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ABSTRACT

The generative paradigm has become increasingly important
in machine learning and deep learning models. Among pop-
ular generative models are normalizing flows, which enable
exact likelihood estimation by transforming a base distribution
through diffeomorphic transformations. Extending the normal-
izing flow framework to handle time-indexed flows provided
dynamic normalizing flows, a powerful tool to model time
series, stochastic processes, and neural stochastic differential
equations (SDEs). In this work, we propose a novel variant
of dynamic normalizing flows, a Time-Changed Normaliz-
ing Flow (TCNF), based on time deformation of a Brownian
motion which constitutes a versatile and extensive family of
Gaussian processes. This approach enables us to effectively
model some SDEs that cannot be modeled otherwise, including
standard ones such as the well-known Ornstein-Uhlenbeck pro-
cess, generalizes prior methodologies, and leads to improved
results and better inference and prediction capability.

Index Terms— Stochastic differential equations, deep
generative models, normalizing flows, time series, convex
neural network.

1. INTRODUCTION

Dynamical systems have widespread use in various scientific
areas such as finance, geosciences, and physics. The repre-
sentation of these systems usually involves Ordinary Differ-
ential Equations (ODEs), or Stochastic Differential Equations
(SDEs) [1] when noise and perturbations, on top of the de-
terministic component, are considered. Crucial applications
include modeling volatility in financial data, or uncertainty
quantification and propagation in geosciences. Tackling such
systems through time series modeling and machine learning is
an approach that experienced a surge in popularity, particularly
recently, thanks to the generative paradigm, for forecasting
applications, filtering, or interpolation with a notion of uncer-
tainty in the generated sequences.

Popular generative models include Generative Adversarial
Networks (GANs) [2] and variational autoencoders (VAEs) [3],

This work was supported by Agence Nationale de la Recherche under
grant ANR-21-CE48-0005 LEMONADE, and by France 2030 framework
program, Centre Henri Lebesgue, under grant No ANR-11-LABX-0020-01.

but also more recently normalizing flows (NFs) [4, 5] and dif-
fusion/score based models [6]. Though these models can be
applied to generate time series, they are not well-suited for the
task because they treat such data as vectors in RT , with T the
number of time steps, without accounting for the causal struc-
ture. Adaptations of GANs, VAEs, and NFs to time series data
have been carried out in [7, 8],[9, 10],[11, 12], respectively. In
this work, we focus on NFs for their capacity to access explicit
likelihoods, which is crucial for applications when uncertainty
quantification or anomaly detection is required.

NFs are based on the celebrated change of variables for-
mula that provides an expression of the probability density
function of diffeomorphic transformations of a random vari-
able. With carefully chosen transformations (or compositions
thereof), if the initial density is tractable (explicit likelihood
and easy sampling, in most cases Gaussian), the transformed
density can be easily manipulated and sampled as well, pro-
vided that the Jacobian of the transformation can be computed
efficiently. By considering the theoretical limit where an infi-
nite number of transformations is applied, we can derive the
Continuous Normalizing Flow (CNF) [13]. In this instance,
the NF is described by an ODE that can be integrated to ob-
tain the resulting density. This approach further improves the
computational efficiency of this class of models by replacing
the Jacobian determinant with the integration of its trace.

NFs have been extended to the dynamic setting by replac-
ing the tractable base distribution with a tractable stochastic
process, i.e. a Brownian motion [14], making this type of
model much more efficient for time series generation. How-
ever, it was noted in [15] that these models are theoretically
unable to handle some of the most basic and common pro-
cesses, such as the classical Ornstein-Uhlenbeck process.

Thus, in this paper, we propose a generalization of these
approaches by using a large family of Gaussian processes
as the underlying base process instead of the conventional
Brownian motion. The Gaussian processes are constructed
by transforming through time the standard Brownian motion,
giving rise to Time Changed Normalizing Flow (TCNF), a
model that possesses mathematical properties that enable it to
describe dynamics and SDEs that cannot be captured by pre-
vious flow-based models, while maintaining the expressivity
of dynamic NFs. We corroborate these findings by numerical
experiments on several well-known processes.



