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Abstract

This paper addresses the challenging issue of unsupervised sensory anomaly de-
tection (AD) in noisy image datasets, which is highly relevant in real-world ap-
plications where training images are often noisy and exhibit variability. Current
approaches for detecting anomalies in such scenarios are limited and do not ac-
count for the noisy nature of the data. To address this limitation, we propose a new
method called RPaDiM (Robust Patch Distribution Modeling), which leverages
a pretrained CNN and then filter out contaminated patches and computes robust
parameters of multivariate Gaussian distributions to summarize the entire training
set. Our experiments demonstrate that RPaDiM outperforms existing techniques
such as PaDiM and Patchcore in noisy-free settings, and achieves comparable
performance with the state-of-the-art SoftPatch method in noisy frameworks. Our
results also show that RPaDiM is able to effectively localize anomalies of different
sizes, shapes, and positions in the images, making it a promising solution for
industrial applications.

1 Introduction

Given a dataset, an anomaly can be thought of as a point or a group of points, whose characteristics
are so different from the other points that they must have come from a different data generating
process. Therefore AD consists of finding interesting patterns that deviate from the expected behavior
in a dataset.

To address AD in images, several frameworks have been considered, including Unsupervised Learning
[8, 19, 11, 23] , Self-Supervised [12, 22], Supervised [4, 14, 25], Weakly Supervised [24, 6]. Among
these, Unsupervised AD is the most commonly used technique as it identifies anomalies or outliers
without any prior knowledge of what constitutes an anomaly. Since anomalous data is typically hard
to come by or insufficient, and may exhibit unpredictable patterns, AD is commonly formulated as a
one-class learning problem, that relies solely on normal data for training. In visual inspection, AD
attempts to determine whether an image corresponds to a regular or an atypical instance, usually
generating an anomaly score to guide the decision.

To improve the reliability of anomaly detection results, it can be beneficial to locate the defective areas,
referred to as defects, within images at the pixel level, thus providing more precise and explainable
results. This undertaking is commonly referred to as anomaly localization, or anomaly segmentation.
However, achieving high-precision anomaly detection and localization without relying on annotated
training data remains a formidable challenge.

In one-class learning settings [2, 20], where only normal images are available for training, the most
common approach is to analyze the statistical properties of the extracted feature maps representing
the normality over the entire training set and use them to look for patterns that do not fit with these
properties. However, in industrial applications, the training images may be subject to various sources
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of noise and heterogeneity. For example, images of manufactured products may contain surface
defects, variations in lighting, or noise from the image capture process. In surveillance applications,
images may be captured under challenging lighting conditions or in cluttered environments, which
can affect the quality of the resulting images. These factors can result in noisy and non-homogeneous
image datasets, which can pose significant challenges for AD algorithms. Despite the importance of
this noisy framework, it has received very little attention, especially in industrial applications.

To address this problem, this paper presents a novel method called RPaDiM for unsupervised sensory
anomaly detection in images. RPaDiM operates at the patch level and learns the properties of
the extracted embeddings thanks to a pretrained convolutionnal neural networks and then filters
the potentially contaminated noisy patches in order to compute a robust parameter of multivariate
Gaussian distributions to obtain a summary of the entire training set.

Compared to existing techniques such as PaDiM [8] and PatchCore [19] in a non-noisy setting,
RPaDiM outperforms them in terms of detection accuracy. Moreover, in a noisy framework, RPaDiM
achieves comparable performance with the state-of-the-art SoftPatch [11].

The proposed RPaDiM method has several advantages over existing techniques. First, it is robust to
noisy training data, making it more suitable for real-world scenarios. Second, it is computationally
efficient and scalable, making it feasible for large-scale industrial applications.

The proposed RPaDiM method has the potential to have a significant impact on various industrial
applications, including quality control, surveillance, and medical imaging.

Our major contributions are summarized below:

• We propose RPaDiM, a novel unsupervised sensory anomaly detection consisting of PaDiM,
a denoising strategy and a robust parameter estimation for robust anomaly detection.

• We conduct experiments on two benchmark datasets, including MVTec Anomaly Detection
(MVTecAD) [2], BTAD [15], to highlight the robustness of RPaDiM as compared to the
current state of the art.

