ β

u′(yh − x3(ε))

u′(yl + x2(ε))
. (4.8)

Since we require the debt limit d2(ε) to be not too tight, condition (2.4) reads as follows

u(yh − x2(ε)) + βu(yl + x3(ε)) + β2U lf
h = V def

h,2 (ε), (4.9)

where U lf
h is the continuation utility of the high-income agent in the laissez-faire equilibrium

and V def
2,h (ε) is the out-of-equilibrium value function of the high-income agent at t = 2.

The existence and behavior of functions ε 7→ x2(ε) and ε 7→ q3(ε) compatible with (4.8)

and (4.9) depend on the behavior of the default value function ε 7→ V def
2,h (ε). The latter is

affected by the equilibrium prices. Therefore, its determination relies on an educated guess

about the out-of-equilibrium path. We postulate the following default value function:

V def
h,2 (ε) = u(yh − q3(ε)θ3(ε)) + βu(yl + θ3(ε)) + β2U lf

h , (4.10)

that is derived by assuming that the defaulting agent only saves when income is high. In

particular, the agent with high income at period t = 2 will not save at period t = 3 when

income becomes low, and the out-of-equilibrium continuation value at period t = 4 will then

coincide with the laissez-faire continuation utility U lf
h . This is because dlf is not-too-tight

so that V def
h,4 (ε) = U lf

h . The necessary and sufficient FOCs to support the out-of-equilibrium

guess are

q3(ε) = β
u′(yl + θ3(ε))

u′(yh − q3(ε)θ3(ε))
and q4(ε) ⩾ β

u′(clfh)

u′(yl + θ3(ε))
. (4.11)
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Replacing the expression of the default option from (4.10) in the not-too-tight condition

(4.9) gives

u(yh − x2(ε)) + βu(yl + x3(ε)) = u(yh − q3(ε)θ3(ε)) + βu(yl + θ3(ε))︸ ︷︷ ︸
=: ψ2(ε)

. (4.12)

Reducing ε̄ > 0 if necessary, it follows from the Implicit Function Theorem that there

exist continuously differentiable functions q3, x2, θ3 : [0, ε̄] → (0,∞) satisfying the equations

in (4.8) and (4.11) as well as equation (4.12). Moreover, we have q3(0) = q4(0) = 1, x2(0) =

x3(0) = xlf and θ3(0) = xlf . Therefore, for ε = 0, the weak inequalities in (4.8) and (4.11)

read as q3(0) = q4(0) = 1 > βu′(clfh)/u
′(clfl ), so they are both satisfied for ε small enough.

The not-too-tight debt limit d2(ε) is then obtained as the difference x2(ε)− q3(ε)d3(ε).

A closer inspection of (4.12) reveals that a necessary condition for net trade x2(ε) to

be increasing in ε is that the value of the default option ψ2(ε) is itself decreasing in ε.

Nevertheless, a decreasing default option is still compatible with x2(ε) decreasing since net

trade x3(ε) decreases unambiguously with ε. Differentiating the equation in (4.8) and the

not-too-tight condition (4.12) at ε = 0 produces

q′3(0) = −(x′2(0)Ah + x′3(0)Al) and x′2(0) = x′3(0) + q′3(0)x
lf . (4.13)

Solving the above system, we deduce that

q′3(0) = −x′3(0)
Al + Ah

Ahxlf + 1
> 0 and x′2(0) = −x′3(0)

Alx
lf − 1

Ahxlf + 1
. (4.14)

Given that u′(clfh) = βu′(clfl ), a similar exercise yields ψ′
2(0) = −q′3(0)u′(clfh)xlf < 0.

Our first-order analysis reveals that, for ε small enough, the asset price q3(ε) increases.

