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Abstract

In dynamic economic models characterized by limited commitment, participation

constraints typically bind, resulting in equilibrium interest rates that may fall below

growth rates. This undermines the validity of the Second Welfare Theorem under

linear pricing conditions. Our research demonstrates that the First and Second Welfare

Theorems can be upheld when introducing superlinear price functionals. The study

unveils a novel application of nonlinear pricing in financially constrained settings and

reveals an intriguing link with the ε-Nash equilibrium concept in the context of repeated

games.

Keywords: Limited commitment; constrained inefficiency; First and Second Welfare

Theorem, super-linear pricing.
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1 Introduction

Financial frictions play a pivotal role in shaping the dynamics of economic models by

introducing real-world complexities that smooth, frictionless models cannot capture. These
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frictions, which can manifest as transaction costs, borrowing constraints, or information

asymmetries, serve as key mechanisms that influence how agents interact in financial markets.

In a frictionless world, resources would be allocated optimally, and opportunities for risk-

sharing would be fully exploited. However, financial frictions create barriers to such optimal

allocation. For instance, they can limit the ability of households and firms to access credit,

thereby affecting investment and consumption decisions. This has far-reaching implications

for economic growth, income distribution, and financial stability.

Financial frictions can be modeled in various ways to capture the complexities and nu-

ances of real-world economic interactions. The existing literature explores transaction costs,

information asymmetries, credit constraints, agency problems, search and matching frictions,

and liquidity constraints. Our paper is interested in modeling financial frictions arising from

a lack of commitment. In many economic settings, agents cannot fully commit to future

actions, and the default risk can severely limit their ability to engage in long-term contracts,

affecting everything from intertemporal consumption choices to investment decisions.

A fitting context for modeling the repercussions of default is within stochastic and dy-

namic economic frameworks that necessitate open-ended time horizons. The work of Kehoe

and Levine (1993) exemplifies this approach, which integrated participation constraints into

the seminal static Arrow-Debreu-MacKenzie model. This model contemplates an exchange

economy with fully developed contingent claims markets. In this setting, the penalty for de-

fault is perpetual autarky. Given the agents’ incapacity to commit to financial agreements,

contingent claims are only tradable if they are self-enforcing when compared to autarky.1

In the absence of participation constraints, Debreu (1954, 1959) (see also Aliprantis, Bor-

der and Burkinshaw (1997)) demonstrated that the conventional First and Second Welfare

Theorems are extendable to economies with infinitely many commodities. However, the Sec-

ond Welfare Theorem breaks down when the consumption set is limited to plans adhering

to participation constraints. This occurs because the equilibrium interest rates tied to a

constrained efficient allocation may fall below growth rates.2

1Alvarez and Jermann (2000) offered a sequential formulation of this static model, replacing participation

constraints with self-enforcing and not-too-tight debt limits.

2There is a growing literature in Macroeconomics exploring fiscal policy in environments with persis-
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Our present research shows that the findings of Debreu (1954) can be generalized to

scenarios that lack commitment, provided that superlinear price functionals are introduced.

The concept of nonlinear pricing recurs across various branches of economic literature. In

infinite-dimensional economic models, nonlinear pricing is employed to address the potential

lack of appropriate Riesz structure in the positive cone of commodity spaces, particularly

in portfolio trading models with incomplete markets.3 Nonlinear pricing also emerges natu-

rally in contexts such as progressive income tax tariffs, price discrimination, and Knightian

uncertainty.4

By adopting more generalized price functionals, we can establish a version of the Second

Welfare Theorem that applies to constrained efficient allocations with implied low interest

rates. Moreover, the chosen superlinear pricing functional can be approximated as “close”

to linear, as its lineality space encompasses economically relevant vectors. We also offer a

brief discussion linking our findings to the ε-Nash equilibrium concept in repeated games.

We examine an infinite-horizon stochastic economy featuring a single composite good

available for consumption in each period. Agents have the ability to trade contingent plans

but lack the capacity to commit to their financial promises. In the event of default, the

penalty is perpetual autarky: the agent is restricted to consuming their endowment and

must bear the associated income risk. A consumption plan is deemed acceptable only if

it meets the criterion of incentive compatibility; that is, the continuation utility under any

given contingency must exceed the default value. This framework essentially extends the

standard Arrow–Debreu economy, as analyzed by Debreu (1954) (see also Bewley (1972)),

by imposing the additional constraint that the consumption set is limited to non-negative,

incentive-compatible plans. Kehoe and Levine (1993) adapted the conventional notions of

tently low risk-free interest rates. We refer, among many others, to Bassetto and Cui (2018), Barro (2020),

Brunnermeier, Merkel and Sannikov (2020), Mehrotra and Sergeyev (2020), Reis (2020), Ball and Mankiw

(2021), Angeletos, Collard and Dellas (2022), and Aguiar, Amador and Arellano (2023). For asset pricing

implications, see Azinovic, Cole and Kübler (2023).

3See, for instance, Aliprantis, Tourky and Yannelis (2001), Aliprantis, Florenzano and Tourky (2004)

and Aliprantis, Florenzano and Tourky (2005).

4See Berliant and Dunz (1990), Guesnerie and Seade (1982) and Beissner and Riedel (2019).
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Pareto optimality and competitive equilibrium to this commitment-free environment. A

sequential version of this model was later introduced by Alvarez and Jermann (2000, 2001).

In a standard competitive equilibrium with a linear price functional, the present value

of aggregate resources is inherently finite. This implies that interest rates, as determined by

equilibrium prices, exceed the economy’s growth rates, represented by aggregate endowment

dynamics. This constraint is overly restrictive and undermines the validity of the Second

Welfare Theorem. In support of this, Bloise and Reichlin (2011) constructed a deterministic

economy in which a constrained efficient allocation exhibits implied interest rates lower than

the economy’s growth rates. Similarly, Martins-da-Rocha and Vailakis (2015a) presented

another example within a Markovian framework.

To address this problem, we propose employing a perturbation argument. Let c denote

a constrained efficient allocation of our initial economy. By artificially introducing a small

quantity, ε > 0, of a physical asset that can serve as collateral, the allocation may no longer

be constrained efficient in the ε-perturbated economy. This is because agents can leverage

this additional asset to transfer consumption across time and states, thereby increasing risk-

sharing opportunities. Consequently, a new consumption allocation cε emerges that Pareto

dominates the initial allocation c. In the ε-perturbated economy, a portion of the debt

becomes collateralized, rendering the Second Welfare Theorem applicable as equilibrium

interest rates must be strictly larger than endowment growth rates. As a result, a linear

functional φε exists that implements the allocation cε as a competitive equilibrium (with

transfers). As ε approaches zero, the consumption allocation cε converges to the original

constrained efficient allocation c. The challenging aspect lies in deciphering the asymptotic

behavior of the linear functionals φε.

Consider a sequence (εn) of perturbation coefficients converging to zero. For any admissi-

ble direction of trade x, the sequence of market values (φεn(xi−ei)), possesses a subsequential

limit on the real line. By invoking an extension of the Banach-Mazur Theorem (See Theo-

rem 16.47 in Aliprantis and Border (2006) for a detailed explanation), we demonstrate that

the sequence of linear functionals, (φεn), converges pointwise to a superlinear functional φ

that implements the original consumption allocation c as a competitive equilibrium with

transfers.
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When the interest rates implied by the allocation c fall below growth rates, the superlinear

functional φ cannot be linear. Furthermore, the pricing φ(x) for an arbitrary net trade xmay

not necessarily match its present value under the implied interest rates, as the latter could

be undefined. We demonstrate that φ(x) can be formulated as the solution of a difference

equation, which the present value would also satisfy if it were well-defined.

The remainder of the paper is organized as follows: Section 2 outlines the environment

and defines various concepts employed throughout the paper. Section 3 introduces and

examines the properties of superlinear prices, confirming the validity of the First Welfare

Theorem within this framework. Section 4 presents the main result, while Section 5 briefly

compares with existing literature. An illustrative example is discussed in Section 6, and

Section 7 offers concluding remarks. Appendices A and B delve into Banach-Mazur limits

and omitted technical details, respectively, which are crucial for substantiating the main

result.

2 The Model

In the lines of Kehoe and Levine (1993) and Alvarez and Jermann (2000) (see also Bloise

and Reichlin (2011) and Martins-da-Rocha and Vailakis (2015b)), we consider an infinite

horizon endowment economy with a lack of commitment and self-enforcing participation

constraints. Both time and uncertainty are discrete. There is a single non-storable con-

sumption good and infinitely lived agents that share risks but cannot commit to financial

contracts.

2.1 Uncertainty

We use an event tree Σ to describe time, uncertainty, and the revelation of information

over an infinite horizon. There is a unique initial date-0 event s0 ∈ Σ and for each date

t ∈ {0, 1, 2, . . .} there is a finite set St ⊂ Σ of date-t events st. Each st has a unique

predecessor σ(st) in St−1 and a finite number of successors st+1 in St+1 for which σ(st+1) = st.

We use the notation st+1 ≻ st to specify that st+1 is a successor of st. Event st+τ is said

to follow event st, also denoted st+τ ≻ st, if σ(τ)(st+τ ) = st. The set St+τ (st) := {st+τ ∈
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St+τ : st+τ ≻ st} denotes the collection of all date-(t+τ) events following st. Abusing

notation, we let St(st) := {st}. The subtree of all events starting from st is then

Σ(st) :=
⋃
τ⩾0

St+τ (st).

We use the notation sτ ⪰ st when sτ ≻ st or sτ = st. In particular, we have Σ(st) = {sτ ∈

Σ : sτ ⪰ st}. For any subset A ⊆ Σ, we denote by 1A the process x = (x(st))st∈Σ defined

by x(st) := 1 if st ∈ A and x(st) := 0 elsewhere. When A = {st} is a singleton, we abuse

notations and write 1st for 1{st}. For any time period T ⩾ 1 and process x = (x(st))st∈Σ, we

denote by x[T ] the T -tail of the process x defined by x[T ](st) = x(st) if t ⩾ T and x[T ](st) = 0

if t < T . We let x[T ] denote the T -head defined by x[T ](s
t) = x(st) if t < T and x[T ](s

t) = 0

if t ⩾ T .5

2.2 Primitives and Commodity Space

There is a continuum of identical agents of each type i in a finite set I. Each agent i

is endowed with a process ei = (ei(st))st∈Σ describing the positive amount ei(st) > 0 of the

consumption good available at event st. Let e :=
∑

i∈I e
i denote the process of aggregate

resources in the economy. The commodity space is ℓ∞(e), the linear space of processes

x ∈ RΣ satisfying |x| ⩽ λe for some λ ⩾ 0.6 The cone of non-negative processes in ℓ∞(e)

is denoted by ℓ∞+ (e).7 A consumption process is a vector c = (c(st))st∈Σ ∈ ℓ∞+ (e). A

collection (ci)i∈I of consumption processes ci ∈ RΣ
+ is called an allocation. It is said to be

resource feasible if
∑

i∈I c
i = e.