2 Related method

AD in images has been a widely studied problem in the field of machine learning, and several
methods have been proposed to address this problem. In one-class learning settings, since the most
common goal is to model the distribution of the normal data, a popular technique to do so is based on
patch-level statistics.

2.1 Unsupervised anomaly detection in noisy-free images

2.1.1 Embeddings methods

Patch-level statistics-based methods such as SPADE [7], PaDiM [8], PatchCore [19] have been
proposed to address the problem of unsupervised sensory anomaly detection in images using a
pretrained CNN. An underlying concept of these systems is that an image can be considered abnormal
if even a single patch within it is classified as abnormal. SPADE and PatchCore have much in common
in that they both use a representative memory bank of nominal features extracted by a pretrained
CNN. However PatchCore does not store the extracted feature maps but a transformation of them
thanks to a local aggregation technique. In addition, the memory bank is subsampled during inference
to ensure low inference cost at higher performance. The anomaly score is taken as the maximum
distance between the test patch in the test patch collection and its respective nearest neighbor.

PaDiM models the distribution of the normal patches by computing, at the patch level, the parameters
of a Gaussian distribution of the extracted patch embeddings. This makes PaDiM independent of the
size of the training dataset at the inference stage, unlike PatchCore or SPADE. PaDiM then computes
the anomaly score of an image thanks to the Mahalanobis distance of the patch embeddings with
respect to the Gaussian distribution at the patch level.

While these methods have shown promising results in detecting anomalies in non-noisy settings, their
performance degrades when the training data is noisy and not clean.
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2.1.2 Autoencoder-based methods

Autoencoders and Variational Autoencoders (VAEs) are widely used in sensory anomaly detection.
These techniques involve projecting images into a lower-dimensional latent space and reconstructing
them directly by using the vectors of the latent space (simple Autoencoders) or by sampling according
to the distribution of the latent space (VAEs). Studies using the simple Autoencoders approach
include [1, 3, 9], while those using VAEs include [13, 21]. During training, the network learns a
representation of normality in which a normal image has a reconstruction score close to zero. During
inference, a poorly reconstructed image is labeled as abnormal, and this can be done at the patch level
to localize anomalies. Despite their intuitive nature, the results of these methods have not always
been satisfactory [8]. One of the issues with these approaches is that although they are trained only
on normal images, they can still reconstruct abnormal images [17].

2.2 Learning with noisy data

Only a few studies have aimed at developping unsupervised anomaly detection techniques that can
effectively handle noisy settings. Among them, [26, 16] focus on semantic anomaly detection, which
aims to detect deviations in context, and are thus not directly related to our topic. The study by
[11], on the other hand, is relevant to our topic because it proposes a more robust technique for
unsupervised anomaly detection in noisy settings.

Softpatch[11] uses a soft thresholding approach based on a denoising strategy to adaptively select the
most informative patches for modeling the normal data distribution. The training noise discriminator,
which detects training contamination is based on a density-based method: LOF [5]. However,
Softpatch is essentially based on the PatchCore model, which uses a bank of memory, and therefore it
is not independent of the size of the training dataset at prediction stage and may suffers from high
computational complexity and scalability for large-scale datasets.

In contrast to existing methods, the proposed RPaDiM method takes a novel approach by first filtering
the contaminated noisy patches after embedding and then computing a robust parameter of multivariate
Gaussian distributions to obtain a summary of the entire training set. This approach has several
advantages over existing techniques, including improved robustness to noisy data, computational
efficiency, and scalability, making it suitable for various industrial applications.

3 Background

3.1 Problem setting

We consider a one-class learning setting, where both normal and potentially noisy normal images are
available for training. The goal is to learn a model of normality and use it to detect deviations from
that model that correspond to anomalous events. Specifically, we assume that we have a training set
of N = N1 +N2 images {xi}Ni=1 where N1 are drawn i.i.d from an unknown distribution p(x) and
N2 from p(x) + ϵ(x), where x is an image in RC×H×W , H and W are the height and width of the
image, and C is the number of channels and ϵ is a noise distribution.

In the test set, we denote the subset of anomalous images by A = {yi}mi=1, where m is the number of
anomalous images. We assume that the anomalous images are drawn from a different and unknown
distribution q(.), which may be significantly different from the normal distribution p(.). Our goal is
to detect and localize the anomalous images in the test set without any prior knowledge or supervision
about their specific nature or location.

