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On Radiation-Based Thermal Servoing:
New Models, Controls and Experiments

Luyin Hu, David Navarro-Alarcon, Andrea Cherubini, Mengying Li and Lu Li

Abstract—In this paper, we introduce a new sensor-based
control method that regulates (by means of robot motion) the
temperature of objects that are subject to a radiative heat
source. This valuable sensorimotor capability is needed in many
industrial, dermatology and field robot applications, and it is
an essential component for creating machines with advanced
thermo-motor intelligence. To this end, we derive a geometric-
thermal-motor model which describes the relation between the
robot’s active configuration and the produced dynamic thermal
response. We then use the model to guide the design of two new
thermal servoing controllers (one model-based and one adaptive),
and analyze their stability with Lyapunov theory. To validate our
method, we report a detailed experimental study with a robotic
manipulator conducting autonomous thermal servoing tasks. We
show that the temperature of multiple objects with unknown
thermophysical properties attached to the same end-effector can
be effectively regulated by controlled robot motion. Although
thermal sensing is a mature technology in many industrial
thermal engineering applications, its use as a feedback signal for
robot control has not been sufficiently studied in the literature. To
the best of our knowledge, this is the first time that temperature
regulation is formulated as a motion control problem for robots.

Index Terms—Thermoception, visual servoing, sensor-based
control, robotic manipulation, adaptive control.

I. INTRODUCTION

THERMAL SERVOING is a feedback control problem

that deals with the regulation of an object’s temperature

by means of motor actions of a rigid robot, which can either

manipulate the object or the heat source. It is a frontier prob-

lem that has numerous important applications (e.g. in industrial

process control, cosmetic dermatology, fire-fighting missions,

etc.) where temperature needs to be dynamically controlled

and the environment is uncertain. The quality, performance

and safety of these (otherwise open-loop) applications can be

improved by incorporating thermal sensorimotor capabilities.

From a control systems perspective, the automation of this

type of temperature-critical tasks requires: (a) the computa-
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Fig. 1. Creatures and robots with thermo-motor intelligence: When exposed
to the sun, butterflies adjust their wings configuration to control their temper-
ature (a); robotic systems with thermal servoing algorithms can be used for
firefighting (b), volcano exploration (c) and industrial applications (d).

tion of a geometric-thermal-motor (GTM) model1 describing

the relation between the robot’s motion and the consequent

thermal response, and (b) the development of a sensor-based

strategy (that relies on the thermal interaction matrix)2 to

autonomously impose a desired heat profile onto the surface

of interest. Note that unlike other perception modalities for

robot control (e.g. vision [2], proximity [3], touch [4], audition

[5] and even smell [6]), thermoception has not been fully

formalized in the literature as a bona fide feedback signal for

motion control. In the robotics community, we still lack the

framework to fully exploit it. Up to now, the overwhelming

use of thermoception in robotics has been to monitor processes

(e.g., image-based visual servoing with thermal cameras [7]),

but not to establish explicit thermal servo-loops [8], which are

needed to accurately control temperature. Our aim in this paper

is to develop the necessary framework that enables the design

of thermal servoing controls with radiative heat sources.

Although thermal sensing is a mature technology and has a

rich history in the automation of many tasks (see e.g. [9]–[12]),

its use as a feedback signal for robot control has not been

sufficiently studied in the literature [13], where only a few

works have addressed this challenging servo-control problem.

Some representative works that deal with explicit thermal

control include: [14], where a fuzzy controller is developed to

regulate the temperature of a fuel cell actuator; [15], where the

influence of temperature in the deformation behavior of a sur-

gical robot is investigated, and an explicit thermal regulator is

designed; [16], where a control method is designed to maintain

a constant tool temperature by adjusting the spindle speed in a

stir friction welding robot. However, in these types of methods,

temperature control is achieved by directly modulating the

power of the heat-generating components. This approach is not

suitable when considering external heat sources, e.g. wildfires

1The GTM model is analogous to the geometric-image-motor model used
in visual servoing to control the robot’s motion [1]. Its derivation relies on
thermophysical principles (to be introduced in Sec. II), which correspond to
the role of a camera model in the visual servoing formulation.

2Similar to the interaction (Jacobian) matrix of servoing problems, a thermal
interaction matrix relates the heat energy inflow/outflow towards/from the
object of interest (that causes a temperature change) with the robot motion.
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[17] and sunlight [18], or when the source’s power should not

be varied, e.g. in cosmetic procedures [19].

A different strategy is to use sensor-based control, i.e. to

dynamically change the source-object geometric configuration

to achieve a desired thermal response (similar to what many

organisms do [20]). This can be easily done by rigid robots,

since their basic function is motion control. Such approach

demands the development of appropriate models that can

effectively capture the system’s GTM relations. This idea

has been partially demonstrated in [21], where the optimal

fixed location of multiple radiating heaters in a process is

automatically calculated to evenly imprint a desired thermal

profile onto a surface. Yet, the heater is static and the method

requires exact knowledge of all thermodynamic parameters

(which are generally unknown). The proposed approach has

also the potential to be used e.g. in fire-fighting [22] or volcano

exploration robots [23] to calculate optimal trajectories that

avoid overheating or damaging the robot’s components.

The dynamic coupling between temperature and motion

may seem unintuitive for humans [24], while many organ-

isms extensively exploit these relations [25]. However, these

advanced thermoception-based capabilities have not yet been

fully incorporated in robot control, a discipline with good track

record of borrowing inspiration from nature [26], but which

seems to be lagging in this direction.

As a feasible solution to the above-mentioned issues, in this

paper, we present a rigorous formulation for robot thermal

servoing with radiative sources. The main contributions are:

• We develop an efficient algorithm for computing in real-

time the radiation-based thermal interaction matrix which

relates robot velocity and object temperature rate.

• We present a novel robot control method for automati-

cally regulating the temperature of grasped objects.

• We report experiments to validate the proposed theory.

To the best of the authors’ knowledge, this is the first time that

temperature regulation has been formulated in the literature

as a robot servoing problem. The proposed approach could

advance the development of multimodal robot controllers.

The rest of the paper is as follows: Section II presents

the mathematical models; Section III derives the controller;

Section IV reports results; Section V gives final conclusions.

II. MATHEMATICAL MODELING

A. Heat Transfer Model

Throughout this manuscript, we denote all column vectors

by small bold letters, e.g. v ∈ R
n×1, and matrices by capital

bold letters, e.g. M ∈ R
m×n.

In the following sections, we introduce basic thermody-

namic concepts (we refer the reader to [27], [28]) that are

needed for developing the system’s GTM model. To this end,

consider a robot manipulator with end-effector pose denoted

by x ∈ R
n. The robot rigidly grasps (through an adiabatic

layer) a planar “small-enough” object (such that its temper-

ature can be fairly approximated by a single sensing point),

whose surface temperature is to be controlled by changing

the relative pose to a heat source. The heat transfer model

is composed of three main parts (depicted in Fig. 2): (i) heat

source, (ii) heat collector (i.e. the object), and (iii) surrounding

environment. Thermophysical parameters of different parts are

denoted by the same symbol but with different subscripts.

We denote the (constant) temperature of the heat source

and the (varying) temperature of the object by T1 and T2,

respectively. We assume both temperatures to be spatially

uniform during the heat transfer process3. The environment

temperature (assumed to be constant) is denoted by T3.