Agent i ranks consumption processes according to the von Neumann-Morgenstern utility

function

U i(c) :=
∑
t⩾0

(βi)t
∑
st∈St

πi(st)ui(c(st)),

5Observe that x = x[T ] + x[T ].

6This restriction of attention to consumption processes in ℓ∞(e) is made for expositional and mathemat-

ical ease.

7Kehoe and Levine (1993) and Bloise and Reichlin (2011) assume that endowments are uniformly boun-

ded from above and choose ℓ∞ := ℓ∞(1Σ) as the commodity space.
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where βi ∈ (0, 1) is the subjective discount factor, πi(st) > 0 is agent i’s unconditional prior

beliefs that the event st represents the history of shocks up to date t, and ui : R+ → [−∞,∞)

is a Bernoulli function assumed to be strictly increasing, concave, continuous on [0,∞),

differentiable on (0,∞), bounded from above and satisfying Inada’s condition at the origin.8

2.3 Individual Rationality and Constrained Efficiency

Given a date-t event st, we denote by U i(c|st) the lifetime continuation utility conditional

to event st, defined by9

U i(c|st) := ui(c(st)) +
∑
τ⩾1

(βi)τ
∑

st+τ≻st

πi(st+τ |st)ui(c(st+τ )),

where πi(st+τ |st) := πi(st+τ )/πi(st) is the conditional probability of st+τ given st. We assume

that U i(ei|s0) > −∞ for every agent i.10 Since the Bernoulli function is bounded from above,

we get that U i(ei|st) > −∞ for all event st.

We analyze an environment where agents cannot commit to financial contracts. The

punishment for default is autarky. Therefore, we should restrict attention to consumption

processes ci ∈ ℓ∞+ (e) that satisfy the following participation constraints

U(ci|st) ⩾ U(ei|st), for all st ∈ Σ. (2.1)

A consumption process ci ∈ ℓ∞+ (e) satisfying (2.1) is said to be (interim) individually

rational, and we denote by Ci the set of individually rational consumption processes. The

set of individually rational allocations is C :=
∏

i∈I C
i.

An allocation (c̃i)i∈I is said to Pareto dominate another allocation (ci)i∈I if U(c̃i) ⩾

U(ci) for every agent i, with a strict inequality for at least one agent. We recall the concept

of constrained Pareto efficiency introduced by Kehoe and Levine (1993).

8The function u is said to satisfy the Inada’s condition at the origin if limε→0[u
i(ε)−ui(0)]/ε = ∞. This

property is automatically satisfied if ui(0) = −∞.

9Observe that U i(c|s0) = U i(c).

10This assumption is automatically satisfied if either ui(0) > −∞ or the allocation (ei)i∈I is uniformly

bounded away from zero, in the sense that there exists ε > 0 such that ei(st) ⩾ ε for each agent i and

event st.
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Definition 2.1. A resource feasible and individually rational allocation (ci)i∈I ∈ C is con-

strained Pareto optimal (or constrained efficient) when there is no other resource feasible

and individually rational allocation (c̃i)i∈I ∈ C which Pareto dominates (ci)i∈I .

If an allocation (ci)i∈I is constrained Pareto optimal, then it must be strictly positive.11

In that case, we can define agent i’s marginal rate of substitution at event st by posing

MRSi(ci|st) := βiπi(st|σ(st)) (ui)′(ci(st))

(ui)′(ci(σ(st))
.

Given a strictly positive allocation (ci)i∈I , we let p⋆ = (p⋆(st))st∈Σ be the process defined

recursively by p⋆(s0) := 1 and

p⋆(st)

p⋆(σ(st))
:= max

i∈I
MRSi(ci|st), for all st ≻ s0.

Following Alvarez and Jermann (2000), p⋆ is called the process of implied Arrow–Debreu

(AD) prices, and we say that implied interest rates are higher than growth rates

when the AD market value p⋆ · e is finite.12

2.4 Competitive Equilibrium and Linear Pricing

We analyze constrained competitive equilibria as defined in Kehoe and Levine (1993) (see

also and Alvarez and Jermann (2000)). Given a functional φ : ℓ∞(e) −→ R and a real num-

ber bi representing an initial financial transfer, we denote by Bi
ad(φ; b

i) the (unconstrained)

Arrow–Debreu budget set of all nonnegative consumption processes ci ∈ RΣ
+ satisfying the

budget restriction φ(ci − ei) ⩽ bi. Let Bi
kl(φ; b

i) := Bi
ad(φ; b

i) ∩ Ci be the Kehoe–Levine

budget set where agent i is restricted to choose individually rational consumption processes.

The standard definition of an Arrow–Debreu competitive equilibrium can be adapted to our

environment with limited commitment.

11See Proposition 2.1 in Martins-da-Rocha and Vailakis (2015c) for a detailed proof of this claim.

12The choice of the terminology is inspired by the following simplified case. Assume there exist r > 0 and

g > 0 such that p⋆(st) = π(st)(1 + r)−t and
∑

st+1≻st π(s
t+1|st)e(st+1) = (1 + g)e(st). In that case, p⋆ · e is

finite if, and only if, r > g.
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Definition 2.2. A Kehoe–Levine (KL) competitive equilibrium (φ, (ci)i∈I) is a family

composed of a price functional φ : ℓ∞(e) → R and a resource feasible and individually ratio-

nal allocation (ci)i∈I for which there exists an allocation of initial transfers (bi)i∈I satisfying∑
i∈I b

i = 0 such that, for every agent i,

(a) ci ∈ Bi
kl(φ, b

i), i.e., φ(ci − ei) ⩽ bi;

(b) if c̃i is an individually rational process with U i(c̃i) > U i(ci), then φ(c̃i − ei) > bi.

In this section, we analyze the properties of competitive equilibria with a linear functional.

Assume (φ, (ci)i∈I) is a KL competitive equilibrium where the price functional φ is linear.

The function φ is necessarily strictly positive in the sense that φ(h) > 0 for any nonzero

and nonnegative process h ∈ RΣ
+ \ {0}.13 We endow the space ℓ∞(e) with the norm ∥h∥e

defined as the lowest λ ⩾ 0 satisfying |h| ⩽ λe.14 Since e belongs to ∥·∥e-interior of ℓ∞+ (e),

the linear functional φ is ∥·∥e-continuous. The ∥·∥e-topological dual of ℓ∞(e) is denoted by

ba(e), and the subset of non-negative linear functionals in ba(e) is denoted by ba+(e).
15 For

any linear functional φ ∈ ba+(e), there exists a non-negative charge νφ of bounded variation

on the σ-algebra 2Σ (or, equivalently, νφ is a finitely additive positive measure), such that

φ(h) =
∫
hedν

φ where he is the process in ℓ
∞ defined by he(s

t) := h(st)/e(st). In particular,

any φ ∈ ba+(e) can be decomposed as φ(h) = pφ · h + φ0(h) for some non-negative process

pφ satisfying pφ · e <∞ where

pφ · h :=
∑
st∈Σ

pφ(st)h(st)

and some non-negative purely finitely additive linear functional φ0.16

13This follows from the assumption that βi > 0, πi(st) > 0 for every st ∈ Σ and ui : [0,∞) is strictly

increasing.

14Equivalently, we have ∥h∥e := supst∈Σ |h(st)/e(st)|.
15A linear functional φ : ℓ∞(e) → R is said to be non-negative whenever φ(h) ⩾ 0 for every h ∈ ℓ∞+ (e).

16The purely finitely additive linear functional φ0 can be characterized as follows: it is a linear and ∥·∥e-

continuous functional on ℓ∞(e) such that φ0(h) = φ0(h[T ]) where we recall that h[T ] is the T -tail of h defined

by h[T ](st) = h(st) if t ⩾ T and 0 elsewhere. Observe moreover that pφ(st) = φ(1{st}) for any event st.
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Proposition 2.1. A feasible and individually rational allocation can be implemented as a

KL competitive equilibrium with linear pricing only if implied interest rates are higher than

growth rates.

Proof. If (φ, (ci)i∈I) is a KL competitive equilibrium, then φ is strictly positive and ∥·∥e-

continuous. This implies that φ(h) = pφ · h + φ0(h) where pφ ∈ RΣ
++ is a strictly positive

process satisfying pφ · e < ∞ and φ0 is some non-negative purely finitely additive linear

function also called the bubble component of φ. We can prove that pφ dominates the

process p⋆ of implied AD prices, that is pφ(st) ⩾ p⋆(st) for every st ∈ Σ.17 This implies that

p⋆ · e <∞.

The above result illustrates that the Second Welfare Theorem is invalid in our envi-

ronment without commitment when pricing is linear. Indeed, we can find two examples

in the literature where a feasible and individually rational allocation (ci)i∈I could be con-

strained Pareto optimal and display interest rates lower than growth rates, in the sense that

p⋆ · e = ∞.18

2.5 Quasi-Equilibrium and Uniform Gains To Trade

The standard argument to prove the Second Welfare Theorem with linear pricing involves

applying the Convex Separation Theorem. Formally, let (ci)i∈I be a constrained Pareto

optimal allocation. For each agent i, denote by P i(ci) the set of all individually rational

consumption processes c̃i ∈ Ci satisfying U i(c̃i) > U i(ci). We have {e} ∩
∑

i∈I P
i(ci) = ∅.

The set
∑

i∈I P
i(ci) is convex and strict monotonicity of preferences implies that e+

∑
i∈I c

i

belongs to the ∥·∥e interior of
∑

i∈I P
i(ci). Applying the Convex Separation Theorem, we

deduce the existence of a nonzero continuous linear functional φ ∈ ba(e) that supports each

set P i(ci) at xi. This implies that (φ, (ci)i∈I) is KL competitive quasi-equilibrium in

the sense that there exists an allocation (bi)i∈I of initial transfers satisfying
∑

i∈I b
i = 0 such

that, for every agent i,

17We refer to Claim 3.1 in Martins-da-Rocha and Vailakis (2015b) for detailed proof.

