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Abstract: This study aims at evaluating upper limb muscle coordination and activation in workers performing an 

actual use-case manual material handling (MMH). The study relies on the comparison of the workers’ muscular activity 

while they perform the task, with and without the help of a dual-arm cobot (BAZAR). Eleven participants performed the 

task and the flexors and extensors muscles of the shoulder, elbow, wrist, and trunk joints were recorded using bipolar 

electromyography. The results showed a reduction in both upper limb and trunk muscle co-activation and activation when 

the specific MMH was performed with BAZAR. Therefore, Human-robot collaboration technologies, which share the 

workspace with workers, offload workers from external loads and improve the task execution efficiency and quality. 

Furthermore, they also allow a better coordination and reduce the worker’s physical effort while s/he physically interacts 

with the robot, and positively affect his/her physiological motor strategy. 

Practitioner Summary: Upper limb and trunk muscle co-activation and activation is reduced when a specific manual 

material handling was performed with a cobot than without it. By improving coordination, reducing physical effort and 

changing motor strategy, cobots could be proposed as an ergonomic intervention to lower workers' biomechanical risk in 

industry. 
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1. Introduction 

Some of the fourth industrial revolution (industry 4.0) technologies are creating a new way of working (Lenz et al., 

2008), leading towards occupational changes (Baltrusch et al., 2021; Pauliková et al., 2021) and implying a wide-

sweeping transformation of the whole productive system (Paolillo et al., 2022). In particular, human labor will be 

increasingly assisted in a variety of industries and manufacturing (Ito et al., 2022). Such assistance is a viable option for 

ergonomic interventions for lowering biomechanical risk in manual material handling (MMH) (World Robotics, 2019; 

Ajoudani et al., 2020). Human-robot collaboration (HRC) technologies, artificial intelligence (Pauliková et al., 2021; 

Schwab, 2017) and wearable wireless miniaturized sensors (Ranavolo et al., 2018; Alberto et al., 2018) are among the 

physical and digital systems enabling this transformation. In fact, they allow workers to be physically assisted and 

monitored, even during demanding occupational tasks. HRC technologies are meant to share the workspace with workers, 

to continually communicate with them, to manage the human partner's flexibility and ergonomics and to physically 

interact, in order to jointly work together on a common goal (Behrens et al., 2015). Reconfigurable collaborative robots 

quickly adapt to the workers’ intentions and task variations, while simultaneously offloading them from external loads 

(task-related payloads) and keeping them in ergonomic working circumstances, to improve efficiency and quality of the 

task execution (SOPHIA project, http://www.project-sophia.eu). Wearable sensors attached to the workers body (e.g., 

inertial measurement units - IMUs, insoles for measuring reaction forces and bipolar and high-density surface 

electromyography sensors - sEMG, 3D depth cameras, etc.) measuring his/her motion can greatly improve the accuracy 

and precision of the biomechanical evaluation, via data-model fusion and machine learning techniques (Varrecchia et al., 

2022, 2021, 2020, 2018; Ranavolo et al., 2020a, 2020b, 2018, 2017a, 2017b).  

Although there exist many hypotheses and scientific evidence regarding the beneficial effects of HRC, more research 

into human side effects is required. In this new collaborative scenario, human dexterity and flexibility are paired with the 

repeatability and precision of a robot, resulting in a reduction in human effort (Ogenyi et al., 2021; Brookham et al., 2016; 

Salvini et al., 2011) but also in an alteration of human motor strategy. From a broad perspective, although collaborative 

work (for example, annex A of ISO/DIS 11228-1) is a widespread method for lowering work-related musculoskeletal 

disorders (WMDs), the scientific literature reveals conflicting findings on its efficacy, due to factors affecting team 

capacity, autonomy, and coordination (Chini et al., 2022; Anton et al., 2013; van der Molen et al., 2012; Faber et al., 

2012; Kim et al., 2012; Barret and Dennis, 2005; Lee, 2004; Dennis and Barret, 2003a, 2003b, 2002; Lee and Lee, 2001). 

In the latter case, the team must flawlessly coordinate, whereas a single individual can move the load freely and smoothly. 

To measure motor coordination in body segments and joint stabilization during dynamic tasks, a common approach is 

muscle co-activation (Chini et al., 2022; Le et al., 2017, Ranavolo et al., 2015; 2018; Granata and Marras, 2000). 

Compressive and shear forces across the joints increase when significant antagonist activations counteract the agonist 

actions, producing moments which do not contribute to the required net joint moments (Lewek et al., 2004; Childs et al., 

2004; Griffin and Guilak, 2005; Collins et al., 2011). Then, co-activation may become functionally unfavorable (Macaluso 

et al. 2002; Brookham et al., 2011). For this reason, the use of HRC technologies must be proved primarily during sub-

tasks in which the worker physically interacts with the robot, affecting the physiological motor strategy. 

Furthermore, no evidence of a motor coordination improvement exists even when the assistance is provided by an 

advanced collaborative robot (cobot) capable of bimanually handling a heavy object, while simultaneously moving in the 

workspace. Indeed, even though cobots are a potentially useful tool for enhancing worker ergonomics and are frequently 

used in assembly-line production environments (Ajoudani et al., 2020; Shi et al., 2012; Papakostasa et al., 2011; Makrini 

et al., 2018), they tend to focus on lightweight tasks and are rarely in direct physical contact with humans. Indeed, they 



only share a workspace with their human partners. In our study, we developed and evaluated a more ambitious scenario 

in which the cobot works directly in contact with people on a high payload operation. The effectiveness of this 

collaboration needs to be evaluated not only in the reduction of physical effort, but also in the altered motor strategy 

adopted by the worker. In fact, the physical interaction could also lead to an ineffective motor strategy which could induce, 

for istance, upper-arm stiffness.  Indeed, collaborative tasks have been shown to introduce critical issues related to 

autonomy, team skills and coordination between team members (Chini et al., 2022; Anton et al., 2013; van der Molen et 

al., 2012). 

Since, to the best of the authors' knowledge, no research has been done on upper limb co-activation and muscle 

activation during a hybrid worker-robot MMH, we hypothesize this collaboration may reduce upper limb muscle co-

activation and muscular activation. Furthermore, we believe that studying the human-robot interaction throughout the 

execution of a real-world use case, extrapolated and recreated from an industrial context, will allow us to draw more 

general conclusions regarding its efficacy.  