To better understand our method, let us describe some concepts.

3.2 Geometric median

The geometric median is a robust estimator of the center of a dataset that is less sensitive to outliers
and contamination than the arithmetic mean [18]. In the context of machine learning, the geometric
median is often used as a robust estimator of the center of a distribution, especially when the data is
contaminated with outliers.
It generalizes the classical median to multidimensional spaces. Formally, given N points
x1,x2, . . . ,xN ∈ Rd with weights w1, w2, . . . , wn ≥ 0, the geometric median is defined as

3



xGM = argmin
z∈Rd

n∑
i=1

wi∥z − xi∥2.

Figure 1 illustrates the robustness of geometric median to the mean. This median can be used in a

Figure 1: Geometrical median illustration.

Mahalanobis distance.

3.3 Mahanalobis distance

Given a probability distribution P on Rn with mean µ and covariance matrix Σ, the Mahanalobis
distance between x ∈ Rn and P is a reweighted Euclidean distance between x and µ defined as

dM (x,P ) =

√
(x− µ)T Σ−1 (x− µ). (1)

This was used in the original PaDiM to measure an abnormality score over patches. In a noisy
framework, computing a distance to the mean that is not robust can be misleading. In our work, the
geometric median xGM is the basis of the Mahalanobis distance and (1) yields to

dM (x,P ) =

√
(x− xGM)T Σ−1 (x− xGM). (2)

3.4 Local outlier factor

It is an outlier detection method that can be applied when some regions in a dataset have different
densities. In such a dataset, distance and density-based outlier detection may miss outliers. The key
idea of LOF is to compare the local density of a point with the average of the local density of its
neighbors, and points with relatively low density will be spotted as outliers.

The LOF of a patch (h,w) is defined as:

LOF(h,w) =
1∣∣Nk

(
ϕ(h,w)

)∣∣ ∑
(hp,wp)∈Nk

(
ϕ(h,w)

) lrd(hp, wp)

lrd(h,w)
where

lrd(h,w) =

(
1∣∣Nk

(
ϕ(h,w)

)∣∣ ∑
(hp,wp)∈Nk

(
ϕ(h,w)

)ReachDist
(
ϕ(h,w)← ϕ(hp, wp)

))−1

ReachDist
(
ϕ(h,w)← ϕ(hp, wp)

)
= max

(
dk(ϕ(hp, wp)), d(ϕ(h,w), ϕ(hp, wp))

)
where d(a, b) is the classical Euclidean distance between a and b and dk(ϕ(hp, wp)) is the core size
of kth-neighbor.

The LOF of a point can be interpreted as the ratio of the total distance of its k neighbors to the average
of the total distances of these k neighbors from their k neighbors in turn. In simple words, the LOF
tells you about how much influence or dense neighborhood a data point has, as compared to other
data points in the same dataset.
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3.5 Locally aware patch features

Locally aware patch features are an image representation technique that can capture local information
and have the potential to improve the performance of anomaly detection methods [19]. Let ϕ be a
CNN, e.g. Resnet18 [10] and ϕj be a mid-level feature map. Given a location (h,w), we define its
neighborhood as

N (h,w)
p =

{
(a, b)

∣∣a ∈ [h− ⌊p/2⌋, . . . , h+ ⌊p/2⌋
]
, b ∈

[
w − ⌊p/2⌋, . . . , w + ⌊p/2⌋

]}
,

and its local aware features at the same location as
ϕi,j := ϕj

(
xi, N (h,w)

p

)
= fagg

(
ϕj

(
xi; a, b

)∣∣(a, b) ∈ N (h,w)
p

)
(3)

where p is the neighborhood size. As in PatchCore, we use fagg the adaptive average pooling as the
aggregation function.

We are now ready to present our method.

4 Proposed method

4.1 Overview

Inspired by PaDiM and SoftPatch, this work aims at learning robust representative features from
normal images.

Our model can been described in three main steps.