The higher price at t = 2 reduces the value of the default option ψ2(ε). As d2(ε) is required

to be not-too-tight, the left-hand side of the not-too-tight condition (4.12) has to adjust

accordingly. The adjustment occurs by the unambiguous fall of net trade x3(ε) at period

t = 3. However, when parameters are such that Alx
lf > 1, the decrease of x3(ε) is insufficient

to compensate for the decrease of the default option.17 This, in turn, forces the net trade

17The restriction corresponds to the first inequality of condition (4.3) in Theorem 4.1.

28



(a) Price q3(ε) (b) Net Trade x2(ε)

Figure 4.4: Equilibrium variables at t = 2 as functions of the tightening coefficient ε

x2(ε) that prevails at period t = 2 to increase. The expansion of net trade reflects that d2(ε)

exceeds the laissez-faire level dlf . Indeed, we have d2(0) = dlf and d′2(0) = (q′4(0)+q
′
3(0))d

lf >

0.

Figure 4.4 plots the functions ε 7→ q3(ε) and ε 7→ x3(ε) for CRRA utility with different

values of γ. The income dispersion and the discount factor equal ζ = 2 and β = 0.9. For

γ = 3, we have Alx
lf < 1 and ε → x2(ε) is decreasing. For γ ∈ {4, 5}, we have Alx

lf > 1

and ε→ x2(ε) is increasing.

4.4.2 Computing the Not-Too-Tight Debt Limit at t = 1

Determining the equilibrium variables at period t = 1 follows similar reasoning, so we

only discuss the key differences with respect to period t = 2.

The high-income agent starts the period with liabilities d1(ε) and saves the amount d2(ε).

The FOC determines the equilibrium price

q2(ε) = β
u′(yl + x2(ε))

u′(yh − x1(ε))
. (4.15)

As the debt level d1(ε) is required to be not-too-tight, the participation constraint reads as
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follows

u(yh − x1(ε)) + βu(yl + x2(ε)) + β2u(yh − x3(ε)) + β3U lf
l =

u(yh − q2(ε)θ2(ε)) + βu(yl + θ2(ε)) + β2u(yh − q4(ε)θ4(ε)) + β3u(yl + θ4(ε)) + β4U lf
h .

(4.16)

The right-hand side stands for the value of the default option V def
h,1 (ε) obtained by guessing

that out-of-equilibrium, there is saving only when income is high. The variables θ2(ε) and

θ4(ε) correspond to the optimal saving decisions at t = 1 and t = 3 and are determined by

the following FOCs

q2(ε) = β
u′(yl + θ2(ε))

u′(yh − q2(ε)θ2(ε))
and q4(ε) = β

u′(yl + θ4(ε))

u′(yh − q4(ε)θ4(ε))
. (4.17)

The corresponding marginal price at ε = 0 is q′2(0) = −(x′1(0)Ah + x′2(0)Al). Differentiating

the not-too-tight condition (4.16) at ε = 0, we obtain

−x′1(0) + x′2(0)− β2x′3(0) = −q′2(0)xlf − β2q′4(0)x
lf .

Using the expressions for q′4(0) and q
′
2(0), we deduce that

x′1(0)(Ahx
lf + 1) = −x′2(0)(Alx

lf − 1)− β2x′3(0)(Ah + 1).

As x′2(0) = −x′3(0)(Alx
lf−1)/(Ahx

lf−1), we get that x′1(0) > 0 if, and only if, β(Ahx
lf+1) >

(Alx
lf − 1).18 To illustrate this possibility, we plot in Figure 4.5 the functions ε 7→ q2(ε)

and ε 7→ x1(ε) for CRRA utility with different values of γ, setting the values of the income

dispersion and discount factor equal to ζ = 2 and β = 0.9.

4.5 Pareto Improvement

Since the equilibrium is symmetric, for each agent i ∈ I, the ex-ante (expected and

discounted) utility satisfies U i(ci,ε|s0) = U0(ε) where
19

U0(ε) = u(y0) +
1

2

∑
t⩾1

βtφ(xt(ε)), with φ(x) = u(yh − x) + u(yl + x).