Remark 1. In this paper, we use the subscripts i = 1, 2, 3
to denote the thermophysical parameters of the heat source,

the object and the environment, respectively (a convention

followed by many works dealing with heat transfer).

Heat transfer occurs amongst the three parts whenever T1,

T2, T3 have different values. The direction of heat transfer is

always from a high temperature part to a low temperature part.

We denote the net energy transfer rate to the object by Q2,

where a positive value indicates energy inflow. We introduce

q2 = Q2/A2 to represent the surface’s net heat flux and

v = dT2/dt to describe the temporal change of the measured

temperature T2. According to the energy conservation laws,

these quantities satisfy the relation:

v = Q2/(m2c2) (1)

where m2 denotes object’s mass and c2 denotes the material’s

specific heat. To synthesize a thermal servoing controller, it is

useful to find an expression of the following form:

v = f(x, T2) (2)

which describes the thermal-geometric relation between the

robot configuration and the temperature rate.

B. Radiation Exchange Between Planar Surfaces

In this subsection, we show how to calculate Q2 between

planar surfaces when thermophysical properties are known.

According to different mechanisms involved in the heat trans-

fer processes [29], the object’s net heat flux q2 satisfies the

expression q2 = qrad + qconv + qcond, for radiative qrad,

convective qconv and conductive qcond fluxes. In our case of

study, thermal radiation is the dominant heat transfer mode;

Note that qcond and qconv are negligible since the object is

grasped through an adiabatic layer and the source’s tempera-

ture is much higher than those of the object and environment.

Assumptions 1. We assume that the following conditions are

satisfied during the task (see Fig. 2):

1) All surfaces have uniform thermophysical properties.

2) All surfaces are gray, i.e. they are diffuse emitters with

equal emittance and absorptance.

3) The environment/room is modeled as a black body (i.e.

ε3 = α3 = 1, see the variables’ definition below).

The net energy transfer rate Q2 has the following form:

Q2 = A2qrad = A2(α2G2 − E2) (3)

where A2 denotes the object’s surface area, G2 the radiative

flux incident at the surface, α2 ∈ [0, 1] the object’s absorptance

3This assumption simplifies transient heat conduction problems with the
lumped capacitance method. It is generally valid for objects with high
thermal conductivity, small characteristic length, and subject to moderate heat
inflow/outflow. A quantitative valid condition of the assumption is the Biot
number criterion, which is introduced in [27, Chapter 5]. For cases where
the assumption is not valid, the object could be divided into different regions
according to valid conditions, and multiple sensors could be used to obtain
temperature feedback
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Fig. 2. Representation of the heat transfer model. A part of the object surface
is magnified to show the various heat transfer processes.

and E2 the heat flux emitted by a surface (i.e. emissive power)

which is approximated using the Stefan-Bolzmann law [27]

E2 = ε2σT
4
2 (4)

with ε2 ∈ [0, 1] the material’s emittance, and σ is the Stefan-

Bolzmann constant.

Note that for an opaque surface (i.e. with zero transmit-

tance), its reflectance ρi and absorptance αi satisfy ρi+αi = 1.

Radiosity is defined as Ji = Ei+ρiGi, and since for our heat

source E1 ≫ ρ1G1, we can fairly approximate it as J1 ≈ E1.

Remark 2. The view factor Fij represents the fraction of

Ji that is incident on surface j. The view factor depends

on the end-effector configuration, i.e. Fij = Fij(x). Thus,

its calculation is essential for deriving the geometric-thermal-

motor model. The detailed derivation of Fij for different cases

and configurations is presented in later sections. Here, we

assume Fij in known and only focus on the derivation of Q2.

The radiation incident to a surface is the summation of the

corresponding portion of radiation coming from other surfaces.

Thus, Gi can be calculated from the expression:

A2G2 =

3∑

j=1

Fj2AjJj = F12A1J1+F22A2J2+F32A3J3 (5)

where by using the reciprocity relation AiFij = AjFji, the

summation rule
∑N

j=1
Fij = 1, and the planar surfaces’

property Fii = 0 (see [27]), we can simplify (5) into:

A2G2 = F21A2J1 + F23A2J3

= F21A2E1 + (1− F21)A2E3

(6)

Substitution of (6) into (3) yields:

Q2 = A2α2(E1 − E3)F21 +A2α2E3 −A2E2 (7)

which we substitute alongside (4) into (1) to obtain the

following key expression for the object’s temperature rate:

v = λ1F21 − λ2T
4
2 + λ3 (8)

for constant scalar parameters λ1, λ2, and λ3 satisfying

λ1 =
A2α2σ(ε1T

4
1 − T 4

3 )

m2c2
, λ2 =

A2ε2σ

m2c2
, λ3 =

A2α2σT
4
3

m2c2
(9)
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Fig. 3. Geometry of the view factor between two elementary surfaces.

C. View Factor Analytical Definition

In this section, we provide the general expression of F21,

which we will instantiate (in the following sections) for various

configurations. To this end, consider the elementary areas dA1

and dA2 on the source and object surfaces, respectively. These

areas are separated by a length r that forms polar angles θ1
and θ2 (see Fig. 3). The definition of the view factor is:

F21 =
1

A2

∫

A2

∫

A1

cos θ2 cos θ1
πr2

dA2 dA1 (10)

The solution of (10) is usually complicated to derive. A

variety of methods [30]–[33] have been proposed to calculate

it. Here, we use the method in [34], which converts the double

surface integrals into double contour integrals as follows:

F21 =
1

2πA2

∮

Γ1

∮

Γ2

ln s ds2 · ds1, (11)

where Γi denotes the contour of the ith surface, si the position

vector of an arbitrary point on boundary Γi, and s = ‖s2−s1‖
the distance between two contour points. The advantage of

using this approach is its efficient computation time [35].

D. Thermal Servoing with Parallel Circular Surfaces

In this section, we derive the thermal servoing model for

two parallel source-object surfaces. To this end, we denote

the surfaces’ center and radius by ci and ri, respectively. The

origin of the coordinate system ~i1~j1~k1 is set at c1, with a

unit basis vector ~k1 along the normal ~n1, and a unit basis

vector~i1 perpendicular to the ground. We define~i2~j2~k2 as the

translation of ~i1~j1~k1, with origin at c2. The scalars ωi denote

the angle between ~ii and si. We set the frames’ centers at

c1 = [0, 0, 0]⊺ and c2 = [p1, p2, p3]
⊺, with respect to ~i1~j1~k1.

The parametric position vectors si are then computed as:

s1 =
[
r1 cosω1 r1 sinω1 0

]⊺

s2 =
[
r2 cosω2 + p1 r2 sinω2 + p2 p3

]⊺
.

(12)

Their differential changes satisfy the following relations:

ds1 =
[
−r1 sinω1 dω1 r1 cosω1 dω1 0

]⊺

ds2 =
[
−r2 sinω2 dω2 r2 cosω2 dω2 0

]⊺

ds1 · ds2 = r1r2 cos(ω1 − ω2) dω1 dω2.

(13)
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Fig. 4. Conceptual representation of a self-obstruction case.

