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We use the Stefan-Boltzmann law to derive and investigate what we will call the black hole CMB temperature luminosity. Interestingly, the CMB luminosity is always the same for every black hole at a luminosity distance equal to the Schwarzschild radius, which is fully valid in black hole cosmology, a topic that is actively discussed to this day. The CMB black hole luminosity is always L cmb = T 4 p l 2 p 256⇡ 3 , which can also be written in the form

, regardless of the mass of the black hole. This is in contrast to the Bekenstein-Hawking luminosity, which is linked to the Hawking temperature, that is mass dependent and equal to L Hw = c 6 15360⇡ G2 M 2 .

Introduction

Black holes are considered near-perfect black bodies because they absorb all the radiation that falls on them. It has been suggested that black holes emit blackbody radiation known as Hawking radiation, which depends on the mass of the black hole. However, Hawking radiation has likely never been observed, possibly due to the di culty in detecting it. Nevertheless, we will briefly examine it here, as the equation and derivation for Bekenstein-Hawking luminosity share many similarities with what we will coin as: "CMB luminosity" or alternatively "internal black hole luminosity". We will mathematically explore Hawking luminosity in section 2 and then CMB luminosity in section 3 and 4.

Additionally to Hawking temperature that is assumed to be a black body temperature, there is another black body temperature associated with black holes and cosmology in general including the ⇤-CDM model, even if the ⇤-CDM model possibly will fail short for what we will 1 discuss in this paper, so called R H = ct cosmological models and particular growing blackhole R H = ct will much better fit what we will describe, see [START_REF] Tatum | How a realistic linear r h = ct model of cosmology could present the illusion of late cosmic acceleration[END_REF][START_REF] John | r h = ct and the eternal coasting cosmological model[END_REF][START_REF] John | Generalized Chen-Wu type cosmological model[END_REF][START_REF] John | Comparison of cosmological models using bayesian theory[END_REF][START_REF] Melia | The r h = ct universe[END_REF][START_REF] Melia | The r h = ct universe without inflation[END_REF][START_REF] Melia | The linear growth of structure in the r h = ct universe[END_REF]. In various cosmological models, it is assumed that the Hubble sphere could be a black hole. This idea dates back to at least 1972, as suggested by Pathria [START_REF] Pathria | The universe as a black hole[END_REF], and was later revisited by Stuckey [START_REF] Stuckey | The observable universe inside a black hole[END_REF] in 1994. Although the ⇤-CDM model community may overlook the possibility that the Hubble sphere is a black hole, many researchers continue to work on or discuss black hole cosmology to this day, as shown by [START_REF] Pop | The universe in a black hole in Einstein-Cartan gravity[END_REF][START_REF] Tatum | A Heuristic Model of the Evolving Universe Inspired by Hawking and Penrose in New Ideas Concerning Black Holes and the Universe[END_REF][START_REF] Akhavan | The universe creation by electron quantum black holes[END_REF][START_REF] Lineweaver | All objects and some questions[END_REF]. Assuming, for a moment, that the Hubble sphere is a black hole, we then have a significant amount of information about the interior of a black hole. Furthermore, there is another type of black body radiation associated with the interior of black holes. The CMB temperature is often linked with a black body temperature; for example, Muller et al. in [START_REF]A precise and accurate determination of the cosmic microwave background temperature at z = 0.89[END_REF] state (see also [START_REF] Dhal | Investigation on CMB monopole and dipole using blackbody radiation inversion[END_REF]):

"Observations with the COBE satellite have demonstrated that the CMB corresponds to a nearly perfect black body characterized by a temperature T 0 at z = 0, which is measured with very high accuracy, T 0 = 2.72548 ± 0.00057k."

In recent years, there has been tremendous progress in understanding the CMB (Cosmic Microwave Background) temperature from a practical perspective, particularly in terms of more accurate measurements, as cited in [START_REF] Fixsen | The temperature of the cosmic microwave background at 10 GHz[END_REF][START_REF] Fixsen | The temperature of the cosmic microwave bacground[END_REF][START_REF] Noterdaeme | The evolution of the cosmic microwave background temperature[END_REF][START_REF] Dhal | Calculation of cosmic microwave background radiation parameters using cobe/firas dataset[END_REF]. Additionally, there has been a deeper theoretical understanding of the CMB temperature and its relationship to black hole cosmology. In section 3, we will utilize this knowledge to derive what we will refer to as the CMB luminosity. This luminosity should, in theory, apply to the interiors of all or at least most black holes, even though there are likely to be modifications for di↵erent metrics.