- Embedding extraction: when a pretrained network is applied to an image, it uses its learned weights
to extract high-level features and patterns from the image. The extracted features can be used as input
for downstream tasks such as anomaly detection.
More formally, given an image xi from the training set and a CNN ϕ, applying ϕ to xi gives
ϕj

(
xi; h,w

)
∈ Rcj for (h,w) ∈ [1, H] × [1,W ] which by virtue of (3) will result in ϕi,j ∈

Rcj ,Hj ,Wj j = 2, 3. Lastly, ϕi,2 and ϕi,3 will be concatenated to give ϕi ∈ Rc∗,H∗,W∗
to form the

collection {ϕi}Ni=1 over the training set. It is also important to remember that unlike PaDiM where
all 3 intermediate layers of the backbone followed by a dimension reduction, we only consider the
last 2 intermediate layers in order to leverage the training context and avoid relying on features that
are either too generic or too heavily biased towards ImageNet classification [19].

- Denoising strategy: In this step, the noisy patches are determined by computing the LOF score
for each patch and removing (or setting to zero) the patches with the top τ percent scores as in [11].
Thus, the embedding patches are {ϕ̃i}Ni=1

- Parameters distribution Estimation: The geometric median xGM and covariance matrix Σ are
computed after flattening the last two dimensions of {ϕ̃i}Ni=1 into one, i.e H∗ ×W ∗. Therefore,
xGM ∈ Rc∗,H∗×W∗

and Σ ∈ Rc∗,c∗,H∗×W∗
. Let us notice that a regularization term ξ I where I

is the identity matrix is added to Σ to ensures its invertibility. Figure 2 depicts an overview of the
proposed framework.

4.2 Anomaly detection based on RPaDiM

Given a test image x, the embedding extracted denoted ϕ ∈ Rc∗,H∗×W∗
, so that the formula (2) can

be used to compute the anomaly score at the patch level. So we have a matrix of anomaly score
M ∈ RH∗,W∗

. Anomalous areas in the image are identified by high scores in the anomaly map M .
The final anomaly score of the entire image is determined by selecting the maximum score from the
anomaly map.

5 Results and discussions

5.1 Experimental details

- Datasets : Our experiments focused primarily on two benchmark datasets: MVTecAD [2] and
BTAD [15]. The MVTecAD dataset consists of 15 categories with a total of 3629 training images
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Figure 2: Our framework will learn the geometric median and covariance at each patch (h,w) after a
denoising strategy that filters out contaminated patches.

and 1725 test images, while the BTAD dataset has three categories with 1799 images. This provides
a comprehensive challenge due to the different classes of industrial production, including objects,
textures, and different types of rotations. To test the robustness of our method in the noisy case, we
follow the same approach as [11] since MVTecAD essentially contains clean, homogeneous and
noiseless images. This approach consists of creating a noisy training set by randomly sampling
anomalous images from the test set and mixing them with the existing training images, while
maintaining the original number of normal samples in the training set. To avoid training and testing
on the same dataset, the injected anomalous samples are not evaluated. This approach is more
representative of real-world applications where we very often find heterogeneous images. We did
not introduce any artificial noise into the BTAD dataset, as [11] observed that the training samples
already contain some noise (typically small scratches) upon visual inspection, which is consistent
with the characteristics of our problem setting and further emphasizes the relevance of our proposed
approach.

- Evaluation metrics: Our evaluation of the proposed approach uses both image-level and pixel-level
AUROC as the metrics of choice for each category in both the MVTecAD and BTAD datasets, which
we then average to derive the average image/pixel level AUROC.

- Implementation details: We compare the performance of RPaDiM with three state-of-the-art
(SOTA) methods for unsupervised sensory anomaly detection: PaDiM, PatchCore, and SoftPatch. On
the one hand, all four methods use ResNet18 as the backbone for embedding extraction to ensure a
perfect comparison, as performance can vary between backbones. On the other hand, since the BTAD
dataset is more challenging specially the category BTAD-02, we used WideResnet50 as backbone
for all four methods. We evaluate the methods on both noise-free and noisy scenarios. For the noisy
setting, we set a seed to ensure that the same anomalous images are injected into the training set for
all methods. In our experiments, we have kept the same hyperparameters used in the literature for
preprocessing: thus we use 256 × 256 resolution for MVTecAD images and center-crop them to
224 × 224, followed by normalization. For BTAD, we use a resolution of 512 × 512. Note that a
separate model is train for each class in MVTecAD and BTAD. Regarding the LOF hyper parameters
namely K and τ , please refer to the sub-section 5.4 for more details.

All experiments are performed on a machine with an NVIDIA A100 20GB GPU and 35GB RAM.