Then, the distance s = ‖s2 − s1‖ can be derived as:

s = s(p1, p2, p3, ω1, ω2) =
(
p1

2 + p2
2 + p3

2+

2p1(r2 cosω2 − r1 cosω1) + 2p2(r2 sinω2 − r1 sinω1)

+r1
2 + r2

2 − 2r1r2 cos(ω2 − ω1)
) 1

2 . (14)

By substituting (13)–(14) into (11), F21 can be calculated via:

F21 =

∫ 2π

0

∫ 0

2π

r1r2
2πA2

cos (ω1 − ω2) ln s(x, ω1, ω2) dω2 dω1

(15)

where we define the end-effector position as x = [p1, p2, p3]
⊺

.

By injecting (15) into (8), we can finally obtain the system’s

thermal-geometric relation:

v = f(x, T2) = λ1F21 − λ2T2
4 + λ3 (16)

where f(·) is the function in (2). By differentiating (16), we

obtain the following key dynamic model:

v̇ = l · u− 4λ2T2
3v (17)

where l = λ1
∂F21

∂x

⊺

denotes the interaction/Jacobian matrix

(vector, in this example), and u = ẋ ∈ R
n is the robot’s

Cartesian velocity. The above expression is used for designing

control laws for ẋ in the following sections. By using Leibniz

integral rule [36], the interaction matrix can be expressed as:

l =




∫ 2π

0

∫ 0

2π

h(p1 + r2 cosω2 − r1 cosω1) dω2 dω1

∫ 2π

0

∫ 0

2π

h(p2 + r2 sinω2 − r1 sinω1) dω2 dω1

∫ 2π

0

∫ 0

2π

hp3 dω2 dω1




(18)

with the scalar h defined as:

h = λ1r1r2 cos(ω1 − ω2)/(2πA2s
2) (19)

Since it is hard to analytically compute the double integrals,

we use numerical methods to approximate l in real-time.

E. Circular Surfaces in Arbitrary Configurations

In this section, we extend the parallel surfaces problem to a

6-DOF scenario, where the end-effector configuration is now

defined as x = [p1, p2, p3, θx, θy, θz]
⊺

, for θi as the angles

around the object’s coordinate system (see Fig. 3). We denote

by R the 3D rotation matrix corresponding to this relative

orientation. Note that in some configurations of this non-

parallel case, radiation from a source’s region cannot reach

the front side of object’s surface (hence, will not contribute to

the heat inflow). We refer to this problem as self-obstruction.

To model this situation, let us denote the object plane

as D1D2c2, for D1 and D2 as the intersections with the

bounded source plane. This setup is depicted in Fig. 4, where

the heat source is divided into two surfaces: the red surface

composed4 of
>

D1D5D2D2D1 and the black surface composed

of
>

D2D6D1D1D2. The black surface only “sees” the object’s

backside (i.e. the robot’s gripper), thus, is omitted from the

following calculation of F21:

F21 =
1

2πA2

(∮

Γa

∮

Γ2

ln sa ds2 dsa +

∮

Γl

∮

Γ2

ln sl ds2 dsl

)

(20)

where Γa denotes the arc
>

D1D5D2 and Γl the line D1D2. To

derive its respective position vectors sa and sl, we compute

the vector n2 = [n1
2, n

2
2, n

3
2]

⊺
normal to the object plane as:

n2 = R
[
0 0 −1

]⊺
(21)

whose plane equation satisfies:

n1
2 (x− p1) + n2

2 (y − p2) + n3
2 (z − p3) = 0 (22)

To find the intersection with the plane, we use (21) and

substitute x = r1 cosϕ, y = r1 sinϕ and z = 0 into (22), for

ϕ as a variable angle. Self-obstruction occurs when there exist

two solutions ϕ1 and ϕ2; After some algebraic operations, the

arc and line parametric vectors are obtained from:

sa =



r1 cosϕ
r1 sinϕ

0


 , sl =




xl

kl(xl − r1 cosϕ2) + r1 sinϕ2

0




(23)

for a distance range xl ∈ [r1 cosϕ2, r1 cosϕ1], an angle range

ϕ ∈ [ϕ1, ϕ2], and a slope kl =
sinϕ2−sinϕ1

cosϕ2−cosϕ1

of the line D1D2.

The parametric vector on the object’s contour is computed as:

s2 = R
[
r2 cosω2 r2 sinω2 0

]⊺
+
[
p1 p2 p3

]⊺
(24)

As with the parallel surface case, we compute the arc and line

distances sa = ‖s2−sa‖ and sl = ‖s2−sl‖. The 6-DOF view

factor for the self-obstruction case is as follows:

F21 =
1

2πA2

∫ ϕ2

ϕ1

∫ 0

2π

ln sa dω1 dϕ

+
1

2πA2

∫ r1 cosϕ1

r1 cosϕ2

∫ 0

2π

ln sl dω1 dxl. (25)

With this expression, we can derive a similar GTM model

v̇ = l · u − 4λ2T2
3v, where u = ẋ ∈ R

6 and the interaction

matrix is l = λ1
∂F21

∂x

⊺

∈ R
6. For this 6-DOF case, we use the

following numerical differentiation method to approximate l:

l = λ1



(F21(p1 + dp1, p2, ..., θz)− F21(x)) /dp1

...

(F21(p1, p2, . . . , θz + dθz)− F21(x)) /dθz


 (26)

Parallel programming techniques can be applied to achieve

real-time capabilities, where every element of l is simultane-

ously calculated by an independent process.

4The symbol
>

abc denotes the arc that passes through the points a, b and c.
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Remark 3. When the object plane and the bounded source

plane do not intercept, we classify it either as a common (non-

self-obstruction) case or as a complete self-obstruction case.

This classification can be done by checking whether the object

plane intercepts the bounded source plane. For the common

case, the entire contour of the heat source will be used to

calculate F21 (in this situation, we use (11) for calculation).

For the complete self-obstruction case, we set F21 = 0.

F. Thermal Servoing Model with Multiple Objects

Here, we consider the case where the robot rigidly ma-

nipulates N “small” objects in space (for N ≤ 3) with its

end-effector, and regulates the temperature of each sensing

point. The local range of feasible temperatures for each object

is constrained by the geometry of the view factors and the

rigid inter-object kinematics. For this situation, we assume

that heat exchange amongst the objects is negligible, therefore,

the derivation of the N -object interaction matrix L ∈ R
N×n

(where n is the number of DOF of the robot) is analogous to

the previous sections and is simply constructed with N vectors

li as follows:

L =
[
l1 · · · lN

]⊺
. (27)

To effectively control each feedback temperature, the num-

ber of robot DOF must satisfy N ≤ n. For this multi-object

system, we construct the following structures:

τ =
[
T 1
2 · · · TN

2

]⊺
∈ R

N (28)

T = diag
(
(T 1

2 )
3, · · · , (TN

2 )3
)
∈ R

N×N (29)

v =
[
v1 · · · vN

]⊺
∈ R

N (30)

The constant thermophysical parameters λ2 are defined for ith
object as λi

2, and are grouped into the constant matrix:

Λ = diag(λ1
2, · · · , λ

N
2 ) ∈ R

N×N (31)

With all these terms, the geometric-thermal-motor model can

be extended to a multi-object case:

v̇ = Lu− 4TΛv (32)

G. Irregularly Shaped Surfaces

In practical applications, contours are typically irregular,

thus, have no simple parametric form. Depending on the

requirements of the application, we can use the following

two strategies to calculate the view factor (which is needed to

derive the thermal interaction matrix L): (i) If the computation

power of the robot is limited (e.g. field robots), we recommend

to use a simple shape (e.g. circles and rectangles) to approx-

imate the real contour; (ii) If an accurate calculation of the

view factor is required for conducting numerical simulation

and analysis (as will be discussed in Sec. IV-F), methods such

as truncated Fourier series [37] could be used to parameterize

the irregular contour (we verified this approach on an Intel

i7-9750H CPU using 5 harmonics and obtained an estimation

error smaller than 0.2% with a computation time of 0.15 s).