Bekenstein-Hawking luminosity of a black hole

The luminosity of of a black body is given from the Stefan-Boltzman law [START_REF] Stefan | Über die beziehung zwischen der wärmestrahlung und der temperatur[END_REF][START_REF] Boltzmann | Ableitung des stefanschen gesetzes, betre↵end die abhängigkeit der wärmestrahlung von der temperatur aus der electromagnetischen lichttheori[END_REF] and is:

L = 4⇡R 2 T 4 (1) 
where is the Stefan-Boltzman constant, T is the black body temperature, and R is the luminosity distance.

For luminosity directly related to a black hole, we will set the luminosity radius equal to the black hole's event horizon radius and the temperature T to the black hole's temperature. There are actually two temperatures associated with black holes. One is the Bekenstein-Hawking temperature, as given by [START_REF] Hawking | Black hole explosions[END_REF], which is described as follows:

T Hw = ~g ck b 2⇡ = ~GM r 2 s ck b 2⇡ = ~c k b 4⇡R s (2) 
Next we input this in the Stefan-Boltzman luminosity equation:

L Hw = 4⇡R 2 s T 4 Hw L Hw = 4⇡R 2 s ✓ ~c k b 4⇡R s ◆ 4 L Hw = ~4c 4 k 4 b 64⇡ 3 R 2 s ( 3 
)
and since the Stefan-Boltzman constant is =

2⇡ 5 k 4 b 15c 2 h 3
, if we insert this in above equation we get:

L Hw = 2⇡ 5 k 4 b 15c 2 h 3 ~4c 4 k 4 b 64⇡ 3 R 2 s L Hw = ~c2 3840⇡R 2 s . (4) 
Further since R s = 2GM c 2 we can also re-write this as

L Hw = ~c6 15360⇡G 2 M 2 .
(

) 5 
This is the well-known Bekenstein-Hawking luminosity of a black hole. Please note that the Bekenstein-Hawking luminosity scales with the inverse square law of both the black hole's radius and its corresponding mass.

CMB luminosity of a black hole is the same for every black hole

Haug and Wojnow [START_REF] Haug | How to predict the temperature of the CMB directly using the Hubble parameter and the Planck scale using the Stefan-Boltzman law[END_REF] has derived the CMB temperature from the Stapfan-Boltzman law and got the formula:

T cmb = T p 8⇡ s 2l p R H ⇡ 2.72k. ( 6 
)
where T p is the Planck [START_REF] Planck | Der Königlich Preussischen Akademie Der Wissenschaften[END_REF][START_REF] Planck | Vorlesungen über die Theorie der Wärmestrahlung[END_REF] temperature

T p = 1 k b q ~c5 G = mpc 2
k b (see also [START_REF] Unnikrishnan | Standard and derived Planck quantities: selected analysis and derivations[END_REF]). This formula holds for any Schwarschild black hole and in more general forms is given by

T cmb = T p 8⇡ s 2l p R s ⇡ 2.72k. ( 7 
)
This correspond also to the formula given by Tatum et al. [START_REF] Tatum | The basics of flat space cosmology[END_REF], who likely is the first to obtained a formula for predicting the CMB temperature using heuristic methods that we soon also will discuss. Furthermore, Haug and Tatum [START_REF] Haug | The hawking Hubble temperature as a minimum temperature, the Planck temperature as a maximum temperature and the CMB temperature as their geometric mean temperature[END_REF] derived the CMB temperature from a very general geometric mean of the shortest and longest possible wavelengths in a black hole. In addition, Haug [START_REF] Haug | Planck quantized bending of light leads to the CMB temperature[END_REF] has derived the same formula from quantized light bending related to black holes.