18See Bloise and Reichlin (2011) for a deterministic example with time-varying endowments and Martins-

da-Rocha and Vailakis (2015b) for an example in a stationary Markovian setting.
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(a) ci ∈ Bi
kl(φ, b

i), i.e., φ(ci − ei) ⩽ bi;

(b’) if c̃i is an individually rational process with U i(c̃i) > U i(ci), then φ(c̃i − ei) ⩾ bi.

In the definition of a KL equilibrium, the condition φ(c̃i − ei) ⩾ bi in (b’) is replaced by

φ(c̃i−ei) > bi. Therefore, if (φ, (ci)i∈I) is a KL equilibrium, then it is a KL quasi-equilibrium.

In our environment with limited commitment, the difficult step consists in showing that

the quasi-equilibrium (φ, (ci)i∈I) is an equilibrium. This is possible if the nonzero price

functional φ is nontrivial, as defined below.19

Lemma 2.1. Consider a linear functional φ : ℓ∞(e) → R that is nontrivial in the sense

that there exists an individually rational allocation (di)i∈I such that
∑

i∈I φ(d
i − ei) < 0.

Every KL competitive quasi-equilibrium (φ, (ci)i∈I) is actually a KL competitive equilibrium.

Bloise and Reichlin (2011) identified a necessary and sufficient condition on primitives,

called “uniform gains to trade” such that every nonzero linear functional that forms a quasi-

equilibrium is necessarily nontrivial when autarky is not constrained Pareto efficient. For-

mally, we say that there are uniform gains to trade when there exists an individually

rational allocation (di)i∈I and γ > 0 such that
∑

i∈I(d
i − ei) ⩽ −γe. It is straightforward to

verify that if φ : ℓ∞(e) → R is a linear functional such that (φ, (ci)i∈I) is a quasi-equilibrium,

then φ : ℓ∞(e) → R must be nontrivial when there are uniform gains to trade.20 Recipro-

cally, if every quasi-equilibrium is an equilibrium when autarky is not constrained Pareto

efficient, then there are uniform gains to trade. This follows from Lemma 4 in Bloise and

Reichlin (2011) who proves that if the assumption of uniform gains to trade is not valid, then

any feasible and individually rational allocation (ci)i∈I (even those that are not constrained

Pareto efficient) can be decentralized as a quasi-equilibrium (φ, (ci)i∈I) for some nonzero

linear functional φ : ℓ∞(e) → R.21

It follows from the above discussion that the Second Welfare Theorem is valid when there

are uniform gains to trade: for every constrained Pareto efficient allocation (ci)i∈I , there

19The proof of Lemma 2.1 follows standard arguments and is presented in Appendix B.

20Indeed, if (φ, (ci)i∈I) is a quasi-equilibrium, then φ is increasing. Since φ ̸= 0, we must have φ(e) > 0.

21In that case, the separating linear functional φ is a pure bubble, i.e., pφ = 0.
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exists a nonzero linear functional φ : ℓ∞(e) → R such that (φ, (ci)i∈I) is a KL competitive

equilibrium. Moreover, the linear functional φ cannot have a bubble component and must

coincide with the vector p⋆ of implied AD prices.22

This paper investigates the validity of the Second Welfare Theorem when gains to trade

are not uniform or when there are no gains to trade. We shall prove that we can establish

the Second Welfare if we allow for more general price functionals. Naturally, we also show

that our general price functionals are linear when there are uniform gains to trade.

3 Superlinear Pricing

The definition of a KL competitive equilibrium is built upon the existence of a price

functional φ : ℓ∞(e) → R that associates a value φ(z) to any possible net-trade z ∈ ℓ∞(e).23

When there is full commitment, we can restrict attention to linear price functionals and ob-

tain the First and Second Welfare Theorems. In our environment with limited commitment,

the Second Welfare Theorem fails if we impose linearity of the price functional. To address

this issue, we propose to relax the assumption of linearity. In contrast to Beissner and Riedel

(2019) who introduced an equilibrium concept with sublinear price functionals, we follow the

opposite route by considering superlinear price functionals. We also allow for infinite values.

Formally, φ : ℓ∞(e) → R ∪ {−∞,∞} is a a superlinear price functional when, for any

x, y ∈ ℓ∞(e),

(i) φ(0) = 0;

(ii) φ(λx) = λφ(x) for any λ > 0;24

(iii) if {φ(x), φ(y)} ≠ {−∞,∞}, then φ(x) + φ(y) ⩽ φ(x+ y).25

22See Lemma 3.2 in Martins-da-Rocha and Vailakis (2015b).

23The concept of price functional is at the core of the theory of value proposed by Debreu (1959).

24We take the convention that λ∞ = ∞ and λ(−∞) = −∞ for any λ > 0.

25We take the convention that α + ∞ = ∞ for any α ∈ R ∪ {∞}; and α + (−∞) = −∞ for any

α ∈ R ∪ {−∞}.
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The first argument in favor of superlinear price functionals is that it does not invalidate the

First Welfare Theorem.

Theorem 3.1 (First Welfare Theorem). If (φ, (ci)i∈I) is a KL competitive equilibrium with

a superlinear price functional φ : ℓ∞(e) → R ∪ {−∞,∞}, then the consumption alloca-

tion (ci)i∈I is constrained Pareto efficient.

Proof. Assume, by way of contradiction, that there exists an alternative resource feasible and

individually rational allocation (di)i∈I that Pareto dominates (ci)i∈I . There must exist a third

resource feasible and individually rational allocation (f i)i∈I such that U i(f i) > U i(ci) for

every i ∈ I.26 Since (φ, (ci)i∈I) is a KL competitive equilibrium, we must have φ(f i−ei) > bi

for each i. In particular, φ(f i − ei) ̸= −∞ for each i. Superlinearity of φ implies that

φ(0) = φ

(∑
i∈I

f i − ei

)
⩾
∑
i∈I

φ(f i − ei) >
∑
i∈I

bi

and we get a contradiction since
∑

i∈I b
i = 0.

The main contribution of this paper is to show that the Second Welfare Theorem is

also valid if the price functional can be chosen to be superlinear. The smaller the set of

possible decentralizing price functionals, the stronger the result. In particular, we would

like price functionals to be as close as possible to linear functionals. The lineality space

associated with a superlinear functional is a relevant measure of the extent of nonlinearity.

Given a superlinear price functional φ : ℓ∞(e) → R ∪ {−∞,∞}, the lineality space,

denoted by Lin(φ), is the set of all vectors v ∈ ℓ∞(e) satisfying φ(x + λv) = φ(x) + λφ(v)

for any λ ∈ R and any vector x ∈ ℓ∞(e). It is straightforward to verify that Lin(φ) is

a vector subspace of ℓ∞(e) and φ is linear on Lin(φ). Moreover, a vector v belongs to

26There exists an agent j ∈ I such U j(dj) > U j(cj). If dj(s0) > 0, then we can reduce dj(s0) by some

small enough ε > 0 such that agent j’s participation constraint at t = 0 remains valid. The amount ε > 0

can be distributed to the other agents and strictly increase their utility. If dj(s0) = 0, then for at least one

successor event s1 ≻ s0, we must have U j(dj |s1) > U j(ej |s1). If dj(s1) > 0, we can reproduce the previous

argument reducing agent j’s consumption at s1. If dj(s1) = 0, then there must be at least one successor

event s2 ≻ s1 such that U j(dj |s2) > U j(ej |s2). It follows from Lemma 2.2 in the supplementary material of

Martins-da-Rocha and Vailakis (2015b) that this procedure necessarily ends in a finite time.

13



the lineality space if, and only if, φ(v) ∈ R and φ(−v) = −φ(v).27 We do not want to

allow for unnecessary distortions on price functionals and introduce the following concept:

a superlinear functional φ : ℓ∞(e) → R∪{−∞,∞} is Malinvaud linear when the lineality

space Lin(φ) contains the vector space ℓf of processes x = (x(st))st∈Σ with finite support,

that is, {st ∈ Σ : x(st) ̸= 0} is finite.28 If φ is Malinvaud linear, then we let pφ ∈ RΣ be the

process defined by pφ(st) := φ(1st). The following proposition states important properties

satisfied at equilibrium by Malinvaud linear price functionals.

Proposition 3.1. Consider a KL competitive equilibrium (φ, (ci)i∈I) with a superlinear price

functional φ : ℓ∞(e) → R ∪ {−∞,∞}. If φ is Malinvaud linear, then

(i) every equilibrium net-trade ci − ei belongs to the lineality space Lin(φ);

(ii) if c̃i ∈ Ci satisfies U i(c̃i) > U i(ci), then φ(c̃i − ci) > 0;

(iii) φ is strictly increasing in the sense that φ(y) > φ(x) for any y > x;

(iv) pφ is strictly positive and satisfies

pφ(st)

pφ(σ(st))
⩾

p⋆(st)

p⋆(σ(st))
:= max

i∈I
MRSi(ci|st), for all st ≻ s0.

Proof. We start by proving (i). Agent i’s equilibrium net trade ci−ei is denoted by zi. Since

U i is strictly increasing, we have φ(zi+ε1s0) > bi for every ε > 0. Malinvaud linearity implies

that φ(zi) + εφ(1s0) > bi. Passing to the limit when ε vanishes, we get that φ(zi) ⩾ bi. By

definition of equilibrium, we also have the converse inequality. This proves that φ(zi) = bi

and
∑

i∈I φ(z
i) = 0. Since

∑
i∈I z

i = 0, this is sufficient to deduce that φ(zi) = −φ(−zi).29

This last property guarantees zi ∈ Lin(φ).

27If φ(v) ∈ R, superlinearity implies that φ(v) + φ(−v) ⩽ φ(0) = 0.

28Inspired by Malinvaud (1953), Bloise, Reichlin and Tirelli (2013) introduced the concept of Malinvaud

efficiency in models with limited commitment. It is a form of short-term efficiency where an allocation cannot

be improved over any arbitrary finite horizon.

29Indeed, by superlinearity, we have φ(zi) = −
∑

j ̸=i φ(z
j) ⩾ −φ(−zi). Superlinearity also implies that

φ(zi) + φ(−zi) ⩽ 0.
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To show (ii), consider an arbitrary individually rational consumption process c̃i ∈ Ci

such that U i(c̃i) > U i(ci). By definition of equilibrium, we necessarily have φ(c̃i) > bi. We

also have bi = φ(ci − ei). Since zi = ci − ei belongs to the lineality space of φ, we deduce

that

φ(c̃i − ci) = φ(c̃i − ei − zi) = φ(c̃i − ei)− φ(zi) > bi − φ(zi) = 0.