As a result, the purpose of this research was to evaluate upper limb muscle coordination and activation in workers 

performing an actual use-case MMH, by comparing a scenario where the workers are helped by a dual-arm cobot with a 

scenario without the cobot. 

In this work, since high payloads (above 15 kg) are incompatible with most current day CoBot arms (Elprama et al., 

2017), we relied on the dual-arm mobile cobot BAZAR (Cherubini et al., 2019), which is equipped with two 7-DOF Kuka 

LWR4 arms attached to a Neobotix MPO-700 omnidirectional mobile base. A Microsoft Kinect camera is mounted on 

BAZAR’s head, and an ATI Mini 45 force/torque sensor is mounted on each of the robot’s wrists. Each wrist is also 

equipped with a 3D printed concave part, designed to fit the shape of the part to manipulate, and denoted ‘hand’ in the 

rest of the paper. BAZAR is being assessed as a cobot in the context of "SOPHIA—Socio-Physical Interaction Skills for 

Cooperative Human–Robot Systems in Agile Production", a project funded by the European Union's Horizon 2020 

Research and Innovation Program, under grant agreement No. 871237 (http://www.project-sophia.eu),.SOPHIA attempts 

to contribute to the development of a new generation of HRC technologies which could improve human ergonomics 

during MMH. The project's technological innovations will allow for improved management of the occupational health 

challenges posed by WMDs in Europe, which include sick leave, disability, and early job interruption (Van Der Beek et 

al., 2017; Eurofound, 2015).  

 

2. Materials and Methods 

2.1 Participants  

Eleven participants (5 females and 6 males; age: 27.73±5.99 years; body mass index [BMI]: 23.06±3.93 kg/m2) took 

part in the study. The study was carried out at the University of Montpellier in accordance with the Helsinki Declaration 

and authorized by the University of Montpellier EuroMov’s Laboratory Ethics Committee (Protocol number IRB-EM 

2103A). Exclusion criteria included inability to give informed written consent, history of musculoskeletal disorders, upper 

limb, lower limb or trunk surgery, orthopedic or neurological diseases, disorders of the vestibular system, visual 

impairments or back pain, current pregnancy, current pharmacological treatment, and obesity. 

2.2 Inertial Measurement Unit and Electromyographic recordings  



The Inertial Measurement Unit (IMU) and Electromyographic (sEMG) data were acquired simultaneously, 

synchronizing the two systems. 

2.2.1 IMU recordings 

The Xsens MVN Link system (Xsens, Enschede, The Netherlands) was used to record whole-body kinematics on 

participants. The MVN Awinda system motion analysis system includes a protocol for measuring whole body kinematics, 

comprising 17 IMUs placed all over the body to measure the orientation of body segments: 1 on the head, 1 on the 

sternum, 1 on the pelvis (at the L5/S1 level), and 1 bilaterally on each scapula, upper arm, forearm, hand, thigh, shank, 

and foot. To achieve proper sensor placement, Xsens MVN whole-body lycra suits in various sizes (M to XXL) were 

used. Before beginning recordings, the Xsens system was calibrated using the "N-pose and walk" calibration technique 

for each participant. The Xsens MVN Analyze software (version 2018.0.0) was used to record Xsens data at 60 Hz. 

2.2.2. sEMG recordings  

The surface myoelectric signals were acquired using a 16-channel Wi-Fi transmission surface electromyograph 

(FreeEMG300 System, BTS, Milan, Italy) at a sampling rate of 1000 Hz. A Hamming bandpass filter (10-400Hz cut-off 

frequencies, and a common mode rejection ratio of 100 dB) was used for pre-processing filtering and denoising. Following 

skin preparation, bipolar Ag/AgCl surface electrodes (diameter 2 cm, H124SG Kendall ARBO, Tyco healthcare, 

Neustadt/Donau, Germany) were prepared with electroconductive gel and placed over the muscle belly in the direction 

of the muscle fibers (distance of 2 cm between the centers of the electrodes) in accordance with European 

recommendations for surface electromyography (Hermens et al., 2000) and the atlas of muscle innervation zones. 

Eight bipolar electrodes were placed over the following muscles: anterior deltoideus (AD), posterior deltoideus 

(PD), biceps brachii caput longum (BBCL), triceps brachii caput longum (TBCL), flexor carpi radialis (FCR), extensor 

carpi radialis (ECR), rectus abdominis superior (RAS), and erector spinae longissimus (ESL). These muscles were chosen 

because of their role as flexors and extensors of the shoulder, elbow, wrist, and trunk joints, respectively. 

2.3 Experimental procedure  

The goal of our experiment was to reproduce an industrial use case proposed by the SME HANKAMP (Netherlands) 

and shown in Figure 1 (A). The apparatus (shown in Figure 1) consisted of: the BAZAR collaborative robot (only referred 

to as BAZAR in the following), 4 tables, 1 cylindrical load (5 kilograms) to be displaced and 1 cleaning brush. The task 

consists in displacing the cylindrical load between the four tables (action which requires lifting, placing and carrying the 

load) in a predefined order, and cleaning it with the brush (action which requires holding the load in the air with one 

hand). The experiments are shown in the video available at: https://youtu.be/vul8iLO0Sdw. 



 
Fig. 1. Industrial use case scenario (A) and laboratory scenario (B). 

 
Each participant completed the task six times: three times without BAZAR and three times with BAZAR. When the 

task is performed with BAZAR, it eliminates some human activities (lifting, placing and carrying the load). Indeed, it 

moves the load from table 2 to table 3 (closer to the humans’ starting position and at height equal to 100 cm) and from 

table 3 to table 4 to avoid humans lifting the load from table 2 and 3 respectively. Furthermore, in the brushing phase, 

BAZAR helps the human, by lifting the load, while he/she brushes it. We randomly ordered the two conditions (with and 

without BAZAR), for each subject. Before the participant performed either condition for the first time, we instructed 

him/her by showing a video of the task, and by letting him/her execute it once or until he/she was able to perform it on 

his/her own, without recording. All subjects performed and completed the task independently the first time without the 

need to repeat it. 