This can be generalized for any Schwarzschild [START_REF] Schwarzschild | über das gravitationsfeld einer kugel aus inkompressibler flussigkeit nach der einsteinschen theorie[END_REF] black hole:

T cmb = T Hw s R s 2l p = T p 8⇡ s 2l p R s ⇡ 2.72k. ( 8 
)
where T cmb is the black body temperature associated with the black hole, the temperature on the inside of the black hole. Therefore, the term 'cosmic microwave background' might be misleading since smaller black holes will have a wavelength spectrum for their temperature that consists of much shorter wavelengths than microwaves, so alternatively we could just have called it the inside temperature of a black hole. The luminosity for any black hole, derived from the internal black body temperature, is then given by:

L cmb = 4⇡R 2 s T p 8⇡ s 2l p R s ! 4 L cmb = 4⇡R 2 s T 4 p 8 4 ⇡ 4 4l 2 p R 2 s L cmb = 4⇡ T 4 p 4l 2 p 8 4 ⇡ 3 L cmb = T 4 p l 2 p 256⇡ 3 . (9) 
What is remarkable here is that we observe the black body luminosity as constant no matter the size of the black hole, and furthermore, it is only a function of the Planck scale. The black hole mass is not relevant. We can conclude that all black holes have the same CMB luminosity, despite the CMB temperature scaling with 1 p Rs for di↵erent black holes. Therefore, the temperature inside each black hole varies between black holes with di↵erent size, but the CMB luminosity at a distance of the Schwarzschild radius for the black hole of interest remains the same for all black holes.

Furthermore, since the Stefan-Boltzmann constant is given by = 

L cmb = ⇡ 2 k 4 b l 2 p 1920c 2 h 3 T 4 p L cmb = T 4 p k 4 b l 2 p 15360c 2 ⇡~3 . ( 10 
)
Alternatively we can derive the black hole CMB luminosity by using the first formula presented by Tatum et. al [START_REF] Tatum | The basics of flat space cosmology[END_REF] and later derived by Haug and Tatum [START_REF] Haug | CMB temperature related to cosmological red-shift[END_REF] from a geometric mean approach, we get:

L cmb = 4⇡R 2 s ~c k b 4⇡ p R s 2l p ! 4 L cmb = 4⇡R 2 s ~c k 4 b 4 4 ⇡ 4 R 2 s 4l 2 p L cmb = ~4c 4 k 4 b 256⇡ 3 l 2 p ( 11 
)
as the Stefan-Boltzman constant = 

L cmb = 2⇡ 5 k 4 b 15c 2 h 3 ~4c 4 k 4 b 256⇡ 3 l 2 p L cmb = ~c2 15360⇡l 2 p L cmb = ~c6 15360⇡G 2 m 2 p ⇡ 7.50338 ⇥ 10 47 W ( 12 
)
where m p is the Planck mass. Equations 9, 10 and 12 are ultimately the same, it is just di↵erent ways to express the same formula. What is important is that the CMB luminosity of any black hole is the same. This means every black hole has a luminosity of 7.50338⇥10 47 W . This is also fully consistent with the observed relation between the cosmological red-shift and the CMB temperature that is assume to follow of T t = T 0 (1 + z) and z = Tt T 0 1 (see for example [START_REF] Riechers | Microwave background temperature at a redshift of 6.34 from h 2 o absorption[END_REF]). This mean we can replace this back into the formula and we get

L cmb = 4⇡R 2 t (T 0 (1 + z)) 4 L cmb = 4⇡R 2 t T 4 0 ✓ 1 + T t T 0 1 ◆ 4 L cmb = 4⇡R 2 t T 4 0 ✓ T t T 0 ◆ 4 L cmb = 4⇡R 2 t T 4 t . (13) 
As R t = R s for a Schwarzschild black hole in a R s = R H = ct type cosmological growing black hole models then

T t = ~c k b 4⇡ p Rt2lp
as pointed out by Tatum et. al [START_REF] Tatum | The basics of flat space cosmology[END_REF] and Haug and Tatum [START_REF] Haug | The hawking Hubble temperature as a minimum temperature, the Planck temperature as a maximum temperature and the CMB temperature as their geometric mean temperature[END_REF] this leads to exactly the luminosity equations as we have derived above. That is for the first time we have demonstrated that any black hole has a the same CMB luminosity if measured from the Schwarzschild radius distance of the black body. This naturally when the luminosity distance is set equal to the Schwarzschild radius.