The remainder of this paper is organized as follows: we
first provide, in section 2, an overview of the neural SDEs,
wherein both the drift and diffusion are neural networks, and
the dynamic normalizing flow approach and a discussion on the
inherent limitations of such models. Afterward, in section 3,
we introduce our model and describe its characteristics and the
training algorithm. Finally, quantitative results are presented
in section 4 and compared to other flow-based models, and
provide concluding remarks in section 5.

Fig. 1: A time-change ϕ is applied to the Wiener process
(red) to create a new Gaussian process, which is then mapped
through a bijection fθ to the observed process (blue).

2. BACKGROUND

2.1. Neural Stochastic Differential Equations

We consider a filtered probability space (Ω,F , P ) and a time
horizon T . A diffusion process X = {Xt}t∈[0,T ] is defined
by the Itô Stochastic Differential Equation (SDE):

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt, t ∈ [0, T ] (1)

where W = {Wt}t∈[0,T ] is the m-dimensional adapted stan-
dard Wiener process (or Brownian motion). Functions µ :
Rd × [0, T ] −→ Rd and σ : Rd × [0, T ] −→ Rd×m are the
drift and diffusion coefficients, respectively. When µ and σ
are implemented by neural networks, the SDE is designated as
a neural SDE [16, 17].

Several works have been proposed to learn neural SDEs us-
ing different generative modeling frameworks including Varia-
tional Autoencoders (VAEs) [9, 10] and Generative Adversar-
ial Networks (GANs) [8]. In this paper, we specifically focus
on the normalizing flow paradigm.

2.2. Normalizing flows

A normalizing flow [4, 5, 13] is a transformation designed to
model a random variable X and its corresponding complex
distribution pX through a base distribution pZ and a differ-
entiable bijective function f : Rd −→ Rd. Such modeling

allows for both exact density estimation and efficient sampling,
by using the change of variable formula for X = f(Z):

log pX(x) = log pZ(z)− log |det Jf (z)| (2)

where the Jacobian Jf (z) =
[
∂fi
∂zj

]
1≤i,j≤d

is the d× d matrix

of all partial derivatives of f .
Previous works have extended this framework to model

time series and stochastic processes by employing a bijection
that is continuously indexed by time F (., t), along with a Brow-
nian motion as the base process, giving rise to a Continuous
Time Flow Process (CTFP) [14]:

Xt = F (Wt, t).

Another approach proposed by [15] involves incorporating
latent dynamics from an Ornstein-Uhlenbeck process com-
bined with a normalizing flow to effectively model SDEs.

These models have demonstrated the effectiveness of dy-
namic NFs in capturing the complex behavior of various types
of stochastic processes and SDEs. However, it is important
to highlight that these models have inherent limitations. One
constraint arises when applying Itô’s lemma to CTFP to derive
the univariate Ornstein-Uhlenbeck (OU) process described by
the equation:

dYt = −a(Yt − b)dt+ σdWt (3)

Indeed, by applying Itô’s lemma to F (Wt, t) we obtain:

dF (Wt, t) =
∂F

∂t
(Wt, t)dt+

∂F

∂x
(Wt, t)dWt

+
1

2

∂2F

∂x2
(Wt, t)dt

(4)

By comparing both Eq. (3) and Eq. (4), we deduce that
to model the OU process, we need to have ∂F

∂x (Wt, t) = σ,
implying that F (Wt, t) = σWt + g(t), where g is a given
differentiable function. However, differentiating this relation
wrt t and plugging in (3) leads to the following condition:

dg

dt
(t) + ag(t)− ab = −aσWt (5)

Eq. (5) is not feasible as the left-hand side is a deterministic
function of t while the right-hand side is a stochastic one de-
pending on Wt. Thus, CTFP shows limitations and falls short
in its ability to model various stochastic processes effectively.

In the following section, we propose a model that can
address this limitation and achieve improved results.

3. DYNAMIC NORMALIZING FLOW WITH
TIME-CHANGE

3.1. Time-changed Normalizing Flow

We propose to model an observed stochastic process, de-
noted as X = {Xt}t∈[0,T ], by combining a normalizing



flow and a time-changed Wiener process to accurately cap-
ture the dynamic behavior of Xt based on a realized time
series {(xti , ti)}ni=1. In this paper, we explicitly address the
univariate case, with ongoing development of the general case
which requires appropriate time-change for each dimension.
We introduce the concept of a time-changed normalizing flow
(TCNF), defined as follows:

Xt = fθ
(
Wϕ(t), ϕ(t)