 

2.3.1 Task without BAZAR 

The task without the use of BAZAR can be separated into the following sub-tasks (Figure 2A): 

• standing 1: the participant was standing with his/her upper limbs lying along the trunk near table 1; 

• walking 1: the participant walked to table 2; 

• standing 2: the participant stood in front of table 2 with his/her upper limbs lying along the trunk, while 

waiting for an acoustic signal; 

• lifting+carrying+placing 1: the participant lifted the load from table 2, carried it and placed it on table 1; 

• standing 3: the participant stood in front of table 1, with his/her upper limbs lying along the trunk, waiting 

(approximately 5 seconds) for an acoustic signal; 

• lifting+carrying+placing 2: the participant lifted the load, carried it and placed it on table 3; 

• standing 4: the participant stood in front of the table 3 with his/her upper limbs lying along the trunk; 

• lifting 1: the participant lifted the load and the brush from table 3; 

• brushing: the participant cleaned the load with the brush; 

• placing +lifting 2: the participant placed the load back on table 3, then lifted it again; 

• moving on table: the participant placed the load on table 4; 

• standing 5: the participant stood in front of table 4 with his/her upper limbs lying along the trunk; 

• walking 2: the participant walked to table 1; 

• standing 6: same as static 1. 



2.3.2 Task with BAZAR 

The task in collaboration with the cobot can be separated into the following sub-tasks (Figure 2B): 

• standing 1: the participant stood with his/her upper limbs lying along the trunk in front of table 1 

• walking 1: the participant walked to table 3; 

• standing 2: the participant stood with his/her upper limbs lying along the trunk in front of table 3, while the 

robot moved the load from table 2 to table 3; 

• lifting+carrying+placing 1: the participant lifted the load from table 3, carried it and placed it on table 1; 

• static 3: the participant stood in front of table 1, with his/her upper limbs lying along the trunk, waiting 

(approximately 5 seconds) for an acoustic signal; 

• lifting+carrying+placing 2: the participant lifted, carried and placed the load on table 3; 

• standing 4: the participant stood in front of table 3, while the robot lifted the load; 

• brushing: while the robot was holding the load, the participant lifted the brush from table 3, and used it to 

clean the load with his/her left hand;  

• placing+walking 2: the participant placed the load on table 3 and walked to table 1 while the robot moved 

the load to table 4; 

• standing 5: same as static 1. 

 



 
Fig. 2 Sub-tasks of the task without (A) and with (B) BAZAR. 

 
 
 

2.3.3 BAZAR description 

BAZAR’s framework was programmed in C++ within RKCL (Robot Kinematic Control Library, 

https://gite.lirmm.fr/rkcl) (Tarbouriech et al., 2019). The framework was executed on a computer with an Intel(R) 



Xeon(R) E5-2620 v3 CPU running Linux with the PREEMPT-RT patch. We used the Fast Research Interface Library 

(FRI) (https://cs.stanford.edu/people/tkr/fri/html/) to communicate with BAZAR’s Kuka arms at 200 Hz.  

The framework is composed of: 

• a unique kinematic control loop, which sequentially executes the various processes; 

• several drivers in charge of exchanging data between each hardware component (e.g., Kuka arms, mobile 

base, force/torque sensors, camera, etc.) and the controller. 

We designed the framework so that distinct hardware components could operate together, even if their control rates are 

different. This is possible, by parallelizing execution of the kinematic controller and of the components’ communication 

drivers. Each process runs independently and at varying frequency: the drivers are triggered by the reception of new data 

coming from the sensors, so that the time rate is fixed for each component. The kinematic control loop time step, instead, 

is arbitrary and can be freely set by the user. The best performances are obtained when the control loop time step is set 

equal to the time rate of the fastest driver, so that the driver’s bandwidth is not artificially limited.  

In RKCL, each C++ application loads a YAML (https://yaml.org/) configuration file at launch time, with the parameters 

to be used. In this work, the scenario for the whole application is configured as a list of YAML subfiles, each of them 

defining a robotic action. To characterize an action, we specify two frames: the control frame to be moved by the robot, 

and the reference frame with respect to which the control frame is moved. 

To define the reference frame, in some cases we relied on computer vision and QR codes. We used the Microsoft Kinect 

V2 RGB-D camera in BAZAR’s head and on the ArUco Library (Garrido-Jurado et al., 2014), which provides real-time 

marker-based 3D pose estimation.  

To generate trajectories between reference frames (i.e., waypoints), we used the Reflexxes Motion Library (Kröger, 2011) 

with the following parameters: maximum translational velocity=0.5m/s, maximum rotational velocity=0.5 rad/s, 

maximum translational acceleration=0.2 m/s2, and maximum rotational acceleration=0.2 rad/s2.  

Another fundamental tool, which we used to make the robot safe and compliant, is admittance control (Hogan, 1984). 

Admittance control deforms the trajectories of each robot hand by passing the forces/torques measured at that hand, 

through a spring-damper model. The deformation will depend on pre-tuned damping (B) and stiffness (K) gains. These 

two gains can be tuned differently for forces (which induce deformations along the hand translational degrees of freedom) 

and torques (which induce deformations along the hand rotational degrees of freedom). By varying the gains, we have 

designed three admittance control modes: pose, force, and damping control (Tarbouriech et al., 2019), outlined in Table 

1. 

Degrees of freedom Translations Rotations 

Parameter B (in Ns/m) K (in N/m) B (in Ns/rad) K (in N/rad) 

Pose control 150 250 25 40 

Damping control 150 0 25 0 

Force control 1000 0 500 0 

 

Table 1. Damping (B) and Stiffness (K) gains along the translational and rotational degrees of freedom for pose, damping and 
force control modes. 



 

In this work, as outlined in 2.3.2 and in Figure 2B, BAZAR had to execute four sub-tasks. We hereby recall the subtasks 

and specify the actions composing each subtask: 

1) Moving the load from table 2 to table 3 (during subtask ‘static 2’). Actions: position arms before grasp, grasp 

load, lift load, turn base, place load, position arms to release load. 

2) Lifting the load, with the participant standing in front of table 3 (during ‘static 4’). Actions: position arms before 

grasp, grasp load, lift load.  

3) Holding the load while the participant brushed it (during ‘brushing’). Action: move load during HRC. 

4) Moving the load from table 3 to table 4 after the participant finished brushing (during ‘placing+walking 2’). 

Actions: turn base, place load, position arms to release load. 

In summary, the whole experiment relied on the following actions: position arms (e.g., before grasp, to release load), 

grasp load, turn base, move the load (e.g., place it or lift it, including during HRC). We hereby describe each of these 

actions. 

Position arms: for this action, since the hands are not constrained to one another (i.e., they are not holding anything) we 

control them independently with pose control. We set a control frame on each hand and use the appropriate QR code as 

reference frame. The two hands move together towards/away from the load, although each one has a distinct target.  