To prove (iii), we pick y > x and pose v := y−x. Strict monotonicity of preferences imply

that c̃i := ci + v is individually rational and satisfies U i(c̃i) > U i(ci). From (ii), we deduce

that φ(v) > 0. Moreover, superlinearity implies that φ(y) = φ(x+ v) ⩾ φ(x)+φ(v) > φ(x).

The arguments to show that (iv) follows from (ii) are routine (see Bloise and Reichlin

(2011) or Martins-da-Rocha and Vailakis (2015b)) since φ is Malinvaud linear.

4 Second Welfare Theorem

This paper’s main contribution is showing that every constrained Pareto optimal al-

location can be decentralized into a KL competitive equilibrium by a superlinear func-

tional φ : ℓ∞(e) → R ∪ {−∞,∞}. However, the set of superlinear functionals is large,

and some of them are so distant from linear that they do not display any economic content.

To illustrate this issue, we introduce the following important notations.

We denote by H i the set of all directions hi ∈ RΣ such that ei + εhi ∈ Ci for some

ε > 0 small enough. The set H i is a convex cone containing RΣ
+ called the set of admissible

directions. If ci ∈ Ci is an individually rational consumption process, net trade ci−ei must

belong to H i. In other words, our assumption of lack of commitment restricts agent i to

choosing contracts in H i. We let H be the set of socially admissible directions defined

by

H :=
∑
i∈I

H i.

The set H is a convex cone containing each H i.

For the definition of a KL competitive equilibrium (φ, (ci)i∈I), only the restriction of

φ to the cone H is economically relevant since each agent i can only choose a contract xi

satisfying ei+xi ∈ Ci. Given this observation, it can be trivial to find a superlinear functional
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that decentralizes a constrained efficient allocation as a KL competitive equilibrium. Indeed,

consider an economy where the autarchic allocation (ei)i∈I is constrained efficient.30 Consider

φ : ℓ∞(e) → R ∪ {∞,−∞} defined by

φ(x) =


∞ if x ∈ H \ {0},

0 if x = 0,

−∞ if x ̸∈ H.

If we chose initial wealth equal to zero (i.e., bi = 0), the pair (φ, (ei)i∈I) is a KL competitive

equilibrium, but the superlinear function φ is very distant from a linear functional since its

linearity is minimal: Lin(φ) = {0}. Moreover, the functional φ has no economic content as

it does not depend on the agents’ marginal rates of substitution at equilibrium.

To avoid considering arbitrary price functionals as in the example above, we restrict

attention to superlinear funtionals that are almost-linear on the economically relevant subset

of socially admissible directions.

Definition 4.1. A superlinear price functional φ : ℓ∞(e) → R ∪ {−∞,∞} is said almost-

linear when the restriction of φ to the convex cone H of socially admissible directions

satisfies the following properties

(a) φ(0) = 0 and φ(H) ⊆ R ∪ {∞};

(b) φ(λx) = λφ(x) for any λ ̸= 0 and any x ∈ H;31

(c) φ(x) + φ(y) = φ(x+ y) for any x, y ∈ H.32

Let Hφ be the convex cone of socially admissible directions x ∈ H satisfying φ(x) ∈ R.

We use the terminology “almost-linear” because the linearity space Lin(φ) containsHφ−Hφ,

the linear subspace generated by Hφ.33 It is because we may have φ(x) = ∞ for some

30As the example in Martins-da-Rocha and Vailakis (2015a).

31We take the convention that λ∞ = ∞ for any λ > 0 and λ∞ = −∞ for any λ < 0.

32We take the convention that α+∞ = ∞ for any α ∈ R ∪ {∞}.
33Indeed, if x ∈ H and φ(x) ∈ R, then condition (b) implies φ(−x) = −φ(x).
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admissible contracts x ∈ H that we have to consider superlinear functionals when extending

the price functional to the whole commodity space.

If (c̃i)i∈I is an individually rational consumption allocation satisfying the weak market

clearing condition
∑

i∈I c̃
i ⩽

∑
i∈I e

i, then each c̃i− ei is called a feasible net trade. When

φ is almost-linear and nondecreasing, every feasible net trade belongs to Hφ.34 Indeed, each

process c̃i − ei belongs to H which implies that φ(c̃i − ei) belongs to R ∪ {∞}. As φ is

additive on H, we must have
∑

i∈I φ(c̃
i−ei) ⩽ 0. Therefore, we cannot have φ(c̃i−ei) = ∞.

A nonnegative g ∈ ℓ∞+ (e) is said to be a gain-to-trade vector when there exists an

individually rational allocation (f i)i∈I such that g +
∑

i∈I f
i = e. When φ is almost-linear,

the linearity space Lin(φ) contains the gain-to-trade vectors. Denote by G ⊆ ℓ∞(e) the set

of all vectors x ∈ ℓ∞(e) such that α|x| is a gain-to-trade vector for some α > 0 small enough.

The set G is a vector subspace of ℓ∞(e) called the gains-to-trade ideal.35

The lineality space Lin(φ) can be interpreted as a “measure” of the nonlinearity of a

superlinear functional φ. The larger the lineality space, the closer to a linear functional. We

prove below that the separating superlinear functional can be chosen such that its linearity

space contains all finite horizon vectors x ∈ ℓf (and therefore is Malinvaud linear),36 all

feasible net trades, and the gains-to-trade ideal G.

Theorem 4.1 (Second Welfare Theorem). For every constrained Pareto efficient allocation

(ci)i∈I , there exists a superlinear price functional φ : ℓ∞(e) → R ∪ {−∞,∞} such that

(φ, (ci)i∈I) is a KL competitive equilibrium. Moreover, the price functional φ can be chosen

to be almost-linear and satisfy the following properties:

(i) φ(x) = p⋆ · x when x is a finite horizon vector in ℓf ;

(ii) the linearity space Lin(φ) contains the gains-to-trade ideal G;

34A super linear functional φ : ℓ∞(e) → R ∪ {−∞,∞} is said to be nondecreasing when φ(y) ⩾ φ(x)

for any y ⩾ x.

35The set G is the union of all ideals ℓ∞(g) generated by a gain-to-trade vector g.

36Recall that ℓf is the vector space of all vectors x ∈ ℓ∞(e) such that {st ∈ Σ : x(st) ̸= 0} is finite.

Equivalently, a vector x ∈ ℓ∞(e) belongs to ℓf if, and only if, for some T large enough, the tailed process

x[T ] is null.
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(iii) for every individually rational c̃i ∈ Ci and any event st, we have

U i(c̃i|st)− U i(ci|st)
(ui)′(ci(st))

⩽
1

p(st)
φ((c̃i − ci)1Σ(st))

in particular λi [U i(c̃i)− U i(ci)] ⩽ φ(c̃i − ci), where λi := 1/(ui)′(ci(s0)).

Proof of Theorem 4.1. Let (ci)i∈I be a constrained Pareto efficient allocation. Following

Martins-da-Rocha and Vailakis (2015b), we denote by E(ε) the ε-perturbated economy in

which we introduce an ad-hoc seizable physical asset in positive net supply that delivers the

fraction εe(st) of the aggregate endowment at every event st. The outside option in the

ε-perturbated economy has the same value as in the original economy E(0) without seizable

physical assets. Therefore, a consumption process ci for agent i is individually rational in

E(ε) if, and only if, it is individually rational in E(0). An allocation (ci)i∈I of individually

rational consumption processes is said to be ε-feasible when it is feasible for the perturbated

economy E(ε), i.e.,
∑

i∈I c
i = (1+ε)e. It is said ε-constrained Pareto optimal if it is ε-feasible

and there is no other ε-feasible and individually rational consumption allocation that Pareto

dominates (ci)i∈I . Applying Theorem 4.1 in Martins-da-Rocha and Vailakis (2015b), we

deduce the existence of a nonnegative sequence (εn) decreasing to 0 and a sequence (cn)

of εn-constrained Pareto optimal allocations cn := (cin)i∈I that converges (for the product

topology) to the allocation c := (ci)i∈I .
37 The ε-perturbated economy has been constructed

to exhibit uniform gains to trade (see Proposition 4.1 in Martins-da-Rocha and Vailakis

(2015b)). Applying Proposition 3.1 in Martins-da-Rocha and Vailakis (2015b), we deduce

that the implied AD prices p⋆n associated to cn exhibit high interest rates.38 By construction,

we have MRSi(cin|st) ⩽ p⋆n(s
t)/p⋆n(σ(s

t)). Since cn is constrained Pareto optimal in E(εn),

it follows from Remark 3.3 in Martins-da-Rocha and Vailakis (2015b) that MRSi(cin|st) =

p⋆n(s
t)/p⋆n(σ(s

t)) when U i(cin|st) > U i(ei|st). All the conditions of Proposition B.1 in the

appendix are met. Therefore, for every individually rational consumption process c̃i ∈ Ci

λin[U
i(c̃i)− U i(cin)] ⩽ p⋆n · (c̃i − cin), where λin :=

1

(ui)′(cin(s
0))
. (4.1)

37It follows from Proposition 2.1 in the supplementary material of Martins-da-Rocha and Vailakis (2015b)

that cin and ci are strictly positive for every i.

38Recall that p⋆n = (p⋆n(s
t))st∈Σ is the strictly positive process defined recursively by p⋆n(s

0) = 1 and for

every st ≻ s0, p⋆n(s
t)/p⋆n(σ(s

t)) = maxi∈I MRSi(cin|st).

18



Summing over i and using the market clearing condition
∑

i∈I c
i
n = (1+εn)e = εne+

∑
i∈I c

i,

we get

εn(p
⋆
n · e) +

∑
i∈I

λin[U
i(c̃i)− U i(cin)] ⩽

∑
i∈I

p⋆n · (c̃i − ci). (4.2)

Pose λi := 1/(ui)′(ci(s0)). Since (cin) converges to ci for the product topology, we have

limλin = λi and limU i(cin) = U i(ci).39 We also have that, for every event st, the sequence

(p⋆n(s
t)) converges to p⋆(st), where we recall that p⋆ is the vector of implied AD prices

associated to c = (ci)i∈I . Choosing c̃
i = ci in (4.2), we deduce that lim εn(p

⋆
n · e) = 0.40 If we

let

χn := εn(p
⋆
n · e) +

∑
i∈I

λin[U
i(ci)− U i(cin)]

then, for every individually rational consumption process c̃i ∈ Ci

χn +
∑
i∈I

λin[U
i(c̃i)− U i(ci)] ⩽

∑
i∈I

p⋆n · (c̃i − ci)

with limχn = 0. This implies that for every n, every agent i and every individually rational

consumption process c̃i ∈ Ci

χn + λin[U
i(c̃i)− U i(ci)] ⩽ p⋆n · (c̃i − ci). (4.3)

At this point, the natural idea is to pass to the limit in the above inequality. The LHS

converges to λi[U i(c̃i) − U i(ci)]. The issue is the RHS. For every event st, the sequence

(p⋆n(s
t)) converges to p⋆(st). This does not necessarily imply that lim p⋆n ·(c̃i−ci) = p⋆ ·(c̃i−ci).