18The restriction corresponds to the second inequality of condition (4.3) in Theorem 4.1.

19We recall that πl = πh = 1/2.
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(a) Price q2(ε) (b) Net Trade x1(ε)

Figure 4.5: Equilibrium variables at t = 1 as functions of the tightening coefficient ε.

It is straightforward to verify that for ε = 0, then we recover the laissez-faire equilibrium with

not-too-tight debt limits, that is (q0, (ci,0, ai,0, Di,0)i∈I) = (q, (ci, ai, Di)i∈I) and we deduce

that

U i(ci|s0) = U0(0) = u(y0) +
1

2

∑
t⩾1

βtφ(xlf).

Therefore, to show that the consumption allocation (ci,ε)i∈I Pareto dominates the laiseez-

faire consumption allocation (ci)i∈I , it is sufficient to show that U ′
0(0) > 0. The variation of

the ex-ante utility is given by

U0(ε)− U0(0) =
β

2
[φ(x1) + βφ(x2) + β2φ(x3)]−

β

2
[φ(xlf) + βφ(xlf) + β2φ(xlf)]

As φ′(xlf) = (1− β)u′(clfl ), we deduce that

2U ′
0(0)

β(1− β)u′(clfl )
= x′1(0) + βx′2(0) + β2x′3(0)

= −x′2(0)
Alx

lf − 1

Ahxlf + 1
− β2x′3(0) + βx′2(0) + β2x′3(0)

=
x′2(0)

Ahxlf + 1

[
β(Ahx

lf + 1)− (Alx
lf − 1)

]
=

−x′3(0)
Ahxlf + 1

(Alx
lf − 1)

[
β(Ahx

lf + 1)− (Alx
lf − 1)

]
.

As a direct consequence of the above arguments, we deduce that there is Pareto improvement

for ε sufficiently small if the two inequalities in (4.3) of Theorem 4.1 are satisfied.
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5 High Interest Rates

In the policy experiment discussed in Section 4, the laissez-faire equilibrium and the

equilibrium with ε-tight debt constraints feature low interest rates–specificaly, rates that are

either zero or negative.20 This comes at no surprise since we know from Bulow and Rogoff

(1989) and Hellwig and Lorenzoni (2009) that, in complete markets, unsecured debt is not

sustainable at high interest rates.

However, one might wonder whether there is room for Pareto improvement in scenarios

where debt remains sustainable despite high interest rates. To address this question, the

logical first step is to conduct our policy experiment in a relevant environment that closely

resembles the one discussed in previous sections. To this end, we align with the extensive

quantitative literature on default and assume that default results in deadweight endowment

losses in addition to credit exclusion.21 These losses could manifest as output contraction

in the case of sovereign default or as seized collateral and legal recourse in the context of

consumer and corporate default.

The key modification from the model outlined in Section 2 is the treatment of default.

Specifically, if an agent i defaults at sτ , her endowments for all future events st ⪰ sτ will

be reduced to yi(st) − ℓi(st), where ℓi(st) is an exogenously given value within the range

[0, yi(st)]. Given that this agent is also barred from the credit markets, her outside option

is now defined as:

V i
def(s

t) = V i
ℓi(0, 0|st) := sup{U(ci|st) : (ci, ai) ∈ Bi

ℓi(0, 0|st)}, (5.1)

where Bi
ℓi(0, 0|st) denotes the budget set for any agent i who has zero liabilities, is unable

to borrow, and has resources equal to yi − ℓi. The condition analogous to the not-too-tight

20Formally, qlf = 1 and qt(ε) > 1 for t ∈ {3, 4, . . .}.
21In consumer credit contexts, endowment loss serves as a simplified proxy for the legal consequences of

default, as elaborated in works such as Chatterjee et al. 2007, Livshits et al. 2007, Livshits 2015. In the

realm of sovereign debt, it encapsulates the negative impact of default on domestic production (e.g., Eaton

and Gersovitz 1981, Bulow and Rogoff 1989, Cole and Kehoe 2000, Aguiar and Gopinath 2006, Arellano

2008).
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condition (2.4) is then articulated as:

V i(Di,−Di(st)|st) = V i
ℓi(0, 0|st), for all st ⪰ s0.