5.2 Analysis results

Noisy-free MVTecAD: The Table 1 shows us a clear improvement of PaDiM and that we can reach
or even exceed the performances of greedy methods with memory bank (PatchCore, SoftPatch) with
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Table 1: Comparison of RPaDiM with the SOTA methods for both pixel-level and image-level
anomaly detection performance on MVTecAD dataset. The results are reported with AUROC.

Noisy-free Noisy

Category PaDiM PatchCore SoftPatch RPaDiM PaDiM PatchCore SoftPatch RPaDiM

bottle 0.989 0.989 0.991 0.989 0.989 0.990 0.992 0.989
cable 0.902 0.972 0.956 0.962 0.852 0.854 0.947 0.932
capsule 0.926 0.968 0.957 0.952 0.896 0.967 0.958 0.946
carpet 0.986 0.986 0.985 0.993 0.982 0.986 0.985 0.992
grid 0.889 0.917 0.938 0.959 0.849 0.920 0.948 0.960
hazelnut 0.940 0.989 0.987 0.973 0.864 0.990 0.987 0.970
leather 0.946 0.996 0.994 0.993 0.975 0.997 0.997 0.995
metalnut 0.971 0.983 0.979 0.980 0.945 0.896 0.979 0.961
pill 0.869 0.905 0.918 0.946 0.858 0.881 0.901 0.953
screw 0.858 0.990 0.968 0.951 0.807 0.992 0.970 0.952
tile 0.936 0.933 0.924 0.953 0.845 0.907 0.926 0.946
toothbrush 0.967 0.993 0.961 0.991 0.974 0.994 0.969 0.993
transistor 0.947 0.960 0.925 0.990 0.896 0.944 0.920 0.984
wood 0.960 0.956 0.962 0.957 0.903 0.955 0.960 0.953
zipper 0.859 0.977 0.959 0.959 0.794 0.973 0.962 0.952

Average 0.930 0.967 0.960 0.970 0.895 0.950 0.960 0.965

Table 2: Comparison of RPaDiM with the SOTA methods for both pixel-level and image-level
anomaly detection performance on BTAD dataset. The results are reported with AUROC.

Category PaDiM PatchCore SoftPatch RPaDiM

01 1.000 1.000 0.999 0.968
02 0.871 0.871 0.934 0.911
03 0.971 0.999 0.997 0.996

Average 0.947 0.957 0.977 0.958

a simple method like RPaDiM which keeps the computational efficiency of PaDiM. Indeed, the fact
of integrating to PaDiM, this notion of patch aggregation in a neighborhood allows it to better take
into account the nomimal context and thus increase its performances. In addition, focusing on the last
two intermediate layers of the Resnet backbone allows us to effectively leverage the training context
and avoid relying on overly generic training.

Noisy MVTecAD: Not surprisingly, the Table 1 shows us a stability even after introducing 10%
of abnormal images to corrupt the training set. This confirms the robustness of our model and of
SoftPatch designed for this purpose. Moreover, this robustness is maintained for both detection and
localization of anomalies. After filtering the patches that are quite isolated and therefore noisy, and
then calculating a robust indicator here the geometric median allows us to cancel the effect of noise
and to maintain the robustness of our method.

BTAD: We also compared RPaDiM with the 3 previously applied methods. Again, we see that here
too, RPaDiM performs very well with a performance slightly below SoftPatch.

5.3 Qualitative results

In this sub-section, we present the anomaly segmentation results of our model for various classes, as
shown in Figure 3 . To evaluate the model’s performance, we employ the F1-score, which involves
determining the threshold for each anomaly map, a common practice in previous work. Pixels with
anomaly scores above the threshold are classified as anomalous and assigned a value of 1, resulting
in a 0 and 1 mask that represents our predicted mask.
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Figure 3: Examples of different anomaly localization for some classes in MVTecAD dataset. From
top row to bottom row are Image, Ground Truth and the predicted mask with RPaDiM.

The Figure 3 demonstrates that our proposed method successfully localizes predicted defects, regard-
less of their size, shape, or position. Although some of the mask shapes appear slightly inaccurate,
they still illustrate the effectiveness of our model in detecting small defects.