III. CONTROLLER DESIGN

Problem statement. Given a constant temperature reference

vector τ ∗ = [T ∗1, . . . , T ∗N ]
⊺

∈ R
N , design a velocity-

based motion controller u that asymptotically minimizes the

feedback error ∆τ = τ − τ ∗ for all N objects.

Model-based
Plant

Controller

u τ

τ̇ , τ Rate

Estimator

τ
∗

Fig. 5. Schematic representation of the model-based controller.

A. Model-Based Controller

To regulate the feedback temperature of N objects5, we

design the following velocity controller (see Fig. 5):

u = L+(−Dv −K∆τ + 4TΛv) (33)

where L+ = L⊺ (LL⊺)
−1

is the right pseudoinverse of L,

and D > 0 and K > 0 are control gains. Note the analogy

with visual servoing, which relies on the model of the first

derivative of the task error, ė = Lu, to regulate e to 0 via:

u = −L+Ke, which enforces the closed-loop system ė =
−Ke. Here, we rely on the second derivative of the task error,

ë = Lu + L′ė (viz. system (32) with e = ∆τ , v = ė and

L′ = −4TΛ) and regulate e to 0 via: u = L+(−Ke−L′ė−
Dė) (viz. controller (33)). The closed-loop system becomes

ë = −Ke−Dė, which is stable, as we will show hereby.

Proposition 1. Consider that thermodynamic parameters in

(32) are accurately known. For this situation, the control input

(33) enforces a stable closed-loop system which asymptoti-

cally minimizes ‖∆τ‖.

Proof: Substituting (33) into the nonlinear dynamic sys-

tem (32), yields the following closed-loop system:

v̇ = −Dv −K∆τ . (34)

Consider the quadratic Lyapunov function

Q(v,∆τ ) = 1

2
‖v‖2 + 1

2
K‖∆τ‖2 (35)

whose time derivative along trajectories of (34) yields

Q̇(v,∆τ ) = v⊺v̇ +K∆τ ⊺v = −D‖v‖2 (36)

which shows that the energy function is non-increasing, i.e.

Q̇ ≤ 0, thus, the closed-loop system is stable. By applying

the Krasovskii-LaSalle principle, the asymptotic minimization

of ‖∆τ‖ can be proved.

Remark 4. In our proposed method, the terms T and τ in the

controller (33) can be directly obtained from real-time sensor

measurements. Yet, to implement the variable v, we use a rate

estimation algorithm based on polynomial fitting with sliding

windows [38].

B. Adaptive Controller

In the above model-based controller, we assume that the

object’s thermophysical properties are exactly known in ad-

vanced. However, due to uncertainties in the material’s condi-

tions, it is hard to know these values in practice. To deal with

this issue, we propose an adaptive control strategy that does

not require knowledge of the true parameters. To this end, we

5Throughout this paper, we consider that N ≤ 3 ≤ n. The method’s
extension to N > n > 3 is straightforward (it only requires to use the left
pseudoinverse). However, asymptotic stability cannot be ensured.
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Fig. 6. Schematic representation of the adaptive controller.

start by introducing the unknown parameters a1 = 1

λ1

and

a2 = λ2

λ1

, which are well-defined since λ1 > 0; We use the

superscripts ai1 and ai2 to distinguish them between different

objects. With these parameters, we construct the following

constant vector a1,2 ∈ R
N and matrix A1,2 ∈ R

N×N :

a1 =
[
a11 · · · aN1

]⊺
, A1 = diag(a1) > 0,

a2 =
[
a12 · · · aN2

]⊺
, A2 = diag(a2) > 0. (37)

By applying the dynamic expression (17) to the multi-object

case and dividing it by λi
1 for each ith object, we obtain:

A1v̇ + 4TA2v = Ju (38)

for an new interaction matrix

J =
[
l1/λ

1
1 · · · lN/λN

1

]⊺
∈ R

N×6 (39)

which is independent from the unknown thermophysical pa-

rameters6 and is entirely computed with the N gradients

of the view factors. To design the adaptive controller, it

is useful to introduce the combined thermal error vector

ζ = [ζ1, . . . , ζN ]
⊺
∈ R

N defined as:

ζ = ∆τ̇ + µ∆τ = v + µ∆τ (40)

for µ > 0 a feedback gain. To control the N object tempera-

tures, we design the following velocity input (see Fig. 6):

u = J+(−µÂ1v −Kζ + 4TÂ2v) (41)

where the elements of the adaptive diagonal matrices Âi =
diag(âi) ∈ R

N×N are computed with the update rules:

˙̂a1 = γ1µ
[
v1ζ1 . . . vNζN

]⊺
∈ R

N (42)

˙̂a2 = −4γ2
[
v1ζ1(T 1

2 )
3 . . . vNζN (TN

2 )3
]⊺

∈ R
N (43)

where scalars γi > 0 are used for tuning the algorithm’s rate.

Proposition 2. The adaptive controller (41) with update rules

(42)–(43) guarantees a bounded estimation of the unknown

parameters a1 and a2, and the asymptotic minimization of the

thermal error ‖∆τ‖.

Proof: Substitution of (41) into (38) yields:

A1v̇ + 4TA2v = −µÂ1v −Kζ + 4TÂ2v (44)

By adding µA1v to both sides of (44), noting that ζ̇ = v̇+µv,

and performing some algebraic operations we can obtain:

A1ζ̇ +Kζ = −µÃ1v + 4TÃ2v. (45)

6An analogous result to the depth-independent interaction matrix in [39]

for error matrices Ãi = Âi − Ai = diag(ãi), with error

vectors ãi = âi − ai. To analyze the stability of the closed-

loop dynamical system (42)–(43) and (45), we introduce the

following Lyapunov function:

H(ζ, ã1, ã2) =
1

2
ζ⊺A1ζ +

1

2γ1
‖ã1‖

2 +
1

2γ2
‖ã2‖

2 (46)

whose time derivative along (42)–(43) and (45) yields

Ḣ(ζ, ã1, ã2) = ζ⊺A1ζ̇ + 1

γ1

˙̂a
⊺

1 ã1 +
1

γ2

˙̂a
⊺

2 ã2 = −K‖ζ‖2

(47)

which shows that the energy function is non-increasing, i.e.

Ḣ ≤ 0, thus, the parameter estimation errors ãi are bounded.

Asymptotic stability of ∆τ directly follows by applying the

Krasovskii-LaSalle principle.

C. Target Feasibility

In previous sections, we proved that ‖∆τ‖ can be asymp-

totically minimized by two automatic controllers. However,

it is not guaranteed that such error can be enforced to zero.