However, it follows from Proposition A.1 that there exists a superlinear functional ψ : RN →

R∪ {−∞,∞} that is increasing, linear when restricted to the set ℓ∞ of bounded sequences,

additive when restricted to bounded from below sequences, and such that ψ((xn)) = limxn

for any converging sequence (xn). For any process h ∈ RΣ, we let

φ(h) = ψ((p⋆n · h)).

39Lemma 2.1 in the supplementary material of Martins-da-Rocha and Vailakis (2015b) shows that U i(·)

is continuous for the product topology on the set Ci of individually rational consumption processes.

40This result is valid even if implied interest rates at (ci)i∈I are lower than growth rates. In that case, we

have p⋆ · e = ∞ and, consequently, lim p⋆n · e = ∞. Our arguments show that (εn) converges faster to 0 than

(1/(p⋆n · e)).
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Applying ψ to both sides of (4.3), we get that λi[U i(c̃i) − U i(ci)] ⩽ φ(c̃i − ci) for any

individually rational consumption process c̃i. This proves the second part of (iii). To prove

the first part, we fix an arbitrary event st and apply Proposition B.1 conditional to event st.

Then, for every individually rational consumption process c̃i ∈ Ci, we have

U i(c̃i|st)− U i(cin|st)
(ui)′(cin(s

t))
⩽

1

p⋆n(s
t)
p⋆n · (c̃i − cin)1Σ(st). (4.4)

Reproducing the above arguments developed for the initial event st, we get the first part

of (iii).

To prove (i), we fix an arbitrary finite horizon process x ∈ ℓf . Observe that lim p⋆n · x =

p⋆ · x. This implies that φ(x) = p⋆ · x. The same argument applies to −x and we get

φ(−x) = −p⋆ · x = −φ(x). This proves that x ∈ Lin(φ).

We shall now prove that φ is additive on the set H.

I stopped here.

To show that the lineality space Lin(φ) contains all feasible net trades, we fix an arbitrary

allocation (c̃i)i∈I of individually rational consumption processes satisfying
∑

i∈I c̃
i ⩽ e. For

each i, we let xin := p⋆n · (c̃i − ci). Since the RHS of (4.3) converges, the sequence (xin) is

bounded from below. Since
∑

i∈I x
i
n ⩽ 0, we deduce that each sequence (xin) is actually

bounded and belongs to ℓ∞. This implies φ(c̃i− ci) = Λ((xin)) where Λ is the Banach-Mazur

limit mapping used to define ψ in Proposition A.1. Given that Λ is linear, we have that

φ(c̃i − ci) = −φ(ci − c̃i). This is sufficient to deduce that c̃i − ci belongs to the lineality

space Lin(φ). Choosing c̃i = ei, we deduce that ei − ci also belongs to Lin(φ). We can then

deduce that c̃i − ei = c̃i − ci + ci − ei also belongs to Lin(φ).

Fix now a vector x in the gains-to-trade ideal G. There exists α > 0 such that g := α|x|

is a gain-to-trade vector. This implies that there exists a individually rational allocation

(f i)i∈I such that g+
∑

i∈I f
i = e. Let’s start by proving that p⋆ ·g is finite. Choosing c̃i = f i

in (4.4), we have

p⋆n · g ⩽ −χn +
∑
i∈I

λin
[
U i(ci)− U i(f i)

]
.

For any arbitrary T , we have

p⋆n · g[T ] ⩽ p⋆n · g ⩽ −χn +
∑
i∈I

λin
[
U i(ci)− U i(f i)

]
.
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Passing to the limit when n tends to infinite, we have

p⋆ · g[T ] ⩽
∑
i∈I

λi
[
U i(ci)− U i(f i)

]
.

This is sufficient to deduce that p⋆ · g <∞. We propose now to prove that φ(−x) = −φ(x).

This is sufficient to deduce that G ⊆ Lin(φ). Recall that α|x| +
∑

i∈I f
i = e. For every

n ∈ N, we have

p⋆n · α|x| =
∑
i∈I

p⋆n(e
i − f i).

As each f i is individually rational, we already know that the sequence (p⋆n·(f i−ei)) is bounded

from below. As
∑

i∈I f
i − ei ⩽ 0, we deduce that each sequence (p⋆n · (f i − ei)) is actually

bounded. We have thus proved that the sequence (p⋆n · |x|) is bounded. As |p⋆n · x| ⩽ p⋆n · |x|,

we also have that the sequence (p⋆n · x) is bounded. This implies φ(x) = Λ((p⋆n · x)) where

Λ is the Banach-Mazur limit mapping used to define ψ in Proposition A.1. Given that Λ is

linear, we have

φ(−x) = Λ(−(p⋆n · x)) = −Λ((p⋆n · x)) = −φ(x).

This is sufficient to get the desired result.

We still have to prove that (φ, (ci)i∈I) is a KL competitive equilibrium. Fix an agent i

and pose bi := φ(ci − ei). Since ci − ei is a feasible net trade, we have ci − ei ∈ Lin(φ) and

bi ∈ R. Consider an arbitrary individually rational consumption process c̃i ∈ Ci satisfying

U i(c̃i) > U i(ci). We shall prove that φ(c̃i − ei) > bi. By (ii), we have φ(c̃i − ci) > 0. Since

ei − ci belongs to the lineality space of φ, we have

φ(c̃i − ei) = φ((c̃i − ci) + (ci − ei)) = φ(c̃i − ci) + φ(ci − ei) = φ(c̃i − ci) + bi

and we get the desired result.

The Second Welfare Theorem under uniform gains to trade in Bloise and Reichlin (2011)

and Martins-da-Rocha and Vailakis (2015b) is a direct corollary of Theorem 4.1.41

41Proposition 1.2 in the supplementary material of Martins-da-Rocha and Vailakis (2015b) extends

Lemma 2 in Bloise and Reichlin (2011) by allowing for a larger set of primitives. See the discussion in

(Martins-da-Rocha and Vailakis 2015b, Appendix A.4).
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Corollary 4.1. Assume there are uniform gains to trade. For every constrained Pareto

efficient allocation (ci)i∈I , there exists linear price functional φ : ℓ∞(e) → R such that

(φ, (ci)i∈I) is a KL competitive equilibrium. Moreover, the price functional φ can be chosen

to satisfy φ(x) = p⋆ · x for every x ∈ ℓ∞(e).

Proof. It follows from Theorem 4.1 that there there exists a superlinear price functional

φ : ℓ∞(e) → R ∪ {−∞,∞} such that (φ, (ci)i∈I) is a KL competitive equilibrium. The

superlinear functional φ can be chosen such that Lin(φ) contains the gains-to-trade ideal

G and satisfies φ(x) = p⋆ · x for every x ∈ ℓf . The assumption of uniform gains to trade

implies that G = ℓ∞(e). This means that φ must be linear. Following the discussion in

Section 2.4, we must have φ(x) = p⋆ · x+ φ0(x), where φ0 is a nonnegative finitely additive

linear functional on ℓ∞(e). It follows from Lemma 3.2 in Martins-da-Rocha and Vailakis

(2015a) that φ0 = 0: when there are uniform gains to trade, any linear price functional

supporting a constrained efficient allocation cannot involve a bubble component.

5 Relations to the Literature

5.1 ε-Optimality and Asymptotically-Linear Equilibrium

In the literature of extensive-form games, Radner (1980) introduced the ε-Nash equili-

brium solution that requires every player to be within ε of his optimal payoff. This concept

of ε-optimality has been popular to analyze repeated-games.42 In the general equilibrium

literature, it has been used by Kubler and Polemarchakis (2004) to prove the existence of

stationary Markov equilibria in economies of overlapping generations. Adapting the notion

of ε-optimality to our setting, we introduce the following concept.

Definition 5.1. A resource feasible and individually rational allocation (ci)i∈I is said to

be an ε-linear equilibrium allocation (with ε ⩾ 0) when there exists a linear functional

φ : ℓ∞(e) → R and an allocation of initial transfers (bi)i∈I satisfying
∑

i∈I b
i = 0 such that,

for every agent i,

42We refer, among many others, to Radner (1981), Watson (1994), Lehrer and Sorin (1998), Nachbar

(1997, 2005), Mailath, Postlewaite and Samuelson (2005), Noguchi (2015), and Norman (2022).
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(a) ci ∈ Bi
kl(φ, b

i), i.e., φ(ci − ei) ⩽ bi;

(b”) if c̃i is an individually rational process with U i(c̃i) > U i(ci) + ε, then φ(c̃i − ei) > bi.

When ε = 0, we use the term linear equilibrium. Observe that (ci)i∈I is a linear

equilibrium allocation when it can be implemented through a KL competitive equilibrium

(φ, (ci)i∈I) with a linear functional φ : ℓ∞(e) → R. The only difference between an ε-linear

equilibrium and a linear equilibrium is the optimality condition (b”) that is weaker than (b)

in Definition 2.2. In particular, a linear equilibrium is also an ε-linear equilibrium for any

ε > 0. The converse is not necessarily true. To analyze the asymptotic behavior of ε-linear

equilibria when ε vanishes, we introduce the following concept.

Definition 5.2. A resource feasible and individually rational allocation (ci)i∈I is said to be

an asymptotically linear equilibrium when it is an ε-linear equilibrium for any ε > 0

small enough.

It turns out that the First and Second Welfare Theorems can be extended to asymptot-

ically linear equilibria.

Theorem 5.1 (First Welfare Theorem). Every asymptotically linear equilibrium is con-

strained Pareto efficient.

Proof. The proof is a straightforward adaptation of the standard argument. Consider a

resource feasible and individually rational allocation (ci)i∈I that is an asymptotically linear

equilibrium. Let (c̃i)i∈I be another resource feasible and individually rational allocation.

Assume, by way of contradiction, that (c̃i)i∈I Pareto dominates the allocation (ci)i∈I . As

in the proof of Theorem 3.1, we can show that there must exist a third resource feasible

and individually rational allocation (f i)i∈I such that U i(f i) > U i(ci) for every i. Choose

ε > 0 small enough such that ε < U i(f i) − U i(ci). Since (ci)i∈I is an asymptotically linear

equilibrium, there exists a linear functional φ : ℓ∞(e) → R such that φ(f i) > φ(ci) for

every i. This contradicts feasibility of (ci)i∈I and (f i)i∈I .