To conduct a policy experiment akin to the one in Section 4, the first step involves extend-

ing the characterization of not-too-tight debt limits as presented by Hellwig and Lorenzoni

(2009). This extension is not merely a procedural necessity; it significantly simplifies the com-

putation of the laissez-faire equilibrium and the equilibrium with ε-tight debt constraints.22

Moreover, this extended characterization has implications for the restrictions on the

model’s primitives–in our case, the properties of the endowment loss–that can sustain equi-

libria with high interest rates, pre- and post-intervention.

5.1 Characterizing Not-Too-Tight Debt Limits

The following result serves as the counterpart to the characterization provided by Hellwig

and Lorenzoni (2009), adapted for our modified context. It posits that not-too-tight debt

limits can be broken down into two components: a fundamental component and a credit bub-

ble component. The latter encapsulates the potential for indefinitely rolling over a portion

of the debt. The proof of this result is relegated to the online Appendix.

Theorem 5.1. A process Di of debt limits is not too tight (for the default punishment

described by (5.1)) if, and only if,

Di(st) = ℓi(st) +
∑

st+1≻st

q(st+1)Di(st+1), for all st ≻ s0. (5.2)

22The extension eliminates the typical complexities associated with the fixed-point process of determining

not-too-tight debt limits. In this process, the default value is contingent on prices (since defaulting agents

can still save), which depend on equilibrium allocations and, consequently, on the debt limits. It’s worth

noting that this extension is of independent interest. Although it serves as the direct analog of Hellwig and

Lorenzoni (2009)’s result in an augmented setting, the proof cannot be derived through a simple adaptation

of their arguments. Instead, it relies on novel insights with no counterparts in scenarios without output

losses.
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It is straightforward that a process of debt limits Di satisfies property (5.2) if, and only

if, it can be decomposed into a fundamental and a bubble component:

Di(st) = PV(ℓi|st)︸ ︷︷ ︸
fundamental

+M i(st)︸ ︷︷ ︸
bubble

, for all st ⪰ s0. (5.3)

Here, the fundamental component is simply the present value of endowment losses:

PV(ℓi|st) := 1

p(st)

∑
sτ⪰st

p(sτ )ℓi(sτ ),

where p(st) is the date-0 price of consumption at event st.23 The bubble component of Di is

a nonnegative process satisfying the following exact rollover property:

M i(st) =
∑

st+1≻st

q(st+1)M i(st+1), for all st ≻ s0.

Intuitively, the bubble component reflects that credit beyond the fundamental component is

sustainable only if agents can roll over their debt.

How can we support equilibria with high interest rates? The following result shows that

this is the case when the aggregate losses amount to a nonnegligible fraction of aggregate

resources. Indeed, since the present value of endowment losses is always finite at equilibrium,

under this restriction, we necessarily have that interest rates are high.

Proposition 5.1. If endowment losses are a nonnegligible fraction of aggregate resources,

in the sense that there exists ε > 0 such that:∑
i∈I

ℓi(st) ⩾ ε
∑
i∈I

yi(st), for all st ≻ s0, (5.4)

then in any equilibrium with not-too-tight debt limits, the bubble component is necessarily

zero. As a consequence, Di = PV(ℓi) for every agent i.

5.2 Laissez-Faire Equilibrium

Consider the same simplified economy as in Section 4 and assume that the endowment

loss upon default is time-invariant and identical for both agents, i.e., ℓi(st) = ℓ for all agent i

and event st.