Failure cases are caused by the choice of unfeasible target

temperatures: Intuitively, if targets are set to too high/low,

they might be physically unachievable; In addition, for objects

fixed to the same end-effector, the difference range between

their target temperatures is constrained by the fixed distance

between the objects. In this section, we analyze two necessary

but not sufficient conditions to ensure the feasibility of the

targets. Failure experiments are analyzed in Sec. IV-F.

Consider a simple case with two objects, object 1 and object

2, fixed to the end-effector (the extension to N object is

straightforward). For one of the objects, recall the thermal-

geometric relation (16) and rewrite it as follows:

v = −λ2T2
4 + λ1F21(xo) + λ3 (48)

where xo denotes an object configuration. Let us assume there

exists a temperature T2 = Tv0 that makes the rate v = 0. As

temperature is always non-negative, Tv0 can be solved as:

Tv0(F21) = ((λ1F21 + λ3)/λ2)
1

4 (49)

Since the parameters λi > 0 are all positive and F21 ∈ [0, 1),
Tv0 always exists. Tv0 represents the steady state temper-

ature at xo. Note that Tv0 is a function of F21 and that

∂Tv0/∂F21 > 0 is always positive. Thus, the minimum value

of Tv0 is determined when F21 = 0 as:

min(Tv0) = (λ3/λ2)
1

4 = (α2T
4
3 /ε2)

1

4 (50)

According to Kirchhoff’s law of thermal radiation [27], at

thermodynamic equilibrium, α2 = ε2. Thus, the minimum is:

min(Tv0) = T3 (51)

When F21(xo) → 1, the maximum value of Tv0 approaches:

max(Tv0) → ((λ1 + λ3)/λ2)
1

4 = (α2ε1T
4
1 /ε2)

1

4 = ε
1

4

1 T1

(52)

From (51)–(52), we derive the first boundary value condition:

T 1∗, T 2∗ ∈ [T3, ε
1

4

1 T1) (53)

Now we discuss the limitation of the difference between

target temperatures |δT ∗| = |T 1∗ − T 2∗|. We denote the
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Fig. 7. Experimental setup for our radiation-based thermal servoing tests.
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Fig. 8. Geometric calibration using ArUco markers before the experiments.

configuration of the object 1 and object 2 by xo1 = x+∆x1

and xo2 = x + ∆x2, respectively, where ∆x1,∆x2 are

constant displacement vectors determined by the arrangement

of objects. The corresponding view factors are F21(xo1) and

F21(xo2), and steady-state temperatures are T 1
v0 and T 2

v0. From

(49), |∆Tv0| = |T 1
v0 − T 2

v0| can be expressed as:

|∆Tv0(xo1,xo2)| = |χ1(F21(xo1))− χ2(F21(xo2))| (54)

with functions χ1(F21) and χ2(F21) defined as:

χ1(F21) =

(
λ1
1F21 + λ1

3

λ1
2

) 1

4

, χ2(F21) =

(
λ2
1F21 + λ2

3

λ2
2

) 1

4

(55)

where λ1
i and λ2

i are the thermophysical parameters of the

two objects. Note that for the continuous function ∆Tv0(x+
∆x1,x + ∆x2), where x ∈ W for W as the bounded

workspace and ∆xj as constant vectors, there must exist a

minimum value min(∆Tv0) = ∆Tv0(x
min) and a maximum

value max(∆Tv0) = ∆Tv0(x
max) which encompass all

possible values of ∆Tv0, where xmin and xmax are the end-

effector configurations corresponding to the two extreme cases.

The second condition for feasible target temperatures is:

δT ∗ ∈ [min(∆Tv0),max(∆Tv0)] (56)

A numerical (geometric) interpretation of xmin and xmax will

be discussed in Section IV-F.

IV. RESULTS

A. Experimental Setup

We conducted a series of experiments on a 4-DOF robot (3

translations and 1 rotation) to evaluate the proposed method.

Fig. 7 shows the robot, whose end-effector is replaced by a 3D

printed connector fixed to an aluminum holder. The objects are

attached to the holder through an adiabatic layer to minimize

heat conduction. We prepared three different kinds of objects

for temperature control experiments (see Fig. 7): An aluminum

circular sheet with 1.5 cm radius and 3mm thickness; A

Fig. 9. Snapshots of a representative thermal servoing experiment: (a) Initial
position, (b)–(c) transient motion, and (d) steady-state configuration.
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Fig. 10. Evolution ∆T of the temperature error using one aluminum object
with the model-based controller.

bunny-shaped object with 1mm thickness, 3D printed using

polylactic acid (PLA) material with 30% infill density; A hand-

shaped sheet with 1mm thickness, also 3D printed using PLA

but with 50% infill density. We approximate the aluminum

sheet’s and the heat source’s thermophysical properties via

standard tables [27]. The object’s emittance, absorptance,

specific heat, and density are 0.04, 0.04, 903 J ·K−1 · kg−1,

and 2702 kg/m3, respectively. The source’s emittance and

absorptance are estimated as 0.25 and 0.25.

For the two 3D printed objects, different infill densities, col-

ors, and uncertain surface conditions make their thermophys-

ical properties hard to be estimated. Thus, we only consider

the aluminum sheet for the experiments with the model-based

controller (adaptive control is used for the other objects). A ra-

diative heating platform with adjustable temperature output is

used as the heat source. The (indoor) environment temperature

is assumed to be constant at 23 °C.

To obtain the feedback temperatures, we attach a PT100

platinum thermistor with 0.3 °C accuracy and 0.1 °C precision

to each object. The raw data obtained by thermistors is

processed by a current-temperature transformation module and

sent to a Linux-based control computer as the feedback signal.

The motion command is calculated by the computer program

and sent to the robot under a position-stepping mode. At

the beginning of the experiments, we use an RGB camera

and three ArUco markers [40] to calibrate the configuration

between the heat source and the end-effector (see Fig. 8).

B. Experiments with the Model-Based Controller

We conduct a series of thermal servoing experiments to

evaluate our proposed control methodology (see Fig. 9 for a

representative experiment). Here, we first evaluate the perfor-

mance of the model-based controller with aluminum objects

(whose properties are approximately known); The experiments

are conducted with a source’s temperature of 200 °C.
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Fig. 11. Evolution of the temperature errors (∆T 1,∆T 2) using two
aluminum objects with the model-based controller.

We denote the scalar temperature error by ∆T = T2 − T ∗.

By using the controller (33), we enforce a closed-loop heat

transfer system that resembles a mass-spring-damper system.

Therefore, the values of the stiffness/damping-like gains K
and D can be used to specify the system’s performance. Fig.

10 (a) demonstrates the effect of the gain K on the thermal

response. For that, we set D = 0.2 and T ∗ = 50 °C and

conduct three experiments with different K values. These

show that when K = 0.005 (red curve), the error ∆T
asymptotically decreases to zero with a relatively slow speed;

When K = 0.05 (blue curve), ∆T decreases faster and

a small overshoot occurs; When K = 0.5 (black curve),

∆T oscillates near zero with an approximate 3 °C amplitude

(which demonstrates the controller’s capability to deal with

overheating). This results shows how the closed-loop system

varies from over-damped to under-damped. Thus, the gains

should be specified according to the desired thermodynamic

performance. We further conducted experiments with the same

gains (K = 0.05, D = 0.2) but with different targets T ∗ and

found a consistent response (see Fig. 10 (b)).