Theorem 5.2 (Second Welfare Theorem). Every constrained Pareto optimal allocation is

an asymptotically linear equilibrium.
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Proof. Consider a resource feasible and individually rational allocation (ci)i∈I that is con-

strained Pareto optimal. Following the arguments of the proof of Theorem 4.1, we can show

the existence of: a nonnegative sequence (εn) decreasing to 0, a sequence (cn) of strictly

positive and individually rational allocations cn := (cin)i∈I that converges (for the product

topology) to the allocation c := (ci)i∈I , a sequence (pn) of strictly positive linear vectors

pn ∈ ba+(e) satisfying pn(s
0) = 1, and a sequence (χn) converging to 0, such that

χn + λin[U
i(c̃i)− U i(ci)] ⩽ pn · (c̃i − ci) (5.1)

for every individually rational consumption process c̃i ∈ Ci, where λin = 1/(ui)′(cin(s
0)).

To prove that (ci)i∈I is an asymptotically linear equilibrium, we fix an arbitrary ε > 0.

Choose n large enough such that, for every i ∈ I, we have χi
n + λinε > 0.43 To prove that

(ci)i∈I is an ε-linear equilibrium, we fix an individually rational consumption process (c̃i)i∈I

satisfying U i(c̃i) > U i(ci) + ε. Equation (5.1) implies that pn · (c̃i − ci) > 0. We have

thus proved conditions (a) and (b”) in Definition 5.1 with φ defined by φ(h) := pn · h and

bi := pn · (ei − ci).

5.2 Sup-Convolution

To simplify the technical arguments presented in this section, we assume that u(0) > −∞.

Consider a KL competitive equilibrium (φ, (ci)i∈I) satisfying the properties of Theorem 4.1.

For every agent i and every individually rational consumption plan c̃i ∈ Ci, we have

λi[U i(c̃i)− U i(ci)] ⩽ φ(c̃i − ci) (5.2)

where λi := 1/(ui)′(ci(s0)). Denote by H i
ci the set of all directions hi ∈ RΣ such that

ci+εhi ∈ Ci for some ε > 0 small enough. The set H i
ci is a convex cone containing RΣ

+ called

the set of admissible directions from ci. Since φ is positively homogeneous, (5.2) implies

that for every ε > 0 small enough,

λi
1

ε

[
U i(ci + εhi)− U i(ci)

]
⩽ φ(hi).

43Such an integer n exists because lim[χn + λin(ε/2)] = λi(ε/2) where λi = 1/(ui)′(ci(s0)) > 0.
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The concavity of U i implies that the LHS is an increasing function of ε. Passing to the limit,

we obtain that

λidU i
ci(h

i) = λi lim
ε→0

1

ε

[
U i(ci + εhi)− U i(ci)

]
⩽ φ(hi) (5.3)

where dU i
ci(h

i) ∈ R ∪ {∞} is the directional derivative of U i at ci in the direction hi. Given

the additive form we imposed on U i, we can characterize the directional derivative as follows.

Lemma 5.1. For every i and every admissible direction hi ∈ H i
ci, we have

λidU i
ci(h

i) = pi · hi = lim
τ→∞

τ∑
t=1

∑
st∈St

pi(st)hi(st)

where pi = (pi(st))st⪰s0 is the process of individual prices defined by

pi(st) = (βi)tπi(st)
(ui)′(ci(st))

(ui)′(ci(s0))
.

Proof. Given our assumptions on primitives, we have

U i(ci + εhi)− U i(ci) = lim
τ→∞

τ∑
t=0

(βi)t
∑
st∈St

πi(st)[ui(ci(st) + εhi(st))− ui(ci(st))].

The concavity of ui implies that ui(ci(st) + εhi(st))− ui(ci(st)) ⩽ ε(ui)′(ci(st))hi(st). Since

U i(0) > −∞, we deduce that

lim
τ→∞

τ∑
t=0

(βi)t
∑
st∈St

πi(st)(ui)′(ci(st))ci(st) ⩽ U i(ci)− U i(0).

Since hi = [c̃i − ci]/ε with c̃i := ci + εhi ⩾ 0, we deduce that

lim
τ→∞

τ∑
t=0

(βi)t
∑
st∈St

πi(st)(ui)′(ci(st))hi(st) exists in R ∪ {∞}

and we get the desired result.

Given an individually rational allocation c = (ci)i∈I , we let

Hc :=
∏
i∈I

H i
ci

be the set of allocations of admissible directions. We denote by Hc the set of socially

admissible directions from the allocation c = (ci)i∈I defined by

Hc :=
∑
i∈I

H i
ci .
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The set Hc is a convex cone containing each H i
ci . If c̃ = (c̃i)i∈I is an allocation of individually

rational allocations, then each net trade c̃i − ci belongs to Hc.

For any arbitrary socially admissible direction h ∈ Hc, there exists an allocation (hi)i∈I ∈

Hc such that h =
∑

i∈I h
i. Equation (5.3) implies that∑

i∈I

pi · hi ⩽ φ(h).

Since φ(h) is independent of the decomposition h =
∑

i∈I h
i, we must have

φ⋆
c(h) := sup

{∑
i∈I

pi · hi : h =
∑
i∈I

hi and (hi)i∈I ∈ Hc

}
⩽ φ(h)

for any socially admissible direction h ∈ Hc.

For any λ > 0, we have λ
∑

i∈I h
i =

∑
i∈I λh

i and pi ·(λhi) = λpi ·hi. This implies that the

functional φ⋆
c : Hc → R∪{∞} is positively homogeneous in the sense that φ⋆

c(λh) = λφ⋆
c(h)

for any socially admissible direction h ∈ Hc and any λ > 0. Moreover, as Hc+Hc ⊆ Hc, we

deduce that φ⋆
c is superadditive in the sense that φ⋆

c(h) + φ⋆
c(h

′) ⩽ φ⋆
c(h+ h′) for any h and

h′ in Hc. To conclude that φ⋆
c is superlinear,44 we should verify that φ⋆

c(0) = 0.45 It turns

out that this property characterizes constrained efficiency.

Proposition 5.1. A feasible, individually rational and strictly positive allocation c = (ci)i∈I

is constrained Pareto optimal if, and only if, φ⋆
c(0) = 0.

Proof. The “only if” part follows from the fact that φ⋆
c(h) ⩽ φ(h) where φ is an equilibrium

price functional derived from Theorem 4.1. To prove the converse, assume that c = (ci)i∈I

is a feasible and individually rational allocation that satisfies φ⋆
c(0) = 0. Assume, by way

of contradiction, that there exists a feasible and individually rational allocation (c̃i)i∈I such

that U i(c̃i) ⩾ U i(ci) for every i ∈ I, with a strict inequality for at least one agent k ∈ I.

Observe that hi := c̃i− ci is an admissible direction in H i
ci . The concavity of U i implies that

U i(ci + hi)− U i(ci) ⩽ dU i
ci(h

i) = (ui)′(ci(s0))pi · hi

44We can extend φ⋆
c to the whole domain RΣ by posing φ⋆

c(h) := −∞ if h ̸∈ Hc.

45Observe that φ⋆
c(0) ∈ {0} ∪ {∞}.
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and we deduce that

0 <
∑
i∈I

1

(ui)′(ci(s0))
[U i(ci + hi)− U i(ci)] ⩽

∑
i∈I

pi · hi ⩽ φ⋆
c

(∑
i∈I

hi

)
.

The feasibility of (c̃i)i∈I implies that
∑

i∈I h
i = 0. The contradiction stems from the assump-

tion that φ⋆
c(0) = 0.

The definition of φ⋆
c takes the form of a sup-convolution of personalized prices. Indeed,

if we pose

φi(x) :=

p
i · x if x ∈ H i

ci ,

−∞ otherwise,

then, taking the convention that (−∞) + ∞ = −∞, we can extend φ⋆ to the whole space

RΣ by posing

φ⋆
c(x) = sup

{∑
i∈I

φi(xi) : x =
∑
i∈I

xi

}
.

The construction of a price functional as the sup-convolution of personalized prices already

appeared in the literature as a solution concept to tackle the lack of lattice structure of

the commodity space. Aliprantis, Tourky and Yannelis (2001) first introduced these tech-

niques that were subsequently developed by Aliprantis, Florenzano and Tourky (2004, 2005).

The lack of lattice structure typically occurs in models where the positive cone of an infinite

dimensional commodity space has no interior points (as in the models of commodity differen-

tiation). Still, it may also occur for some finite-dimensional commodity spaces as illustrated

by Aliprantis, Monteiro and Tourky (2004).

In our model, the commodity space is RΣ endowed with the standard lattice structure

defined by the positive cone RΣ
+, which has an interior point (for the sup-metric). The need for

superlinear price functionals stems from the financial frictions of the limited commitment

assumption. Indeed, the standard arguments of the Walrasian general equilibrium model

cannot be applied in our setting because the consumption set Ci is a strict subset of the

positive cone RΣ
+.
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6 Example

In this section, we restrict attention to stationary Markovian economies. Uncertainty is

assumed to be represented by a simple Markov process on a finite state space Z. An event st

is then a t+1-vector (s0, s1, . . . , st) where each shock sτ ∈ Z and s0 ∈ Z is fixed. In addition,

the conditional probability π(st+1|st) is assumed to depend only on st and st+1. We abuse

notation and denote this conditional probability by π(st+1|st).46 A process x = (x(st))st∈Σ is

said to be stationary Markovian if x(st) is a time invariant function of the current shock

st. We make a slight abuse of terminology and use the notation x(st) for x(s
t−1, st).

We assume that agent i’s endowment process is stationary Markovian. For any event

st = (st−1, st), the endowment ei(st−1, st) is denoted by ei(st). It follows that the reservation

utility process is also stationary Markovian. Indeed, for every event st = (st−1, st) we have

U(ei|st) = V i(st) where V i = (V i(z))z∈Z ∈ RZ is the unique solution of the following

recursive equations

∀z ∈ Z, V i(z) = u(ei(z)) + β
∑
z′∈Z

π(z′|z)V i(z′).

When the process of endowments is stationary Markovian and the autarchic allocation

(ei)i∈I is not constrained Pareto efficient, then the Second Welfare Theorem is valid with lin-

ear prices.47 If the autarchic allocation is constrained Pareto efficient and the implied riskless

interest rate at autarky is nonpositive, then decentralization as a competitive equilibrium

only occurs with a superlinear price functional. To illustrate this property, we consider the

standard stationary Markovian symmetric economy with two agents and two shocks.