The CMB temperature in yet another perspective

We can naturally also solve the standard Stefan-Boltzman luminosity equation with respect to the temperature T , this gives the well known formula:

T = 4 r L 4⇡R 2 . ( 14 
)
As we have found that the black hole luminosity is the same for every Schwarzschild black hole and is given by:

L cmb = ~c6 15360⇡G 2 m 2 p
, this means we for any Schwarzschild black hole we must have a CMB temperature (on the inside) of:

T cmb = 4 s L cmb 4⇡R 2 s T cmb = 4 v u u t ~c6 15360⇡G 2 m 2 p 4⇡R 2 s T cmb = 4 s ~c6 61440⇡ 2 G 2 m 2 p R 2 s T cmb = 1 p ⇡Gm p R s 4 r ~c6 61440 . ( 15 
)
In the case we set the Schwarzschild radius to the Hubble radius we get R s = R H which is the case in the critical Friedmann [START_REF] Friedmann | Über die krüng des raumes[END_REF] universe we get:

T cmb = 1 p ⇡Gm p R H 4 r ~c6 61440 ⇡ 2.72 +0.082 0.069 K (16)
we have here used a Hubble parameter in calculation of R H = c H 0 given by the recent published study by Kelly and et. al [33] of 66.6 +4. 1 3.3 (km/s)/M pc. However di↵erent Hubble parameter studies give considerably di↵erent Hubble constant values, so the exact value will naturally vary with input, see for example [START_REF] Mukherjee | First measurement of the Hubble parameter from bright binary black hole gw190521[END_REF][START_REF] Sedgwick | The e↵ects of peculiar velocities in SN Ia environments on the local h0 measurement[END_REF][START_REF] Riess | A comprehensive measurement of the local value of the Hubble constant with 1 km s 1 mpc 1 uncertainty from the Hubble space telescope and the sh0es team[END_REF].

We can naturally also re-write equation 16, by replacing R s with R s = 2GM c 2 this gives:

T cmb = 4 s ~c6 61440⇡ 2 G 2 m 2 p 2GM c 2 2 T cmb = 4 s ~c10 245760⇡ 2 G 4 m 2 p M 2 T cmb = 1 G p ⇡m p M 4 r ~c10 245760 . (17) 
If one now input the critical Friedmann mass of the universe M = M c = c 3 2GH 0 , we get again T cmb ⇡ 2.72K. Let us next input the for the Stefan-Boltzman constant: = 

T cmb = 1 G p ⇡m p M 4 v u u t ~c10 245760 2⇡ 5 k 4 b 15c 2 h 3 T cmb = 1 G p ⇡m p M 4 v u u t ~c12 4096 ⇡ 2 k 4 b ~3 T cmb = ~c3 k b 8⇡G p Mm p = ~c k b 4⇡ p R s 2l p (18) 
This is the same formula as heuristically suggested by Tatum et. al [START_REF] Tatum | The basics of flat space cosmology[END_REF], which has recently been derived from the Stefan-Boltzmann law by Haug and Wojnow [START_REF] Haug | How to predict the temperature of the CMB directly using the Hubble parameter and the Planck scale using the Stefan-Boltzman law[END_REF], and by the geometric mean approach by Haug and Tatum [START_REF] Haug | The hawking Hubble temperature as a minimum temperature, the Planck temperature as a maximum temperature and the CMB temperature as their geometric mean temperature[END_REF], and also by quantization of light bending by Haug [START_REF] Haug | Planck quantized bending of light leads to the CMB temperature[END_REF]. Despite possibly, and even likely, not fitting into the ⇤-CDM model, we think it can be no coincidence that the CMB formula first heuristically suggested by Tatum et. al can just be a coincidence; it predicts the right CMB temperature very accurately compared to measurments and have now been derived from a series of di↵erent complementary angles. We think cosmologies would likely benefit from taking notice of it. That said we naturally do not claim to have all the answers. There is certainly more to investigate here in relation to both theoretical CMB temperature and CMB luminosity; for example, there are multiple metrics that can be applied to black holes that should be investigated, such as the Reissner-Nordström [START_REF] Reissner | Über die eigengravitation des elektrischen feldes nach der Einsteinschen theorie[END_REF][START_REF] Nordström | On the energy of the gravitation field in Einstein's theory[END_REF] metric, the Kerr [START_REF] Kerr | Gravitational field of a spinning mass as an example of algebraically special metrics[END_REF] metric, the Kerr-Newman [START_REF] Newman | Metric of a rotating, charged mass[END_REF][START_REF] Newman | Note on the Kerr spinning-particle metric[END_REF] metric, and the recent Haug-Spavieri [START_REF] Haug | Mass-charge metric in curved spacetime[END_REF] metric, as well as other metrics used in cosmology and for black holes.