Grasp load: again, we control the hands independently; yet here, we use force control to make the hands move to contact 

the load – for grasping. Thanks to force control and to the concavities on its hands, BAZAR was able to grasp the load 

even if its position was not exactly known. In practice, we observed that it could tolerate offsets up to 2 cm from the 

expected position. 

Turn base: when the robot base moves, its proprioception (i.e., the odometry) cannot guarantee correct localization. 

Therefore, we use the ArUco markers to stop the robot when it is facing the load. We placed one marker on each table, at 

a predefined pose relative to the lifting/placing locations, and asked the participants to place the load at the indicated 

location after each operation. The control frame is attached to the QR code, and the reference frame is at the mobile base 

center. 

Move load: for this action, we chose the cooperative task representation (Chiacchio et al., 1996). Instead of controlling 

each arm independently, we considered the robot as a unique entity and described the operations via an absolute task 

(which controls the motion of the robot in the workspace), and a relative task (which regulates the relative motion between 

the two hands). As soon as the hands are both in contact with the load, we switch from independent to collaborative 

control. The grasping and holding of the load is managed by the relative task, which maintains a constant force on the 

load, while the absolute task moves the load in the workspace. When there is no interaction with the human operator, the 

absolute task is fully position controlled (i.e. aims at reaching a target pose without considering force measurements), 

while during HRC we controlled the vertical translation and one horizontal rotation degree of freedom in damping mode. 

By compensating gravity effects (Tarbouriech et al 2019), only the forces applied by the human make the robot move. 

This allows him/her to move the load with minimal effort. 

 

2.3.4 Isometric maximum voluntary contractions (iMVCs)  



To obtain the isometric maximal voluntary contractions (iMVCs), we asked each participant to perform a specific 

exercise twice with each muscle (Hermens et al., 2000; Barbero et al., 2012; Vera-Garcia et al., 2010).  

In more detail, each participant performed the empty can test (Schwartz et al. 2017, Boettcher et al. 2008) for 

measuring the iMVC of the AD and PD.  

Each subject sat comfortably, placed the proximal load of the arm on a table at shoulder height with the shoulder 

flexed at 90° and an elbow flexion such that the forearm was at 120° from the upper arm, and performed a forearm 

isometric flexion against resistance for measuring the BBCL iMVC (Farina et al., 1999) and an isometric forearm 

extension for measuring the TBCL iMVC (Farina et al., 1999).  

To acquire the iMVC of the FCR, we asked each participant to sit comfortably, place the forearm on a table with an 

elbow flexion of around 45°, and perform an isometric hand flexion against resistance (Rota et al., 2013). From the same 

position, each participant performed an isometric hand extension against resistance for measuring the ECR iMVC (Rota 

et al., 2013).  

Each subject was placed in a supine position and performed an isometric contraction during trunk flexion against 

resistance, so we could obtain the RAS iMVC, and each subject was placed in a prone position, lying on a mattress, and 

performed an isometric contraction during trunk extension against resistance, so we could obtain the ESL iMVC (Vera-

Garcia et al., 2010). 

2.4 Data Analysis  

Data were processed using Matlab (version 2018b 9.5.0.1178774, MathWorks, Natick, MA, USA).  

2.4.1 Sub-tasks detection  

 To segment each task in the sub-tasks defined in Sec. 2.3 and shown in Figure 2, we used the vertical velocities of 

the feet and hands. Figure 3 shows this division in sub-tasks. Starting with the feet velocity signals we conducted a first 

segmentation, and then we identified the brushing sub-task using the hand velocity signals. This sub-task is the HRC part, 

which we analyzed in this study to determine the cobot effect on the task. During the task, the IMU and sEMG signals 

were time-normalized and then interpolated according to the brushing sub-task duration (400 samples) (Ranavolo et al., 

2015; Ranavolo et al., 2018; Varrecchia et al., 2021, 2022) using a linear interpolation procedure to allow a comparison 

between tasks with different durations. 

2.4.2 Bipolar sEMG Processing  

To reduce low-frequency artifacts and high-frequency noise, we band-pass filtered the sEMG signals recorded for 

both iMVC and tasks, with a 3rd order Butterworth filter of bandwidth 25–400 Hz (Butler et al., 2009; Drake and 

Callaghan, 2006). Then, we filtered the signals with a Notch’s filter with cutoff frequency 50Hz, to remove noise due to 

network signal.  The envelope of each task's sEMG signals was then extracted using full-wave rectification and low-pass 

filtering with a 4th order Butterworth filter at 5 Hz (Winter, 2009). The average iMVC peak value for each muscle has 

been used to normalize the sEMG envelope (Ranavolo 2021; Burden 2010; Marras and Davis, 2001). The mean (as the 

information regarding the overall execution of the task) and maximum (as a punctual information) values within the 

brushing sub-task were determined as muscle parameters. Furthermore, for each muscle we have calculated also the 

amplitude probability distribution function (ADPF, Jonsson, 1982) for the 10, 50, and 90th percentiles. The data from the 

three repetitions for each condition were averaged for each subject. 



2.4.3. Time-Varying Multi-Muscle Coactivation Function (TMCf)  

The simultaneous activation (coactivation) of agonist and antagonist muscles is one of the mechanisms adopted by 

the central nervous system to stabilise the joints or the spine (Granata and Marras, 2000). We used the time-varying multi-

muscle coactivation function (TMCf) (Ranavolo et al., 2015) to perform, unlike what is possible with other methods, a 

time-varying monitoring of the co-activation of more than two muscles without the need for an a-priori classification of 

the muscles, depending on the generated moment. The TMCf has shown to be particularly useful because it is sensitive 

to the level of risk and correlated to shear and compression forces in manual lifting activities carried out by a single 

worker (Ranavolo et al., 2018), as well as in lifting activities shared by multiple workers (Chini et al., 2022). In fatiguing 

lifting activities (Varrecchia et al., 2022) TMCf is correlated to the local manifestation of muscle fatigue. It was estimated 

using the following formula: 
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where 𝑑(𝑘) is the mean of the differences between the kth samples of each pair of sEMG signals: 
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In the above equations, J is the length of the signal (400 samples in this case); M is the number of considered muscles; 

𝑠𝐸𝑀𝐺!(𝑘) and 𝑠𝐸𝑀𝐺"(𝑘) are the kth sample values of the envelope of the sEMG signals of the mth and nth muscles, 

respectively.  