There are two agents I = {i1, i2}. In each period, one agent receives the high endowment

1 + σ and the other receives the low endowment 1 − σ where σ ∈ [0, 1]. Agents switch

endowments with probability 1 − δ where δ ∈ (0, 1). Formally, uncertainty is captured by

the Markov process st, with state space Z = {zi1 , zi2} and symmetric transition probabilities

Prob(st+1 = zi|st = zi) = δ. The endowment ei(st) only depends on the current shock st,

46This implies that π(st) = π(st|st−1)π(st−1|st−2) . . . π(s1|s0).
47Proposition 4 in Bloise and Reichlin (2011) shows that the condition of uniform gains to trade is satisfied

if, and only if, the autarchic allocation (ei)i∈I is not constrained Pareto efficient.
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with ei(st) = 1 + σ if st = zi and e
i(st) = 1 − σ if st ̸= zi. The initial state at t = 0 is zi1 ,

i.e., agent i1 starts with high income (and agent i2 starts with low income).

Define Vh(σ) := U(ei|(st−1, zi)) and Vℓ(σ) := U(ei|(st−1, zj)) the autarchic continuation

utility in the high-endowment and low-endowment state respectively, where zj ̸= zi. We

easily compute

(1− β)Vh(σ) = αu(1 + σ) + αu(1− σ) and (1− β)Vℓ(σ) = αu(1 + σ) + αu(1− σ)

where

α :=
1− βδ

(1− βδ) + (β − βδ)
and α := 1− α.

Since α > α and u is strictly concave, the function Vℓ is strictly decreasing on [0, 1], and

there exists σm such that Vh is strictly increasing on [0, σm] and strictly decreasing on [σm, 1].

The threshold σm is determined by the equation

u′(1− σm)

u′(1 + σm)
=
α

α
=

1− βδ

β − βδ
.

Observe that implied Arrow–Debreu prices satisfy

p⋆(st+1)

p⋆(st)
= βδ =: qnc, if st+1 = st

and
p⋆(st+1)

p⋆(st)
= β(1− δ)

u′(1− σ)

u′(1 + σ)
=: qc(σ), if st+1 ̸= st.

The risk-less interest rate qnc + qc(σ) is constant and satisfies

∀σ < σm, qnc + qc(σ) < qnc + qc(σm) = 1.

This implies that if σ < σm, the autarchic allocation displays implied interest rates higher

than growth and, therefore, is constrained Pareto efficient. The interesting case corresponds

to σ = σm. Martins-da-Rocha and Vailakis (2015b) proved that the autarchic allocation is

constrained efficient when σ = σm. Applying Theorem 4.1, we deduce that there exists a

superlinear price functional φ : ℓ∞(e) → R ∪ {−∞,∞} that is almost-linear and such that

(φ, (ei)i∈I) is a KL competitive equilibrium.
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We aim at computing the value φ(zi) for some very specific processes zi. To simplify the

analysis, we focus on stationary Markovian processes zi characterized by a pair (zℓ, zh) as

follows:

zi(st) =

zh if ei(st) = eh,

zℓ if ei(st) = eℓ;

According to the arguments of the proof of Theorem 4.1, to construct a decentralizing

price functional φ that is almost-linear, it is sufficient to identify a sequence (εn) of positive

numbers decreasing to 0 and a sequence (cn) of εn-constrained Pareto optimal allocations

cn = (ci)i∈I that converges to the autarchic allocation e. According to the arguments in

(Martins-da-Rocha and Vailakis 2015b, Section 4.3), the allocation cn can be chosen station-

ary Markovian. This means that there exists cn,h > cn,ℓ > 0 such that

cin(s
t) =

cn,h if ei(st) = eh,

cn,ℓ if ei(st) = eℓ.

The corresponding implied AD prices p⋆n = (p⋆n(s
t))st⪰s0 satisfy the Markovian property

p⋆n(s
t) = q⋆n(s

t)p⋆n(σ(s
t)), for all st ≻ s0,

where the price q⋆n(s
t) is given by48

q⋆n(s
t) =


qcn := (1− δ)β

u′(cn,h)

u′(cn,ℓ)
, if st = σ(st),

qnc = δβ, otherwise.

Agent i1 starts with high income. Therefore, we let wn,h := p⋆n · zi1 and wn,ℓ := p⋆n · zi2 . As

zi is stationary Markovian, we have

wn,h = zh + qncwn,h + qcnwn,ℓ and wn,ℓ = zℓ + qncwn,ℓ + qcnwn,h.

We deduce that (1− qnc − qcn)(1− qnc + qcn)wn,h = (1− qnc)zh + qcnzℓ,

(1− qnc − qcn)(1− qnc + qcn)wn,ℓ = (1− qnc)zℓ + qcnzh.

48The price q⋆n can be interpreted as the price at event σ(st) of the Arrow security paying contingent to

event st.
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The implied AD prices of εn-perturbated economy display high-interest rates. This means

that qnc + qcn < 1 and we have

wn,h =
(1− qnc)zh + qcnzℓ

(1− qnc − qcn)(1− qnc + qcn)
and wn,ℓ =

(1− qnc)zℓ + qcnzh
(1− qnc − qcn)(1− qnc + qcn)

.

As the sequence (cn) converges to the autarkic allcation e, we have lim qcn = qc. This implies

that

(φ(zi1), φ(zi2)) = lim(wn,h, wℓ,n) =


(∞,∞) if zh + zℓ > 0,(

zh
2(1− βδ)

,
zℓ

2(1− βδ)

)
if zh + zℓ = 0,

(−∞,−∞) if zh + zℓ < 0.

Consider now another specific case where the process z is deterministic, i.e., z(st) = zt

for some sequence (zt)t⩾0 ∈ RN. For each n, we denote by κn := qnc + qcn the price of the

riskless zero-coupon bond. Equivalently, κn is the discount factor associated with the AD

prices p⋆n = (p⋆n(s
t))st⪰s0 . As the process z is deterministic, we have

p⋆n · z =
∑
t⩾0

(κn)
tzt.

Consider the case where zt = (−1)t. Observe that the “standard” linear market value p⋆ · z

is not well defined since the sequence (ζτ )τ⩾1 of partial sums defined by

ζτ := p⋆ · z[τ+1] =
τ∑

t=0

∑
st∈St

p⋆(st)z(st) =
τ∑

t=0

(−1)t =

1 if τ is even,

0 if τ is odd,

has no limit. Nonetheless, the superlinear functional φ assigns a real value to the process z.

Indeed, for every n, we have

p⋆n · z =
∑
t⩾0

(κn)
2t −

∑
t⩾0

(κn)
2t+1 = (1− κn)

1

1− (κn)2
=

1

1 + κn
.

This implies that lim p⋆n · z = 1/2 and, consequently, φ(z) = 1/2. Observe in particular that

0 = lim inf
τ→∞

(
p⋆ · z[τ ]

)
< φ(z) < lim sup

τ→∞

(
p⋆ · z[τ ]

)
= 1.
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This implies that we cannot obtain the value φ(z) from a subsequential limit of the sequence

of partial sums (p⋆ · z[τ ])τ⩾1. This implies that

φ(z[τ ]) =

1/2 if τ is even,

−1/2 if τ is odd.

In particular, the market value φ(z[T ]) of the T -tail of the process z does not vanish when T

tends to infinite.

7 Conclusion

This paper examines the validity of the Second Welfare Theorem in the context of limited

commitment. By allowing for nonlinear pricing functionals, we show the validity of the

Second Welfare Theorem, even when equilibrium interest rates fall below growth rates. The

separating pricing functional can be chosen to be “close to linear” in the sense that its

restriction to socially admissible directions is additive and positively homogeneous.

Our findings build upon and extend the work of Kehoe and Levine (1993), Alvarez and

Jermann (2000), Bloise and Reichlin (2011) and Martins-da-Rocha and Vailakis (2015a).

While their versions of the Second Welfare Theorem serve as a direct corollary to our The-

orem 4.1, they do not address the challenges posed by low-interest rate environments.

Appendix

A Extensions of Banach-Mazur Limits

Denote by ℓ∞ ⊆ RN the subspace of bounded real sequences. A Banach-Mazur limit

is a linear functional Λ : ℓ∞ → R satisfying the following properties:

(i) Λ is positive in the sense that Λ(x) ⩾ 0 for every nonnegative sequence x ∈ RN
+;

(ii) Λ is normalized in the sense that Λ(1N := (1, 1, . . .)) = 1;

(iii) Λ((xn)) = Λ((xn+1)) for every (xn) ∈ ℓ∞.
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A Banach-Mazur limit exists (see Theorem 16.47 in Aliprantis and Border (2006)) and ex-

tends the “limit operator” since lim inf xn ⩽ Λ((xn)) ⩽ lim supxn for any bounded sequence

(xn) ∈ ℓ∞. We extend a Banach-Mazur limit to the space RN as follows.

Proposition A.1. Fix a Banach-Mazur limit Λ : ℓ∞ → R and consider ψ : RN → R ∪

{−∞,∞} be defined by

ψ(x) := sup{Λ(y) : y ∈ ℓ∞ and y ⩽ x} (A.1)

with the convention that sup(∅) = −∞. The functional ψ is increasing, superlinear, coincides

with Λ on ℓ∞, and the lineality space of ψ contains ℓ∞. Moreover, ψ is additive on the subset

of sequences bounded from below.49

Proof. For any x ∈ RN, we denote by A(x) the set of all vectors y ∈ ℓ∞ such that y ⩽ x.

Observe that ψ(x) = sup{Λ(y) : y ∈ A(x)}. The function ψ is increasing as A(x) ⊆ A(x′)

for any x, x′ ∈ RN such that x′ ⩾ x.

To prove the superlinearity of ψ, we fix x, x′ ∈ RN and λ > 0. Since A(λx) = λA(x) for

any λ > 0, we deduce that ψ(λx) = λψ(x). We shall now prove that ψ(x)+ψ(x′) ⩽ ψ(x+x′)

when {ψ(x), ψ(x′)} ≠ {−∞,∞}. Without any loss of generality, assume that A(x) ̸= ∅ and

A(x′) ̸= ∅.50 This implies that ψ(x) > −∞ and ψ(x′) > −∞. Fix y ∈ A(x) and y′ ∈ A(x′).