Tatum et. al [START_REF] Tatum | High precision Hubble constant determinations based upon a new theoretical relationship between CMB temperature and H 0 . Hal archive[END_REF] has clearly demonstrated that one can also use the CMB temperature formula, and when solved for H 0 , it can dramatically reduce the standard deviation in uncertainty from other methods. This is because we now, for the first time, have a much deeper theoretical understanding of the relation between CMB temperature and the Hubble parameter. The ⇤-CDM model has, on the other hand, not developed any method to theoretically predict the CMB temperature now. All they have is the formula to predict the CMB temperature back in time based on the formula T t = T 0 (1 + z), which is also fully consistent with this work.

There are also other challenges that could be related to this and that could possibly be resolved with a deeper understanding of CMB, namely the Hubble tension [START_REF] Valentino | In the realm of the Hubble tension -a review of solutions[END_REF][START_REF] Krishnan | Does Hubble tension signal a breakdown in FLRW cosmology? Classical and Quantum Gravity[END_REF]. In our model, we must have z = q R H Rt 1 = T 0 Tt 1, as recently pointed out by Haug and Tatum [START_REF] Haug | CMB temperature related to cosmological red-shift[END_REF].

Black hole internatal radiation pressure

The total energy per unit of time per unit of surface area that is radiated by a black body maintained at a temperature T is according to Stefan-Boltzman law the radiation pressure given by:

P = 4 T 4 3c = L 3⇡R 2 c (19) 
Next we will derive the black hole internal radiation pressure that also can be called the CMB radiation pressure as it can be derived from what we called the CMB luminosity:

P cmb = = L 3⇡R 2 s c P cmb = = T 4 p l 2 p 768⇡ 4 R 2 s c (20) 
So the black hole radiation pressure follow the inverse square law rule, unlike the CMB luminosity that is the same for every black hole. Equation 20 can also be re-written as:

P cmb = T 4 p l 2 p c 3 768⇡ 4 G 2 M 2 (21) 
In the special case where M is the critical mass of the Friedmann universe M = M c = c 2 2GH 0 we get a radiation pressure of:

P cmb = T 4 p l 2 p c 3 3072⇡ 4 G 2 M 2 c ⇡ 1.3909 ⇥ 10 14 J • m 3 (22) 
If we replace the Stefan-Boltzmann constant with its components: = 

Conclusion

We have demonstrated that there is another form of black body radiation or luminosity associated with every black hole. We have named this the CMB luminosity, even though it applies to any black hole. The CMB luminosity is identical for every black hole and is always given by L cmb = T 4 p l 2 p 256⇡ 4 , which can also be expressed as L cmb = c 6 15360⇡ G2 m 2 p . It depends solely on the Planck scale and is not a↵ected by the mass of the black hole. This discovery can have significant implications for both cosmology and other aspects of black hole research.

2⇡ 5 k 4 b

 4 15c 2 h 3 , we can also rewrite equation 9 as:

2⇡ 5 k 4 b 15c 2 h 3

 43 and we can now insert this into the equation above and we get

2⇡ 5 k 4 b 15c 2 h 3

 43 and we get:

2⇡ 5 k 4 b 15c 2 h 3 , we get: P cmb = 2⇡ 5 k 4 b 15c 2 h 3 T 4 p l 2 p c 3 3072⇡ 4 G 2 M 2 P cmb = 2⇡ 5 k 4 b 15c 2 h 3 ~4c 4 l 4 p k 4 b l 2 p c 3

 434342243 3072⇡ 4 G 2 M 2 P cmb = ~c5 184320⇡ 2 G 2 M 2 l 2 p (23)
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