 

Fig. 3. Vertical velocity of the right (blue) and left (red) foot (a), vertical velocity of the left hand (b), raw sEMG signal for 
biceps brachii caput longum (c) and raw sEMG signal for triceps brachii caput longum (d) for the task without (A) and with (B) 

BAZAR. For both tasks, the dashed vertical lines indicate the sub-tasks, which are numbered on the figure and listed in the legend. 
 

TMCf was computed for each antagonistic muscle pair in each joint (shoulder, elbow, wrist, and trunk), for the entire 

arm, and for all acquired muscles. More in detail, we calculated: 

• TMCfAD-PD: coactivation of AD and PD muscles, for the shoulder joint; 

• TMCfBBCL-TBCL: coactivation of BBCL and TBCL muscles, for the elbow joint; 

• TMCfFCR-ECR: coactivation of FCR and ECR muscles, for the wrist joint; 

• TMCfRAS-ESL: coactivation of RAS and ESL muscles, for the trunk joint; 

• TMCfARM: coactivation of AD, PD, BBCL, TBCL, FCR and ECR muscles, arm coactivation as a whole; 

• TMCfALL: coactivation of all acquired muscles, overall coactivation. 

For each of the above-mentioned TMCf, we used the mean (for characterizing the overall task execution) and 

maximum (as a punctual information) values during the brushing sub-task as coactivation indices. Furthermore, for each 

of the above-mentioned TMCf, we also calculated the ADPF for the 10, 50, and 90th percentiles. The data from the three 

repetitions for each condition were averaged for each subject. 

2.5 Statistical Analysis  



To check differences between the two conditions (with and without the cobot), the statistical analysis was carried 

out using Matlab (version 2018b 9.5.0.1178774, MathWorks, Natick, MA, USA). The Shapiro–Wilk test was used to 

determine the normality of the data distribution for each parameter. The paired sample t-test or the non-parametric 

Wilcoxon test (if the data was not normally distributed) was then used to evaluate whether the help of the cobot had 

determined significant changes in each parameter. The significance level for all statistical analyses was set at p-value < 

0.05. 

 

3. Results  

For each condition (with and without robot), figures 4, 5 and 6 show the mean and standard deviation of mean values 

(Figure 4), max values (Figure 5) and ADPF (Figure 6) of each muscle (2nd and 3rd column) and of each evaluated TMCf 

(1st and 4th column), respectively.  Specifically, we reported, for each row in the 2nd and 3rd columns, the values for 

antagonist muscles and in the 4th column, the corresponding TMCf for each pair of these antagonist muscles. Furthermore, 

in the first column we reported the values of the TMCfARM and TMCfALL.  

 
Fig. 4. Mean values (Mean ± SD) of muscles [% MVC] and TMCf [% of coactivation] in both conditions, without and with 

cobot. AD: anterior deltoideus, PD: posterior deltoideus, BBCL: biceps brachii caput longum, TBCL: triceps brachii caput longum, 
FCR: flexor carpi radialis, ECR: extensor carpi radialis, RAS: rectus abdominis superior, ESL: erector spinae longissimus muscles. 

TMCf: Time-varying multi-muscle coactivation function. * statistical significance (p < 0.05). 



 

Fig. 5. Max values (Mean ± SD) of muscle [% MVC] and TMCf [% of coactivation] in both conditions, without and with 
BAZAR. AD: anterior deltoideus, PD: posterior deltoideus, BBCL: biceps brachii caput longum, TBCL: triceps brachii caput 

longum, FCR: flexor carpi radialis, ECR: extensor carpi radialis, RAS: rectus abdominis superior, ESL: erector spinae longissimus 
muscles. TMCf: Time-varying multi-muscle coactivation function. * statistical significance (p < 0.05). 

 

Considering the mean values (Figure 4), significant effects of the presence of robot for each muscle except for AD 

and for each evaluated TMCf were found (Table 2): the mean values of muscles and of TMCf significantly decrease when 

the task is performed with the cobot.  

Similarly, considering the max values (Figure 5), for each muscle except for AD and FCR and for each evaluated 

TMCf, we found significant effects of the presence of the cobot (Table 3): the max values of muscles and of TMCf 

significantly decrease when the task is performed with the cobot. 

    Mean±SD Test Statistics df p value effect size power 

AD without 23.324±26.935 
z=-5.333 9.504 0.594 0.31 0.148  with 16.038±16.487 

PD without 11.669±10.48 
z=-2.667 9.504 0.008 0.892 0.736  with 3.081±2.012 

BBCL without 14.594±10.931 
z=-2.854 9.504 0.004 1.168 0.923  with 3.241±3.261 

TBCL without 5.959±3.877 
t=3.249 10 0.009 1.087 0.9  with 2.120±0.844 

FCR without 18.159±21.82 
z=-2.934 9.504 0.003 0.707 0.539  with 3.957±4.109 

ECR without 53.376±24.896 
t=6.818 10 <0.001 2.055 0.999  with 4.150±2.022 

RAS without 3.556±2.183 
z=-2.667 9.504 0.008 1.454 0.987  with 2.781±1.357 

ESL without 13.171±5.52 z=-2.845 9.504 0.004 1.282 0.96 



 with 6.786±4.152 
TMCfAD-PD without 12.206±10.656 

z=-2.223 9.504 0.026 0.708 0.54  with 5.664±4.816 

TMCfBBCL-TBCL without 6.878±3.913 
t=4.486 10 0.001 1.404 0.987  with 1.989±1.153 

TMCfFCR-ECL without 21.307±14.159 
z=-2.934 9.504 0.003 1.385 0.979  with 2.905±1.971 

TMCfESL-RAS without 5.382±2.302 
z=-2.934 9.504 0.003 1.204 0.936  with 2.980±1.229 

TMCfARM without 7.510±3.331 
t=6.415 10 <0.001 1.91 0.999  with 1.845±0.975 

TMCfALL without 5.477±2.39 
t=6.594 10 <0.001 1.845 0.999 

  with 1.580±0.776 
Table 2. Statistical results of the effect of the cobot on each muscle and TMCf mean values. AD: anterior deltoideus, PD: 
posterior deltoideus, BBCL: biceps brachii caput longum, TBCL: triceps brachii caput longum, FCR: flexor carpi radialis, 
ECR: extensor carpi radialis, RAS: rectus abdominis superior, ESL: erector spinae longissimus muscles. TMCf: Time-
varying multi-muscle coactivation function. Bold: statistical significance (p<0.05). 