Since y+y′ ∈ A(x+x′) and Λ is linear, we deduce that Λ(y) ⩽ ψ(x+x′)−Λ(y′). This implies

that ψ(x) ⩽ ψ(x+ x′)−Λ(y′). Since ψ(x) > −∞, we deduce that Λ(y′) ⩽ ψ(x+ x′)−ψ(x).

This implies that ψ(x′) ⩽ ψ(x + x′) − ψ(x). The last property we shall prove, ψ(0) = 0,

follows from the fact that Λ is positive.

To prove that ψ and Λ coincide on ℓ∞, we fix an arbitrary x ∈ ℓ∞. For any y ∈ A(x),

we have Λ(y) ⩽ Λ(x) since Λ is linear and positive. The desired follows from the fact that

x ∈ A(x).

To show that ℓ∞ ⊆ Lin(ψ), we fix an arbitrary x ∈ ℓ∞. As ψ and Λ coincide on ℓ∞ and

Λ is linear, we must have ψ(−x) = −ψ(x). This is sufficient to deduce that x belongs to the

lineality space of ψ.

49Formally, if x and x′ are two sequences in RN that are bounded from below, then ψ(x)+ψ(x′) = ψ(x+x′).

50If A(x) = ∅, then ψ(x) = −∞ and we must have ψ(x′) ̸= ∞. This implies that ψ(x)+ψ(x′) ⩽ ψ(x+x′).

If A(x′) = ∅, then interchange the roles of x and x′.
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To show that ψ is additive on the subset of bounded from below sequences, we let x = (xn)

and x̃ = (x̃n) be two sequences in RN such that there exist x and x̃ in R satisfying xn ⩾ x

and x̃n ⩾ x̃ for every n ∈ N. As 1N = (1, 1, . . .) is a bounded sequence, it belongs to the

lineality space Lin(ψ). This implies that

ψ(x− x1N) = ψ(x) + ψ(−x1N) = ψ(x) + Λ(−x1N) = ψ(x)− x.

Similarly, we have ψ(x̃− x̃1N) = ψ(x̃)− x̃. Therefore, to prove that ψ(x+ x̃) = ψ(x)+ψ(x̃),

we can assume without any loss of generality that x and x̃ are nonnegative sequences. As ψ is

superlinear, we already know that ψ(x)+ψ(x̃) ⩽ ψ(x+ x̃). To prove the converse inequality,

we let z ∈ A(x + x̃) be an arbitrary bounded sequence satisfying z ⩽ x + x̃. Replacing z

by the sequence (z+n := max{xn, 0}) if necessary, we can assume that z is nonnegative. For

each n ∈ N, we have 0 ⩽ zn ⩽ xn + x̃n. We can decompose zn = yn + ỹn where yn and ỹn

are nonnegative numbers satisfying yn ⩽ xn and ỹn ⩽ x̃n.
51 Observe that y := (yn) belongs

to A(x) and ỹ := (ỹn) belongs to A(x̃). We deduce that

Λ(z) = Λ(y) + Λ(ỹ) ⩽ ψ(x) + ψ(x̃).

As the above inequality is valid for any z ∈ A(x + x̃), we deduce that ψ(x + x̃) ⩽ ψ(x) +

ψ(x̃).

B Proofs

B.1 Proof of Lemma 2.1

If φ is nontrivial, then there must exist at least one agent k such that φ(dk − ek) < bk.

Fix an individually rational consumption process c̃k such that Uk(c̃k) > Uk(ck). For every

ε ∈ (0, 1), we let ck(ε) := (1− ε)c̃k + εdk. Observe that ck(ε) ∈ Ck. Continuity of Uk implies

that there exists ε > 0 small enough such that Uk(ck(ε)) > Uk(ck). From the definition of a

quasi-equilibrium, we must have φ(ck(ε)− ek) ⩾ bk. The condition φ(dk − ek) < bk implies

51Indeed, it is sufficient to pose yn := znαn and ỹn := znα̃n where αn := xn/(xn + x̃n) and α̃n :=

x̃n/(xn + x̃n).
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that φ(c̃k − ek) > bk. The function Uk is strictly increasing. Observing that bk = φ(ck − ek),

we deduce that φ is strictly increasing. We can now follow standard arguments to prove that

(φ, (ci)i∈I) is a KL competitive equilibrium. Indeed, fix an arbitrary agent i and individually

rational consumption process c̃i ∈ Ci such that U i(c̃i) > U i(ci). If c̃i(s0) > 0, there exists

ε > 0 small enough such that c̃i − ε1s0 is still an individually rational consumption process

that satisfies U i(c̃i − ε1s0) > U i(ci). By definition of a quasi-equilibrium, we must have

φ(c̃i− ε1s0 − ei) ⩾ bi = φ(ci− ei). Since φ(1s0) > 0, this implies that φ(c̃i− ei) > φ(ci− ei).

If c̃i(s0) = 0, we can apply Lemma 2.2 in the supplementary material of Martins-da-Rocha

and Vailakis (2015b) to get the existence of a successor event sτ ≻ s0 such that

(a) c̃i(sτ ) > 0 and U i(c̃i|sτ ) > U i(ei|sτ );

(b) for every intermediate event st satisfying s0 ≺ st ≺ sτ , we have c̃i(st) = 0 and U i(c̃i|st) >

U i(ei|st).

Given the above properties, we can find ε > 0 small enough such that c̃i − ε1sτ is still an

individually rational consumption process that satisfies U i(c̃i− ε1sτ ) > U i(ci). By definition

of a quasi-equilibrium, we must have φ(c̃i − ε1sτ − ei) ⩾ bi = φ(ci − ei). Since φ(1sτ ) > 0,

this implies that φ(c̃i − ei) > φ(ci − ei).

B.2 Missing Result

Proposition B.1. Fix a process of strictly positive AD prices p = (p(st))st⪰s0 with p(s
0) = 1

such that p · e < ∞. Fix a strictly positive and individually rational consumption process

ci ∈ Ci that satisfies the following property for every event st ≻ s0

MRSi(ci|st) ⩽ p(st)

p(σ(st))
with equality if U(ci|st) > U i(ei|st).

For every individually rational consumption process c̃i ∈ Ci and every event st, we have

1

u′(ci(s0))
(βi)tπi(st)

[
U i(c̃i|st)− U i(ci|st)

]
⩽ p ·

(
[c̃i − ci]1Σ(st)

)
.

Proof. To simplify the presentation, we let qi(st) := MRSi(ci|st) for every event st ≻ s0.

Let pi be the process defined by pi(s0) := 1 and pi(st) := (βi)tπi(st)u′(ci(st))/u′(ci(s0))
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for every st ≻ s0. Observe that pi(st) = qi(st)pi(σ(st)). We also define the Arrow price

q(st) := p(st)/p(σ(st)) for every st ≻ s0. Observe that

qi(st) ⩽ q(st) with equality if U(ci|st) > U i(ei|st). (B.1)

Fix an arbitrary individually rational consumption process c̃i ∈ Ci. For every event st ⪰ s0,

we pose

bi(st) :=
1

pi(st)

∑
sr∈Σ(st)

pi(sr)(c̃i(sr)− ci(sr)).

The process bi is well-defined because p · e < ∞.52 Concavity of the Bernoulli function ui

implies that
1

u′(ci(s0))
(βi)tπi(st)

[
U i(c̃i|st)− U i(ci|st)

]
⩽ pi(st)bi(st).

Properties described in (B.1) imply that53

bi(sr) ⩽ (c̃i(sr)− ci(sr)) +
∑

sr+1≻sr

q(sr+1)bi(sr+1).

Multiplying by p(sr) and summing the above inequalities over all events sr ⪰ st that occur

prior to some date ξ > t, we get

p(st)bi(st) ⩽
ξ−1∑
r=t

∑
sr∈Sr(st)

p(sr)[c̃i(sr)− ci(sr)] +
∑

sξ∈Sξ(st)

p(sξ)bi(sξ).

Since p · e <∞, we can also verify that54

lim
ξ→∞

∑
sξ∈Sξ(st)

p(sξ)bi(sξ) = 0.

We have thus proved that

1

u′(ci(s0))
(βi)tπi(st)

[
U i(c̃i|st)− U i(ci|st)

]
⩽
∑
r⩾t

∑
sr∈Sr(st)

p(sr)[c̃i(sr)− ci(sr)].

Observe that the RHS of the above inequality is exactly p ·
(
[c̃i − ci]1Σ(st)

)
.

52See Footnote 8 in the supplemental material in Martins-da-Rocha and Vailakis (2015b) for details.

53See the proof of Lemma 2 in Bloise, Reichlin and Tirelli (2013) or the proof of Claim 2.1 in the

supplemental material in Martins-da-Rocha and Vailakis (2015b) for details.

54See the proof of Claim 2.1 in the supplemental material in Martins-da-Rocha and Vailakis (2015b) for

details.

36



References

Aguiar, M., Amador, M. and Arellano, C.: 2023, Micro risks and (robust) Pareto improving

policies. National Bureau of Economic Research Working Paper 28996.

Aliprantis, C. D. and Border, K. C.: 2006, Infinite Dimensional Analysis: A Hitchhiker’s

Guide, third edn, Springer-Verlag, Berlin and Heidelberg.

Aliprantis, C. D., Border, K. C. and Burkinshaw, O.: 1997, Economies with many commodi-

ties, Journal of Economic Theory 74(1), 62–105.

Aliprantis, C. D., Florenzano, M. and Tourky, R.: 2004, General equilibrium analysis in

ordered topological vector spaces, Journal of Mathematical Economics 40(3-4), 247–269.

Aliprantis, C. D., Florenzano, M. and Tourky, R.: 2005, Linear and non-linear price decen-

tralization, Journal of Economic Theory 121(1), 51–74.

Aliprantis, C. D., Monteiro, P. K. and Tourky, R.: 2004, Non-marketed options, non-

existence of equilibria, and non-linear prices, Journal of Economic Theory 114(2), 345–357.

Aliprantis, C. D., Tourky, R. and Yannelis, N.: 2001, A theory of value with non-linear prices:

Equilibrium analysis beyond vector lattices, Journal of Economic Theory 100(1), 22–72.

Alvarez, F. and Jermann, U. J.: 2000, Efficiency, equilibrium, and asset pricing with risk of

default, Econometrica 68(4), 775–797.

Alvarez, F. and Jermann, U. J.: 2001, Quantitative asset pricing implications of endogenous

solvency constraints, Review of Financial Studies 14(4), 1117–1151.

Angeletos, G.-M., Collard, F. and Dellas, H.: 2022, Public debt as private liquidity: Optimal

policy. MIT Working Paper.
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