5.4 Ablation study

5.4.1 Effectiveness of RPaDiM

The validation of the effectiveness of RPaDiM is obvious from the Tables 1 and 2 in the sense that the
added blocks that make up RPaDiM have a clear impact on the obtained performances. By removing
both the locally aware patch block and the LOF block and by computing the arithmetic mean instead
of the geometric median, we obtain PaDiM, and we have already seen that it suffers from robustness
problems.

5.4.2 Hyper-parameters tuning

In order to implement both RPaDiM and SoftPatch, it will be necessary to first find the K and τ
hyperparameters, which are essential for implementing the LOF, which is an essential component
for both of these methods. Recall that PatchCore also needs a hyperparameter of its KNN algorithm,
since during inference it calculates the anomaly score of a patch compared to its neighbors.

For RPaDiM, we have tested several values of K, and the results presented in the Analysis results
subsection were obtained with K = 1 and τ = 0.85. In general, the choice of K depends on the
characteristics of the data and the problem to be solved, and it is recommended to experiment with
different values of K to find the optimal one for a specific task.

Using K=1 in LOF means that the algorithm considers the nearest neighbor of each point as the only
reference point for calculating the local density, which can be highly sensitive to noise and can lead
to overfitting. However, using K=1 can be useful when the dataset has a high degree of local structure
and the goal is to identify extremely isolated points as outliers. This is similar to the case of the screw
category of MVTecAD (which is one of the worst performing categories in the literature), which
includes misaligned images and gave us better results with K = 1. On the other hand, the other
categories maintain their results for several values of K, as shown in the Table 3. Also, in the same
Table, we have added 20% of anomalies instead of 10% to test the robustness.

Finally, it seems that the choice of K or τ has very little influence on the performance of RPaDiM,
and by injecting 20% of anomalies in the training set, we maintain the performance obtained with
10%.
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Table 3: The ablation study of K and τ . The performance scores are average of Image/pixel-level
AUROC on MVTecAD

K=3 K=6

τ = 0.85 τ = 0.95 τ = 0.85 τ = 0.95

Category Noisy-free Noisy Noisy-free Noisy Noisy-free Noisy Noisy-free Noisy

bottle 0.989 0.989 0.989 0.99 0.988 0.988 0.988 0.989
cable 0.957 0.950 0.964 0.948 0.944 0.951 0.961 0.969
capsule 0.949 0.965 0.950 0.965 0.932 0.934 0.939 0.958
carpet 0.993 0.992 0.993 0.992 0.994 0.992 0.993 0.992
grid 0.959 0.956 0.965 0.960 0.961 0.968 0.965 0.955
hazelnut 0.971 0.962 0.977 0.945 0.957 0.948 0.978 0.937
leather 0.993 0.996 0.994 0.996 0.993 0.996 0.996 0.996
metalnut 0.981 0.955 0.981 0.954 0.981 0.981 0.981 0.957
pill 0.937 0.950 0.946 0.952 0.934 0.941 0.942 0.953
screw 0.881 0.918 0.915 0.939 0.951 0.948 0.896 0.911
tile 0.953 0.945 0.953 0.927 0.952 0.951 0.953 0.927
toothbrush 0.990 0.994 0.990 0.994 0.987 0.990 0.990 0.994
transistor 0.989 0.988 0.990 0.987 0.985 0.986 0.989 0.987
wood 0.956 0.961 0.957 0.961 0.955 0.956 0.956 0.962
zipper 0.947 0.952 0.953 0.955 0.942 0.943 0.947 0.953

Average 0.963 0.965 0.968 0.964 0.960 0.965 0.965 0.963

6 Conclusions

In this paper, we proposed a novel approach, called RPaDiM, for sensory unsupervised anomaly
detection. Our method leverages the local context of image patches to capture meaningful repre-
sentations. RPaDiM effectively addresses the impact of noisy data by filtering out contaminated
patches and computing robust parameters for multivariate Gaussian distributions. We demonstrated
the effectiveness of RPaDiM on two benchmark datasets, MVTecAD and BTAD, achieving state-
of-the-art performance compared to other popular methods. In addition, we conducted extensive
ablation studies and visualizations to gain insights into the behavior of our method and its ability to
generalize to different anomaly types and noise levels. Our results show that RPaDiM is a powerful
and flexible approach for unsupervised anomaly detection in images, with potential applications in
various domains such as quality control and surveillance.
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