 

  
 

     

    
Mean±SD Test Statistics df p value effect size power 

AD without 49.541±48.629 
z=-0.978 9.504 0.328 0.369 0.19  with 33.996±26.499 

PD without 23.584±16.643 
t=2.880 10 0.016 1.021 0.862  with 8.417±4.748 

BBCL without 32.030±17.844 
z=-2.845 9.504 0.004 0.991 0.841 

 with 8.559±6.398 
TBCL without 11.618±7.211 

t=2.338 10 0.041 0.991 0.841  with 5.420±3.246 
FCR without 32.146±33.531 

z=-1.956 9.504 0.051 0.417 0.23  with 19.936±20.505 
ECR without 96.659±38.115 

z=-2.934 9.504 0.003 2.276 0.999  with 20.852±14.658 
RAS without 9.921±5.94 

t=2.995 10 0.013 0.255 0.12  with 8.547±4.59 
ESL without 23.863±9.57 

z=-2.490 9.504 0.013 0.835 0.68  with 16.852±6.136 
TMCfAD-PD without 21.482±15.484 

z=-2.134 9.504 0.033 0.771 0.611  with 11.037±5.775 

TMCfBBCL-TBCL without 13.011±6.666 
t=3.732 10 0.004 1.419 0.988  with 4.633±2.091 

TMCfFCR-ECL without 35.840±25.587 
z=-2.934 9.504 0.003 1.019 0.841  with 13.063±9.921 

TMCfESL-RAS without 10.643±5.222 
t=4.016 10 0.002 0.669 0.518  with 7.597±3.119 



TMCfARM without 12.184±4.672 
t=4.721 10 0.001 1.792 0.999  with 4.931±2.256 

TMCfALL without 8.906±3.505 
t=5.213 10 <0.001 1.719 0.999 

  with 3.675±1.549 

  
 

     
Table 3. Statistical results of the effect of the cobot on each muscle and TMCf max values. AD: anterior deltoideus, PD: 
posterior deltoideus, BBCL: biceps brachii caput longum, TBCL: triceps brachii caput longum, FCR: flexor carpi radialis, 
ECR: extensor carpi radialis, RAS: rectus abdominis superior, ESL: erector spinae longissimus muscles. TMCf: Time-
varying multi-muscle coactivation function. Bold: statistical significance (p<0.05). 

 

The 10th, 50th and 90th percentiles of ADPFs are reported in Table 4. Considering the 10th percentile (first dotted 

horizontal line in each plot of Figure 6), significant effects of the presence of cobot for each muscle (AD: p=0.001 , PD: 

p=0.001 , BBCL: p= 0.005, TBCL: p=0.002, FCR: p=0.001, ECR: p<0.001, RAS: p=0.025 and ESL: p=0.001) and for 

each evaluated TMCf (TMCfAD-PD: p=0.001, TMCfBBCL-TBCL: p<0.001 , TMCfFCR-ECR: p=0.001, TMCfRAS-ESL: p=0.001, 

TMCfARM: p<0.001 and TMCfALL: p=0.001) were found: the mean values of ADPF of muscles and of TMCf significantly 

decrease when the task is performed with the cobot. Considering the 50th percentile (second dotted horizontal line in each 

plot of Figure 6), significant effects of the presence of cobot for FCR (p= 0.007) and ECR (p=0.013) muscles and for 

TMCfFCR-ECR (p=0.005), TMCfARM (p= 0.010) and TMCfALL (p=0.010) were found: the 50th percentile of ADPF of these 

muscles and of TMCf significantly decrease when the task is performed with the cobot. Considering the 90th percentile 

(first dotted horizontal line in each plot of Figure 6), significant effects of the presence of cobot for BBCL (p=0.001), 

TBCL (p=0.027) and ESL (p=0.002) muscles and for TMCfBBCL-TBCL (p=0.003), TMCfARM (p=0.008) and TMCfALL 

(p=0.002) were found: the mean values of ADPF of these muscles and of TMCf significantly increase when the task is 

performed with the cobot. 

 
Fig. 6. Mean values (Mean ± SD) of amplitude probability distribution function (APDF) with the 10, 50, and 90th percentiles in 

both conditions, without and with cobot. AD: anterior deltoideus, PD: posterior deltoideus, BBCL: biceps brachii caput longum, 
TBCL: triceps brachii caput longum, FCR: flexor carpi radialis, ECR: extensor carpi radialis, RAS: rectus abdominis superior, ESL: 
erector spinae longissimus muscles. TMCf: Time-varying multi-muscle coactivation function. * statistical significance (p < 0.05). 

 



    
10th  50th  90th  

AD without 15.795±20.496 22.686±26.843 31.658±35.245 
 with 2.546±1.757 17.210±16.611 37.141±29.583 

PD without 8.523±8.509 12.41±11.375 17.274±14.478 
 with 1.489±1.127 7.951±4.841 25.983±17.118 

BBCL without 9.241±7.828 13.777±10.525 20.467±14.575 

 with 1.733±1.020 11.434±8.51 33.436±18.595 
TBCL without 4.125±2.548 5.720±3.699 7.993±5.494 

 with 0.937±0.498 4.739±3.009 12.068±6.877 
FCR without 13.365±17.217 18.673±23.908 26.713±34.577 

 with 2.272±2.284 12.487± 28.522±35.095 
ECR without 38.227±19.744 51.69±24.621 69.798±30.01 

 with 4.263±1.93 31.39±15.827 81.047±37.503 
RAS without 1.672±1.264 2.843±1.844 7.101±4.387 

 with 1.156±0.767 2.618±1.435 6.835±3.755 
ESL without 8.944±4.72 13.00±5.413 17.245±6.887 

 with 2.480±1.211 11.390±4.967 22.714±9.924 
TMCfAD-PD without 8.876±8.486 12.003±10.699 15.689±12.923 

 with 1.512±0.922 8.68±5.724 21.125±12.371 

TMCfBBCL-TBCL without 4.908±2.893 6.636±3.863 9.026±5.055 
 with 0.873±0.347 5.387±3.188 14.214±6.702 

TMCfFCR-ECL without 14.991±10.151 21.022±14.095 27.649±18.704 
 with 1.930±1.071 13.089±8.966 26.229±14.275 

TMCfESL-RAS without 3.599±1.652 5.012±2.084 7.855±3.624 
 with 1.789±0.676 4.514±1.934 8.433±3.559 

TMCfARM without 5.978±2.774 7.336±3.349 9.161±3.839 
 with 0.935±0.381 5.383±2.018 12.097±4.287 

TMCfALL without 4.377±1.983 5.366±2.389 6.639±2.82 

  with 0.825±0.349 4.111±1.447 8.775±3.042 
 

Table 4. Amplitude probability distribution function (APDF) at the 10 th, 50 th, and 90th percentiles (Mean ± SD) of muscle 
[% MVC] and TMCf [% of coactivation] in both conditions, without and with BAZAR. AD: anterior deltoideus, PD: 
posterior deltoideus, BBCL: biceps brachii caput longum, TBCL: triceps brachii caput longum, FCR: flexor carpi radialis, 
ECR: extensor carpi radialis, RAS: rectus abdominis superior, ESL: erector spinae longissimus muscles. TMCf: Time-
varying multi-muscle coactivation function. * statistical significance (p < 0.05). 