)
, ∀t ∈ [0, T ],

where fθ(., t) : R −→ R is a differentiable bijection param-
eterized by θ, while Wϕ(t) denotes a Brownian motion with
a time-change [18, Sect. 1 Chap. 0]. The time-change is
given by ϕ : R+ −→ R+, which is a measurable, positive and
increasing function. The measurable and positive properties
ensure the correct definition of Wϕ(t), while the increasing
property ensures the existence of its moments. Consequently,
the neural network modeling the time-change must have in-
trinsically positive and increasing attributes. The property of
time change has important applications as it produces a family
of Gaussian processes that are more general than Brownian
motion. The Dubins-Schwarz theorem [18, Theorem 5.1.6]
further emphasizes this property as it states that every local
martingale is simply a time-changed Brownian motion.

Therefore, by making the base process of our model a
time-changed Brownian motion, we can accurately capture
all instances of local martingales and semimartingales, thus
generalizing the CTFP setting. In fact, the solution to Eq. (3)
can be expressed as follows:

Yt = Y0e
−at + b(1− e−at) +

σe−at

√
2a

We2at−1 (6)

which can be properly modeled by TCNF. More general cases
like processes with time-dependent volatility can also be ex-
pressed via a time-change and therefore modeled by TCNF.
Finally, for ϕ(t) = t we recover the CTFP setting, which is
suitable for modeling SDEs that do not require a time-change
as the Geometric Brownian Motion (GBM) [1].
3.2. Time-change function

To handle the time-change function, we employ a convex neu-
ral network that ensures a positive gradient, thereby guarantee-
ing a monotone output. Specifically, we utilize the M-MGN
architecture [19] based on K network modules defined as
follows:

t̃k = Wk × t+ bk,

M-MGN(t) = a+ V ⊤V t+

K∑
k=1

sk(t̃k)×W⊤
k σk(t̃k)

(7)

where Wk, bk ∈ Rl×1 are respectively weight and bias
vectors of the kth layer, σk : Rl −→ Rl is an activation
function and sk : Rl −→ R its antiderivative. a ∈ R and
V ∈ Rl×1 are additional network parameters. As the result of
M-MGN is not necessarily positive, we apply a translation of
the output to ensure that the time-change is positive.

3.3. Training algorithm

The purpose is to train the TCNF in order to maximize the
log-likelihood of the observed dataset {(xti , ti)}ni=1:

L = log pXt1
,...,Xtn

(xt1 , ..., xtn) (8)

To compute Eq.(8), we use the change of variable formula and
leverage the independence of increments Wϕ(ti) −Wϕ(ti−1).
Thus, the log-likelihood is expressed as follows:

L =

n∑
i=1

log pWϕ(ti)
|Wϕ(ti−1)

(
wϕ(ti)

)
− log

∣∣∣∣∣det ∂fθ
(
wϕ(ti), ϕ(ti)

)
∂Wϕ(ti)

∣∣∣∣∣ ,
(9)

where wϕ(ti) = f−1
θ (xti ;ϕ(ti)) and pWϕ(ti)

|Wϕ(ti−1)
denotes

the conditional Gaussian distribution with mean Wϕ(ti−1) and
variance ϕ(ti)− ϕ(ti−1). This constitutes one notable differ-
ence from the log-likelihood of CTFP which uses a Gaussian
distribution with the same mean but variance ti − ti−1.

4. EXPERIMENTS

4.1. Toy datasets

To evaluate the performance of our proposed model, we con-
ducted experiments on three toy datasets comprising univariate
unitless time series. These datasets were generated by sam-
pling from three different stochastic processes. Also, in our
experiments we used an identical architecture as CTFP, lever-
aging CNFs.

The first dataset (Toy-SDE1) was generated by discretizing
the OU process, given by the equation: dXt = −θ(Xt −
µ)dt + σdWt, where µ and σ represent constant parameters
for the drift and volatility terms, respectively. Parameter θ
captures the speed at which a given sample path of the process
converges towards the drift term. This dataset aims to assess
the model’s ability to capture the dynamics of time changes.

The second dataset (Toy-SDE2) was generated based on
the equation: dXt = −θ(Xt − µ)dt + σ

√
tdWt, describing

an OU with a time-dependent diffusion coefficient, and is used
to test the model’s capability to capture time transformations
with increasing complexity. Notably, this SDE is of interest as
it is commonly used in score-based models [20], where noise
is gradually introduced during the training process.