Model-based experiments were also conducted to indepen-

dently regulate the temperatures of two aluminum objects,

shown in Fig. 7 (c). We designed 4 experiments with different

targets τ ∗ (measured in °C). Fig. 11 depicts the minimization

of the thermal errors for these 4 experiments, with target

temperatures defined as τ ∗ = [50, 40]
⊺

, τ ∗ = [60, 40]
⊺

,

τ ∗ = [50, 50]
⊺

, and τ ∗ = [80, 40]
⊺

in (a), (b), (c), and

(d), respectively. For the first three experiments where the

differences between the target temperatures |T ∗1 − T ∗2| are

small (or null), the thermal error ‖∆τ‖ can be asymptotically

minimized to zero. However, when |T ∗1 − T ∗2| is large, as

in Fig. 11 (d), the two temperatures cannot be accurately

controlled. This failure case can be explained by the second

condition for feasible targets discussed in Section III-C.

C. Experiments with the Adaptive Controller

We designed a series of experiments to evaluate the per-

formance of the proposed adaptive controller. For that, we

consider with three different objects (see Fig. 7 (d)) with

unknown thermophysical properties and irregular shapes. To

compute the interaction matrix, we use truncated Fourier

series with 5 harmonics terms; This approach provides a fast

calculation time with a “good enough” shape approximation.

The controller’s gains are set to µ = 0.05 and K = 0.15. To

initialize the parameters âi(0) at the time instance t = 0, we

use (for the “hand” and “bunny” objects) the constant values

calculated for the aluminum object in the previous model-

based controller, i.e. âi(0) = ai; For the circular object, we

simply initialize âi(0) with random values.
In this study, we report eight temperature control exper-

iments with different targets, objects and source conditions.

Figure 12 shows the evolution of the individual thermal errors

∆T i. For ease of presentation, we name these eight exper-

iments as exp 1, . . . , exp 8, and denote the corresponding

target temperature for each experiment by τ ∗1, . . . , τ ∗8. In

exp 1, we set the three target temperatures to the same value.

In exp 2 – exp 4, we only set two targets to the same value.

In exp 5 and exp 6, we set all targets to different values, with

a non-uniform thermal separated in exp 5 and a uniform one

in exp 6. In exp 7 and exp 8, all targets are set to the same

value, but with different heat source conditions. The source

temperature T1 is set to 200 °C in exp 1 – exp 6, to 300 °C in

exp 7, and varies from 200 °C to 300 °C in exp 8.
In all these experiments with all these different conditions,

the magnitude of the temperature error ‖τ‖ asymptotically

decreases to zero. Yet, failure control experiments do happen

and are reported and discussed in Section IV-F). The results

experimentally confirm that (for feasible target temperatures)

the adaptive method is able to independently regulate temper-

atures of various objects with different shapes and materials,

without exact knowledge of their thermophysical properties or

the source’s/environment’s temperatures.
Fig. 13 depicts the performed object trajectories during the

experiments in Fig. 12. The boundary of the circular heat

source is depicted as a black circle (and ellipse). The color

of a trajectory point represents the feedback temperature at

that position; Variation from blue to red corresponds to a

change from “low” to “high”. For clarity, we depict two sets

of trajectory visualizations from different viewing angles: For

Fig. 13 (a1), (b1), . . . , (h1), the trajectories are viewed in −~k1

direction; For Fig. 13 (a2), (b2), . . . , (h2), the trajectories are

viewed in ~i1 direction.
From these trajectory visualizations, we can see that when

target temperatures are set to different values, the object with

a higher target temperature usually reaches a position that is

closer to the center of the heat source; This situation will be

further discussed in the Section IV-E. For the case when target

temperatures are set to the same value, the final position of

the circular aluminum sheet is always closer to the center of

the heat source. This phenomenon could be explained by the

fact that absorptance of a metal is usually much smaller than

the absorptance of non-metallic materials (e.g. PLA) [29]. It

is also worth noting how the controller can cope with sudden

changes in the source’s temperature (see Fig. 12(h)).

D. Visual Recalibration of Uncertain Interaction Matrices

In this section, we report an integrated visual-thermal ex-

periment, where the adaptive controller is combined with an

online ArUco tracking algorithm to achieve temperature regu-

lation when the source’s location is uncertain. This geometric

information is essential to compute the thermal interaction

matrix L.
Here, we study the case where the robot is fixed and the

heat source is manually moved. We track marker 2 attached to
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Fig. 12. Evolution of the temperature errors of the three objects in the 8 experiments with the adaptive controller, ∆T 1, ∆T 2, and ∆T 3 (measured in °C). The
target temperatures are set as: τ∗1 = [40 40 40]⊺, τ∗2 = [50 40 40]⊺, τ∗3 = [50 50 35]⊺, τ∗4 = [60 60 30]⊺, τ∗5 = [50 45 35]⊺,
τ
∗6 = [40 45 50]⊺, τ∗7 = [45 45 45]⊺, τ∗8 = [45 45 45]⊺.

Fig. 13. Spatial displacements of the three objects in the 8 experiments with the adaptive controller visualized from two viewing angles. We use a blue-to-red
color gradient to visualize the cold-to-hot change of temperatures during the experiments.
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Fig. 14. Experiments with the adaptive controller with disturbances.

the source to obtain its configuration. The target temperature

vector is set to τ = [40, 40, 40]
⊺

°C. Fig. 14 shows: (a) The

initially calibrated set up, (b) the manual movement applied

to the source, (c) the detected marker 2 when the source is

moving, and (d) the evolution of the individual temperature

errors. These results show that by continuously updating the

source-object pose, the control of the individual temperature

errors is not significantly affected and that ‖∆τ‖ can still

be asymptotically minimized. This experiment demonstrates

how our new thermal servoing method can be combined with

other traditional methods (vision-based controls in this case)

to extend the sensorimotor capabilities of a robot [41].

E. View Factor Visualization

In previous sections, we designed thermal controllers based

on derived heat transfer models. However, the models that

relate F21 and x are generally complex. Therefore, part of

the controlled system behaves as a “black box” to the user.

To investigate these aspects, in this section, we introduce

the visualization of the view factor F21 with respect to the

end-effector configuration x as a useful tool for analyzing

radiation-based thermal servoing problems.

As an example, we take the “circular surfaces in arbitrary

configurations” case discussed in Section II-E. We implement

the controlled variable method [42] to split the 6-DOF pose

x into two subsets: One where the translation coordinates p1,

p2, and p3 (measured in cm) are the controlled variables, and

another where the rotation coordinates θx, θy , θz (measured

in degrees) are controlled variables. In the translation subset,

rotations are set to constant values of θi = 0, then, we compute

F21 for points in a selected working range of controlled

variables p1, p2 ∈ [−20, 20], p3 ∈ [0, 30] with a step of 1 (with

48, 000 points in total). In the rotation subset, translations are

similarly set to constant values p1,2 = 0 and p3 = 5 cm; then,

points in the range of θx, θy, θz ∈ [−90, 90] are computed with

an incremental step of 2 (i.e., 729, 000 points in total).