 

 

4. Discussion 

In this work, we investigated a hybrid worker-robot MMH, throughout the execution of a real-world use case, 

extrapolated and recreated from an industrial context, to examine the changes of worker motor coordination and physical 

effort. In detail, we examined upper limb coactivation and muscle activation while doing the task with and without the 

dual-arm mobile cobot BAZAR, to see how BAZAR could help improve coordination. 



Overall, our findings suggest that using BAZAR to perform the specific MMH improves coordination and reduces 

the workers' physical effort as compared to performing the identical task without BAZAR. In particular, there is a 

reduction in both upper limb co-activation and muscle activation (Fig. 4 and 5, Table 2 and 3). 

The confirmation of our hypothesis shows that the worker executes the task with less physical effort and improved 

motor coordination throughout the subphases of the work cycle where there is true collaboration between this bimanual 

collaborative robot and the worker. This suggests that the deployment of cobots will represent innovative ergonomic 

interventions for reducing the occurrence of WMDs in the industrial setting. This could have a positive impact on 

employee absences, moves and early work interruption. 

The TMCf was significantly lower in each antagonistic muscle pair of the shoulder, elbow, wrist, and trunk joints 

and for the entire arm and for all acquired muscles. This reduction was highlighted by taking into account not only the 

mean value (Fig. 4, Table 2) (Ranavolo 2021), which expresses what happens throughout the task and provides 

information on the task's overall execution, but also the maximum value (Fig. 5, Table 3) (Ranavolo 2021), which is a 

punctual index that provides information on the maximum value of simultaneous antagonist muscle activation during the 

task. These findings on muscle joint co-activation show that designing a hybrid worker-robot MMH promotes a significant 

reduction in antagonist muscle activations and in counteracting agonist actions, lowering moments that do not contribute 

to the needed net joint moments (Childs et al., 2004; Collins et al., 2011; Griffin and Guilak, 2005; Lewek et al., 2004). 

Compressive loading across the joints is also reduced as a result of the reduced muscle co-activation (Granata and Marras, 

1995, 2000; Marras and Granata 1996; Marras and Mirka, 1993; Ranavolo et al., 2015, 2018b). Finally, lower co-

activation of upper-limb and trunk muscles results in more functionally advantageous and efficient motions, by lowering 

physiological and metabolic costs, resulting in power growth (Franchi et al 2017).  

Considering the muscular activity of upper limb, a significant reduction is shown for each investigated muscle except 

for the mean (Fig. 4, Table 2) and maximum (Fig. 5, Table 3) values of anterior deltoideus muscle (which is a shoulder 

flexor muscle) and for the maximum value of flexor carpi radialis muscle (which is a wrist flexors muscle).  These results 

could be due to a high variability of activation of these muscles also caused by a different posture and maintenance of the 

object for the participants, during the execution of the task without BAZAR. 

The APDF (Figure 6) shows the trend of muscular activities in % MVC and of % of coactivation. When BAZAR 

collaborates with subjects the mean values of 10th percentile are lower respect to the condition without BAZAR for each 

muscle (Figure 6 and Table 4). The ADPFs increase more slowly when subjects perform the task without BAZAR with 

the initial muscle activities always higher with respect to the condition with BAZAR. Furthermore, when BAZAR helps 

the subjects, the mean values of 10th percentile never exceeded the limits (5 % MVC) of acceptable muscular load for the 

static load level (10th) that were found in studies of muscular endurance during dynamic work (Jonsson, 1982). 

Additionally, with the exception of the AD and ECR muscles, the mean values of the median (50th percentile) load level 

are lower when BAZAR is used (Fig. 6 and Table 4), and they never go over the limit for static load levels (14%, Jonsson, 

1982). Furthermore, the peak loads (90th percentile) do not exceed the limit (70%) in both conditions with and without 

BAZAR. 

The results of this study show that the HRC technologies which share the workers’ workspace, not only offload 

them from external loads and improve efficiency and quality of the task execution; they also allow a reduction of the 

worker physical effort when s/he physically interacts with the robot, since the latter affects the worker’s physiological 

motor strategy. 

Indeed, “The experimental session involved the implementation of a hybrid scenario in which a human and a robot 

collaborate. In addition to subphases when the cobot replaces the worker, there is a subphase where worker and cobot 



interact physically. In this subphase, according to our findings, the worker's physical effort is reduced (a rather obvious 

effect), but it also enables the worker to use a more coordinated motor strategy. As a result, giving a load to the machine 

improves coordination, rather than reducing it, and enables the worker to cooperate and coordinate with the robot partner. 

 

4.1 Limitation and future developments  

The small sample size (11 subjects) is a limitation of the study due to the fact that the experimental session was very 

complex and long since it involved performing the work task twice, without and with the BAZAR robot. Furthermore, 

the experiments were possible only during a limited time period, when two research groups could work together at the 

University of Montpellier, sharing their knowledge and technologies within the European Union's Horizon 2020 SOPHIA 

project (please see the “funding” section). Future studies should include larger sample sizes, useful for confirming the 

results of this study, and we will include subjective information collected through the administration of questionnaires 

related to usability and acceptability of the cobot by the worker. Furthermore, future experimental sessions should include 

subjective effort indicators such as subjective workload (e.g., NASA Task Load Index, Hart & Staveland, 1988) or ratings 

of perceived exertion (e.g., fatigue scale, Borg et al. 1982). We should also verify whether these subjective indicators are 

correlated to the objective measures presented in this article. 