Finally, The third dataset (Toy-SDE3) involved the geo-
metric Brownian motion, described by the equation: dXt =
µXtdt+ σXtdWt, where µ and σ represent constant parame-
ters for the drift and volatility terms, respectively. This dataset
was designed to showcase the capacity of TCNF to handle
SDEs where no time-change is required, effectively learning
the simple function ϕ(t) = t. This shows that our approach
can encompass the CTFP framework.



Dataset Model mXt σXt IQR pXt

Toy-SDE1 CTFP 0.022± 0.009 0.241± 0.012 0.886± 0.021 0.062
TCNF 0.019± 0.007 0.109± 0.009 0.700± 0.014 0.033

Toy-SDE2 CTFP 0.059± 0.011 0.523± 0.018 1.517± 0.037 0.087
TCNF 0.024± 0.012 0.322± 0.016 1.183± 0.024 0.061

Toy-SDE3 CTFP 0.035± 0.020 0.086± 0.056 1.103± 0.037 0.005
TCNF 0.036± 0.018 0.099± 0.072 1.083± 0.038 0.007

Table 1: Quantitative analysis: We display mean absolute errors (MAE) for estimating respectively the mean, standard deviation,
interquartile range IQR = Q3 −Q1, and density. The estimations are based on 1000 sample paths over 1000 iterations.
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Fig. 2: Comparison between TCNF and CTFP on toy-SDE1
(top) and toy-SDE2 (bottom). In each figure we depict density
MAE between the flow models and the ground truth (GT),
along the mean (continuous line) and the IQR (dashed line).

The quantitative comparison is carried by comparing es-
timations of the mean mXt

, the standard-deviation σXt
, the

interquartile range IQR= Q3−Q1, and the density pXt
respec-

tively. For each model, we compute the mean absolute errors
(MAE) against the ground-truth values. The mean, standard
deviation, and quartiles are estimated based on 1000 sample
paths over 1000 iterations, while the density is estimated by
the change of variable formula on a grid consisting of 1000
spatial points and 500 temporal points within the time interval
[0, T = 1.5]. The quantitative results reported in Table 1 and
Figure 2 show first that TCNF shows no loss in generality as it
handles cases where no time-change is required, and second
that our model exhibits superior estimation capability, as it can
capture the behavior of time-changed ground truth solutions.

4.2. Real-world datasets

To further assess our model’s capacity to capture complex
dynamics, we train it on two real-world datasets: Crypto-

Dataset Model mXt
σXt

Crypto CTFP 0.083± 0.007 0.232± 0.009
TCNF 0.025± 0.001 0.131± 0.005

ECL CTFP 0.771± 0.108 26.972± 8.634
TCNF 0.299± 0.007 2.182± 2.081

Table 2: Quantitative analysis of real-world dataset: We dis-
play mean and standard deviation estimation errors.

forecasting (Crypto) [21] and Electric Consumption Load
(ECL) [22]. The Crypto dataset contains historical prices of
various cryptocurrencies. We focused our analysis on mod-
eling Ethereum log returns over the 2020 period. The ECL
dataset comprises electricity consumption data from multiple
clients within a 15-minute interval. We choose to model the
consumption of client ’200’ for its extended time series.

The results comprise mean absolute errors (MAE) for es-
timating the mean (mXt

) and standard deviation (σXt
) for

the Crypto dataset. We employed mean relative errors (MRE)
for the ECL dataset to scale the results appropriately. These
results are reported in Table 2 and compared against CTFP.

5. CONCLUSION

We introduced a generalized approach to modeling SDEs via
dynamic NFs and time-change. By transforming the Wiener
process through time, we generate various Gaussian processes,
which are then mapped to the observed process via a bijec-
tion. The time-change combined with the NF enabled us to
model processes that are otherwise challenging to derive due
to calculus constraints. Importantly, this extension retains the
advantages of dynamic NFs, such as exact density estimation
and efficient sampling.

Experiments showed that our model exhibits better perfor-
mance and a generalization capacity. We believe incorporat-
ing dimension-specific time-changes enables us to extend the
method to higher dimensions. Additionally, improvement in
the calibration of the time-change can be achieved by linking it
to either the quadratic variation of the process or its moments.
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