We use the isosurface visualization tool provided by Plotly

[43] to visualize the data. The translation and rotations subsets

are shown in Fig. 15, where 3-DOF end-effector configurations

are represented by points in space, and the view factor values

are represented by isosurfaces with different colors (the isosur-

faces are formed by points which have the same or very close

values of F21). This visualization method is inspired by the

approximation of the interaction matrix in (26), which reveals

that L is positive proportional to the directional derivative of

Fig. 15. Isosurfaces visualization of the two view factor subsets: (a)
Translation subset and (b) rotation subset.

F21(x) along x as L⊺ = λ1∇xF21(x). According to the

definition of isosurface, the surface normal of every point

on the surface also points in ∇xF21(x) direction. In addi-

tion, the interval distance between isosurfaces with an equal

value difference (also called “isosurface interval”) reveals the

magnitudes of the elements of ∇xF21(x); A larger distance

represents a smaller magnitude.

As an example, let us analyze the translation subset shown

in Fig. 15 (a). For this single-object scenario, the normal vector

at a point on the isosurface indicates the direction of the end-

effector movement (as computed from the thermal controls

(33), (41)) at that point. There are some characteristics of

these isosurfaces that can be intuitively deducted from the

setup, e.g., the symmetric spatial distribution of F21 (due to

the circular shape of the heat source), and the proportionality

of values of F21 with respect to the source-object separation.

However, the visualization provides two useful pieces of

information. First, that the centers of the incomplete spherical

isosurfaces shift upwards when F21 decreases, which means

that at some points, movement in the ~k1 direction will cause

a decrease of F21 (which seems counter-intuitive). See e.g. c2
on the F21 = 0.1 isosurface in Fig. 15 (a), which shows that in

that configuration, the end-effector needs to move backwards

along the k̂1 direction to heat up faster. Second, the isosurface

intervals at regions that are farther from the heat source center

are comparatively larger, which indicates that the end-effector

will move comparatively faster in those regions. Similarly, Fig.

15 (b) shows the (much simpler) case where angles are varied

at a fixed position.

F. Unfeasible Thermal Targets

In Section III-C, we discussed two necessary but not

sufficient conditions for feasible targets. When one of the

two conditions is not fulfilled, the temperature error cannot

be minimized to zero. This section reports and analyzes

two failed experiments with the proposed adaptive controller

where the target temperatures are set to τ ∗ = [80, 80, 80]
⊺

and τ ∗ = [70, 35, 35]
⊺

°C; The temperature errors of each

coordinate ∆T i are depicted in Fig. 16 (a), (c). The evolution

of the error ‖∆τ‖ for the two experiments is shown in Fig.

16 (b), (d). In this experimental study, we found that when

all the individual target temperatures are set relatively “high”

(80 °C in this example), its corresponding errors converge

to a local minimum. Also, when the difference between target

temperatures is too large, one of the objects might more closely

reach its target, while the other will present steady-state errors.

In Section III-C, we prove that the steady-state temperature

of an object heated by a radiative source is directly propor-
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Fig. 16. Evolution of the temperature errors with unfeasible target temper-
atures: (top) τ∗ = [80, 80, 80]⊺ °C, and (bottom) τ∗ = [70, 35, 35]⊺.

tional to F21. Thus, the geometry of view factor isosurfaces is

a useful tool for analyzing the such reachability conditions.

Here, we discuss a simple but representative case where

two aluminum circular sheets with radius ro1 = 1.5 cm,

ro2 = 4.5 cm are attached to the end-effector at o1 and o2

(see Fig. 17) and heated by a source with T1 = 200 °C. The

center of the end-effector is at oe, and le1 = le2 = 2 cm are the

distances between the centers o1 and o2 and the end-effector

oe. The view factors of the objects are calculated based on the

same setup as in previous sections. We use the visualization

method where three translations are the controlled variables,

for a parallel object and source surfaces.

By using the expression (49) and assuming that the ther-

mophysical properties are the same as mentioned in Section

IV-A, the view factor values corresponding to steady-state tem-

peratures 30 °C, 40 °C, 50 °C are calculated as 0.12, 0.37, and

0.65. According to this one-to-one correspondence between

the isosurface and the steady-state temperature, to automat-

ically reach the target temperature T ∗ can be geometrically

interpreted as positioning the object center over the isosurface

that corresponds to T ∗. Similarly, determining the feasibility

of target temperatures T ∗1 and T ∗2 of two objects attached

to the same end-effector is identical to finding whether there

exists an end-effector pose that places both objects onto their

“desired isosurfaces”.

An example is shown in Fig. 18, where we denote the

steady-state temperatures of objects 1 and 2 by T 1
ss and T 2

ss.

Fig. 18 (a)–(b) show the steady-state temperature isosurfaces

of objects 1 and 2 where T 1
ss = T 12

ss = 30 °C, 40 °C, 50 °C.

Since the two objects are circular plates with different radii,

the shapes of their isosurfaces are slightly different; We use red

and blue color to differentiate them, and are jointly depicted

in the same coordinate system in Fig. 18 (c).

Fig. 18 (d), (e), (f) depict different combinations of target

temperatures T 1∗, T 2∗ and their corresponding isosurfaces.

These figures graphically demonstrate how for thermal targets

T ∗1 = T ∗2 = 30 °C (depicted in Fig. 18 (d)), and T ∗1 =
30 °C, T ∗2 = 40 °C (depicted in Fig. 18 (e)), the end-effector

can position the objects into their desired final isosurfaces

(corresponding to their target steady-state temperatures); The

initial position of this trajectory is colored in blue, the final

in red. However, for the case where T ∗1 = 50 °C and T ∗2 =
30 °C, Fig. 18 (f) shows that the minimum distance between

the two isosurfaces is larger than le1 + le2; Thus, targets T ∗1

and T ∗2 are not feasible. Similarly, if le1 + le2 is larger than

the maximum distance between two target isosurfaces, that

combination of T ∗1 and T ∗2 is also unfeasible.

In addition to the aforementioned geometric explanation,

we conduct an analysis of the characteristics of the entire

feasible temperature space Θtemp, which is defined as the

collection of all sets of steady-state temperature Tss(x) =
[T 1

ss(x
1
obj), . . . , T

n
ss(x

n
obj)],Tss(x) ∈ Θtemp of N objects

attached to the same end effector, where x is the end-effector

configuration, xn
obj , n = 1, . . . , N is the object configuration,

and Tn
ss(x

n
obj) is the steady-state temperature of an object

when its center is at xn
obj . Since there is a fixed geometric

relationship between x and xn
obj , values of Tn

ss(x
n
obj) can be

calculated according to (49).

Here, we take the set-up in Fig. 19 (b) where 2 identical

circular aluminium objects are attached to a 3-DOF end-

effector with an identical distance le as a case of study. We

uniformly sample a discrete end-effector configuration space

where p1, p2 ∈ [−30 cm, 30 cm], p3 = 1 cm with a step of

0.2 cm (90,000 points) and calculate the view factor values.

Accordingly, Tss(x) ∈ R
2, and Θtemp ∈ R

90000×2 can be

obtained. For each Tss(x) in a feasible temperature space

Θtemp, we depict it as a 2D point such as in Fig. 19 (a).