Furthermore, in this study, BAZAR moves in the space interacting with the worker thanks to the presence of QR 

codes. This could be considered as a limitation of the study. A future development could include the use of a robot that 

supports the suitability for individualization that is the possibility of adapting to the needs and abilities of the worker 

(Ajoudani et al., 2020). Indeed, the new opportunity represented by the fourth industrial revolution is allowing the design 

of flexible and reconfigurable hybrid work environments, thanks to the use of innovative wearable sensors for monitoring 

and feedback (e.g. haptic stimuli to specific areas of the body). Exoskeletons and cobots embed new instrumental-based 

tools (i.e. myoelectric interfaces which monitor muscle activation amplitude and fatigue), with advanced interaction and 

sensing capabilities. These tools can evaluate the workers’ physical states, assess their effectiveness on motor 

performance, respond to their intentions in a timely manner and offload them from internal loadings (Lotti et al., 2020; 

Ajoudani et al., 2020; Kapelner et al., 2019, 2020; Lobov et al., 2018; Roche et al., 2014; Hahne et al., 2014; Gordon et 

al., 2013; Kiguchi et al., 2012). In future work, BAZAR could be controlled by using kinematic, kinetic and sEMG-based 

signals acquired from workers through an effective interaction between humans and robots, that ensures a correct 

information exchange between natural and artificial side.  Indeed, only these suitable interfaces can monitor human 

behavior to properly plan the execution of the collaborative task and can allow mutual awareness of the human–robot 

dyad (Ajoudani et al., 2020). 
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Figures: caption and alt text 

Figure 1 Caption: Industrial use case scenario (A) and laboratory scenario (B). 

Figure 1 Alt Text: Industrial use case scenario proposed by the SME HANKAMP (Netherlands) is shown in the panel A 
while in the panel B the laboratory scenario is shown: it consisted of the BAZAR collaborative robot (only referred to as 
BAZAR in the following), 4 tables, 1 cylindrical load (5 kilograms) to be displaced and 1 cleaning brush. 

 
Figure 2 Caption: Sub-tasks of the task without (A) and with (B) BAZAR. 

Figure 2 Alt Text: In the panel A the sub-tasks of the task without BAZAR are shown: standing 1; walking 1; standing 
2; lifting+carrying+placing 1; standing 3; lifting+carrying+placing 2; standing 4; lifting 1; brushing; placing +lifting 2; 
moving on table; standing 5; walking 2; standing 6. In the panel B the sub-tasks of the task with BAZAR are shown: 
standing 1; walking 1; standing 2; lifting+carrying+placing 1; lifting+carrying+placing 2; standing 4; brushing; 
placing+walking 2; standing 5. 

 

Figure 3 Caption: Vertical velocity of the right (blue) and left (red) foot (a), vertical velocity of the left hand (b), raw 
sEMG signal for biceps brachii caput longum (c) and raw sEMG signal for triceps brachii caput longum (d) for the task 
without (A) and with (B) BAZAR. For both tasks, the dashed vertical lines indicate the sub-tasks, which are numbered 
on the figure and listed in the legend. 
 
Figure 3 Alt Text: Panel A shows the vertical velocity of the right (blue) and left (red) foot, the vertical velocity of the 
left hand, the raw sEMG signal for biceps brachii caput longum and raw sEMG signal for triceps brachii caput longum 
for the task without BAZAR. In each plot there are dashed vertical lines indicating the sub-tasks (standing 1; walking 1; 
standing 2; lifting+carrying+placing 1; standing 3; lifting+carrying+placing 2; standing 4; lifting 1; brushing; placing 
+lifting 2; moving on table; standing 5; walking 2; standing 6), which are numbered on the figure and listed in the legend. 
Panel B shows the same data referring to the task with BAZAR (sub-tasks: standing 1; walking 1; standing 2; 
lifting+carrying+placing 1; lifting+carrying+placing 2; standing 4; brushing; placing+walking 2; standing 5).  

 

Figure 4 Caption: Mean values (Mean ± SD) of muscles [% MVC] and TMCf [% of coactivation] in both conditions, 
without and with cobot. AD: anterior deltoideus, PD: posterior deltoideus, BBCL: biceps brachii caput longum, TBCL: 
triceps brachii caput longum, FCR: flexor carpi radialis, ECR: extensor carpi radialis, RAS: rectus abdominis superior, 
ESL: erector spinae longissimus muscles. TMCf: Time-varying multi-muscle coactivation function. * statistical 
significance (p < 0.05). 

 
Figure 4 Alt Text: A bar plot of Mean values (Mean ± SD) of each acquired muscles [% MVC] and each evaluated Time-
varying multi-muscle coactivation function [% of coactivation] in both conditions, without and with cobot are shown in 
the figure. TMCf: Time-varying multi-muscle coactivation function. The figure shows statistical significance reported in 
the text with an asterisk. 

 

Figure 5 Caption: Max values (Mean ± SD) of muscles [% MVC] and TMCf [% of coactivation] in both conditions, 
without and with cobot. AD: anterior deltoideus, PD: posterior deltoideus, BBCL: biceps brachii caput longum, TBCL: 
triceps brachii caput longum, FCR: flexor carpi radialis, ECR: extensor carpi radialis, RAS: rectus abdominis superior, 
ESL: erector spinae longissimus muscles. TMCf: Time-varying multi-muscle coactivation function. * statistical 
significance (p < 0.05). 

 
Figure 5 Alt Text: A bar plot of Max values (Mean ± SD) of each acquired muscles [% MVC] and each evaluated Time-
varying multi-muscle coactivation function [% of coactivation] in both conditions, without and with cobot are shown in 
the figure. TMCf: Time-varying multi-muscle coactivation function. The figure shows statistical significance reported in 
the text with an asterisk. 

 



Figure 6 Caption: Mean values (Mean ± SD) of amplitude probability distribution function (APDF) with the 10, 50, and 
90th percentiles in both conditions, without and with cobot. AD: anterior deltoideus, PD: posterior deltoideus, BBCL: 
biceps brachii caput longum, TBCL: triceps brachii caput longum, FCR: flexor carpi radialis, ECR: extensor carpi radialis, 
RAS: rectus abdominis superior, ESL: erector spinae longissimus muscles. TMCf: Time-varying multi-muscle 
coactivation function. * statistical significance (p < 0.05). 

Figure 6 Alt Text: Figure shows the Mean values (Mean ± SD) of amplitude probability distribution function (APDF) 
with the 10, 50, and 90th percentiles in both conditions, without and with cobot. The APDF are shown for each acquired 
muscles [% MVC] and each evaluated Time-varying multi-muscle coactivation function. 
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