23Formally, p(st) is defined recursively by p(s0) = 1 and p(st+1) = q(st+1)p(st) for all st+1 ≻ st.
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The (symmetric Markov) laissez-faire equilibrium is characterized by the asset price qlf(ℓ)

and the not-too-tight debt level dlf(ℓ). Our characterization result (Theorem 5.1) implies

that dlf(ℓ) = ℓ+ qlf(ℓ)dlf(ℓ), or, equivalently,

dlf(ℓ)(1− qlf(ℓ)) = ℓ.

When ℓ > 0, we must have qlf(ℓ) < 1, which is consistent with Proposition 5.1. The net

trade defined by xlf(ℓ) = dlf(ℓ) + qlf(ℓ)dlf(ℓ) and the asset price qlf(ℓ) are determined by the

following equations:24

xlf(ℓ) = ℓ× 1 + qlf(ℓ)

1− qlf(ℓ)
and qlf(ℓ) = β

u′(yl + xlf(ℓ))

u′(yh − xlf(ℓ))
. (5.5)

Risk aversion implies that the asset price must decrease with ℓ, and the net trade must

increase. Indeed, as the mapping q 7→ (1 + q)/(1 − q) is increasing, if ℓ 7→ qlf(ℓ) where

increasing, then ℓ 7→ xlf(ℓ) would also be increasing by the first equation in (5.5). However

this would contradict the second equation in (5.5) as the mapping x 7→ u′(yl+x)/u′(yh−x)

is decreasing by concavity of u. Therefore, the mapping ℓ 7→ qlf(ℓ) must decrease and the

mapping ℓ 7→ xlf(ℓ) must increase. This is confirmed in Figure 5.1 that plots the equilibrium

variables as functions of the endowment loss ℓ for CRRA utility for different values of γ

when the income dispersion and the discount factor equal to ζ = 2 and β̄ = 0.9. We denote

by ℓfb the level of endowment loss that implements perfect risk-sharing, i.e., xlf(ℓfb) = xfb.

This level is given by ℓfb = xfb(1− β)/(1 + β).

24The first equation corresponds to our characterization of not-too-tight debt limits. The second equation

is the FOC of the high-income agent’s saving decision.
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(a) Asset Price qlf(ℓ) (b) Net Trade xlf(ℓ)

Figure 5.1: Laissez-faire equilibrium variables as functions of the endowment loss ℓ.

5.3 Tightening Debt Constraints

For any arbitrary ℓ ∈ (0, ℓfb), the laissez-faire interest rate is positive. We perform

the same policy experiment: we tighten the high-income borrowing constraint at t = 2 by

imposing the too-tight debt limit

d3(ε) := (1− ε)[ℓ+ q4(ε)d
lf(ℓ)].

All the arguments of Section 4 remain qualitatively valid. To illustrate our policy interven-

tion, we set the following arbitrary value ℓ⋆ = ℓfb/2 for the endowment loss and plot the

equilibrium prices for each period.
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(a) Price q4(ε) (b) Price q3(ε)

(c) Price q2(ε) (d) ce(ε)− ce(0)

Figure 5.2: Equilibrium variables as functions of the tightening coefficient ε when the en-

dowment loss is ℓ⋆ = ℓfb/2.

6 Conclusion

This study presents a groundbreaking approach to the complex dynamics of unsecured

debt markets, challenging traditional models often focused on maximizing permissible debt

limits. Utilizing a dynamic general equilibrium framework, we demonstrate that imposing

tighter debt constraints can paradoxically lead to Pareto improvements, thereby enhancing

economic efficiency and societal welfare.

One of the most salient findings of this research is that debt bubbles, commonly con-
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sidered mechanisms to ensure efficient liquidity provision, are not necessarily the optimal

solution. Our results indicate that a more nuanced approach to debt management could

yield superior outcomes, particularly in markets lacking collateral.

Our research has far-reaching implications, especially for policymakers and financial prac-

titioners grappling with debt management challenges in environments devoid of collateral.

It suggests that regulatory or prudential policies aimed at reducing financial leverage could

be beneficial—contrary to the prevailing notion that such measures are overly restrictive and

stifle economic activity.
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