Although x is uniformly sampled, the distribution of Tss(x)
is not uniform, which is caused by the non-linear thermal-

geometric coupling. By changing the values of le, p3, several

representative combinations are also depicted in Fig. 19 (c),

(d), (e). We analyze these figures and discover the following

thermal-geometrical coupling characteristics:

Consider Fig. 19 (c), (d), if the end-effector moves away

from the heat source (p3 increases), the area of feasible

temperature space Θtemp shrinks, which means the range

of feasible temperature is smaller. However, the density of

points increases; It indicates the robot motion induces a

smaller change on heat transfer to the object, which to some

extent increases the accuracy of temperature control when

p3 increases. Secondly, refer to Fig. 19 (e), we discover the

geometric coupling between objects (le in this case) also

affects Θtemp. If objects are close (e.g. le = 1), and the

difference between the target temperature of the objects is

large, these combinations of target temperature are not feasible

(see the blank area e1, e2); If objects are far away (e.g.

le = 9), controlling two objects to reach high temperature

simultaneously is not feasible (see the blank area e3).

For cases where N > 3, visualization is not practical, and

some advanced data analysis is required (which is beyond

the scope of this paper). The analysis of the feasible tem-

perature space reveals the physical essence of the thermal-

geometric coupling, and could shed some light on practical

thermal servoing system design. Nevertheless, it takes hours

of computation even with parallel-computing to obtain the

required data. To quickly verify the feasibility of a specific

set of target temperature, we find reformulating the problem

from an optimization perspective is more effective.

Consider N objects attached to the same end-effector,

the steady-state temperature of each object is denoted by

Tn
ss(x

n
obj), n ∈ {1, 2, . . . , N}. We denote the target tempera-

ture of each object by Tn∗, then the target feasibility problem
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o1 o2

ro1

ro2
Object 1

Object 2

oe

Fig. 17. Conceptual illustration of two objects fixed to an end-effector for
analyzing unfeasible target temperatures.

Fig. 18. Geometric explanation of the target temperature feasibility using
the steady-state temperature isosurfaces. Independent control is achieved by
positioning each object into its own target isosurface.

can be solved by solving the following optimization problem:

min
x

c(x) =
N∑

n=1

|Tn
ss(x)− Tn∗| s.t. x ∈ W (57)

where W is the robot working space. If the global minimum

of c(x) equals to 0, the set of target temperature is feasible.

We use a simple homology global optimization [44] algo-

rithm, which is implemented in SciPy library, to conduct a

verification of the method’s feasibility. It turns out that the

global minimum of c(x) can be found effectively (in less

than 1 minute) for randomly selected target temperatures and

geometric relationships between objects.

In general, thermophysical properties, view factors, and

fixed spatial relationships between objects are the main three

factors that determine the feasibility of thermal targets. The ge-

ometric interpretation of the feasibility problem might also be

useful for path planning-like algorithms dealing with thermal

servoing problems. The accompanying multimedia file demon-

strates the performance of our method with multiple experi-

ments, including overheat, unfeasible targets, single/multiple

objects, and view factor visualizations.

V. CONCLUSION

In this paper, we present a new robotic temperature control

technique based on heat radiation to automatically regulate

temperatures of multiple objects. For that, we provide a

comprehensive formulation of different scenarios of thermal

servoing problems. Two asymptotically stable controllers, one

model-based and one adaptive, are designed and validated by a

series of experiments where temperatures of three different ob-

jects are independently regulated. We also discussed potential

applications of the isosurface visualization, such as analyzing

the geometry of the seemingly invisible heat transfer process.

The key concept of the proposed method is to exploit the

geometric-thermal-motor relations between the heat source

Fig. 19. Visualization of the target temperature space Θtemp.

and the surface for automatically computing motion con-

trols. This advanced feedback control capability is needed

to improve the performance of many economically-important

applications. However, from the point of view of generality, the

proposed algorithm has many limitations, since we only con-

sider cases where heat radiation is dominant. For cases where

other heat transfer modes are dominant or comparable (objects

in contact with non-adiabatic surfaces, electrical equipment

cooled by high speed air flow, human skin treated by laser

thermal excitation, food heated up in a pan, etc.), different heat

transfer models need to be analyzed. Another possible solution

is to implement model-free control algorithms that primarily

rely on collected data instead of analytical models (which we

formulated based on fundamental physical principles).

For future work, we would like to integrate thermal servoing

with existing visual and proximity servoing algorithms; This

multimodal perceptual and control capability is essential for

developing advanced robotic temperature control systems in

complex scenarios, such as service tasks in human environ-

ments and and intelligent industrial manufacturing. Our team

is currently working towards developing algorithms which

simultaneously consider the three basic modes of heat transfer.

For this situation, thermal images (which provide detailed

temperature profiles of an object surface) may be used as

a sensing system. Sensor-based feedback control is certainly

not the only way to achieve robot temperature regulation.

Formulating the problem from an optimization perspective

could also be interesting. For scenarios where multiple heaters

attached to robots are used to heat up a large object, the

coverage problem [45] in multi-agent systems represents a

feasible approach. The development of efficient algorithms to

estimate in real-time the geometry of the view factors (and

hence the target’s feasibility) is still an open research problem.

We encourage interested readers to work along these open

research directions.
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Marı́n-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6,
pp. 2280–2292, 2014.

[41] D. Navarro-Alarcon, J. Qi, J. Zhu, and A. Cherubini, “A Lyapunov-stable
adaptive method to approximate sensorimotor models for sensor-based
control,” Front. in Neurorobotics, vol. 14, no. 59, pp. 1–12, 2020.

[42] C. Williams, “Research methods,” Journal of Business & Economics
Research (JBER), vol. 5, no. 3, 2007.

[43] P. T. Inc. (2015) Collaborative data science. Montreal, QC. [Online].
Available: https://plot.ly

[44] S. C. Endres, C. Sandrock, and W. W. Focke, “A simplicial homology
algorithm for lipschitz optimisation,” Journal of Global Optimization,
vol. 72, no. 2, pp. 181–217, 2018.

[45] M. Santos and M. Egerstedt, “Coverage control for multi-robot teams
with heterogeneous sensing capabilities using limited communications,”
in IEEE Int Conf Intelligent Robots and Systems, 2018, pp. 5313–5319.

Luyin Hu received his BEng. degree in Mechani-
cal Engineering from The Hong Kong Polytechnic
University, KLN, Hong Kong in 2019. Currently, he
is pursuing an MPhil degree in Mechanical Engi-
neering at the same university. His research interests
include multimodal robot perception, servomecha-
nisms, and control system design.

David Navarro-Alarcon (GS’06–M’14–SM’19) re-
ceived the Ph.D. degree in Mechanical and Automa-
tion Engineering from The Chinese University of
Hong Kong (CUHK), Shatin, Hong Kong, in 2014.

He was an Assistant (Research) Professor at the
CUHK T Stone Robotics Institute, from 2015 to
2017. Since 2017, he has been with The Hong Kong
Polytechnic University, KLN, Hong Kong, where he
is an Assistant Professor at the Department of Me-
chanical Engineering. His current research interests
include perceptual robotics and control theory.

https://plot.ly


14

Andrea Cherubini received the M.Sc. in Mechan-
ical Engineering in 2001 from the University of
Rome La Sapienza and a second M.Sc. in Control
Systems in 2003 from the University of Sheffield,
U.K. In 2008, he received the Ph.D. in Control
Systems from the Dipartimento di Informatica e
Sistemistica, University of Rome La Sapienza.

From 2008 to 2011, he was postdoc at Inria
Rennes. Since 2011, he is at Université de Montpel-
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