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Abstract

The robust design of microgrids based on optimization methods is a challenging process which usually
requires multiple system simulations and implies the use of suitable models ensuring a good compro-
mise between complexity and accuracy. These models also have to include the main couplings within
systems, which have a major impact on design criteria and constraints. In this paper, we particularly
illustrate this context with regard to the choice of battery models integrating energy efficiency and
aging for the design of microgrids. Using a simple case study, we demonstrate the importance of tak-
ing into account battery capacity loss due to aging to accurately assess the microgrid’s self-sufficiency
and cost over its lifetime.
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1 Introduction

The integration of renewable energy sources in our
energy production systems has become a global
objective as it allows to contain global warming
by limiting CO2 emissions, especially when they
replace fossil fuels. All the trajectories proposed
by international agencies show the importance of
integrating renewable energy sources in the energy
mix to reduce temperature increase in the coming
decades [1, 2]. In the context of smart microgrids,
Distributed Energy Systems (DES) allow the inte-
gration of renewable energy sources with both
generation and consumption on site. However, the
variability and unpredictability of these sources
require the association of Energy Storage Systems
(ESS) in order to add flexibility and reliability
to the system. Among the possible ESS, battery

storage systems (BSS) and in particular Li-ion
batteries (LIB) are often chosen for daily storage,
as they offer a good combination of energy density,
maintenance level and cost per Wh of storage [3].
The design of these microgrids has oftentimes been
addressed via optimization problems that aim to
minimize the sum of two costs, the investment cost
and the operating cost (CAPEX and OPEX) while
ensuring a certain level of self-sufficiency [4–6].

Moreover, many uncertainties have to be
included in this kind of design problem. Those
uncertainties can be divided into two categories:
aleatory uncertainties which arise from variability
or stochasticity (e.g weather or energy load) and
the epistemic uncertainties which originate from
the lack of knowledge (e.g the intrinsic inability of
models to describe reality) [7].
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Regarding the epistemic uncertainties, the
problem is two-fold. On one hand, a large number
of numerical quantities is required for the param-
eterization of modeled systems (e.g., the prices
of various elements within the system), and these
values are sometimes uncertain in the present due
to the lack of economic regulation rules but even
more so in the future. On the other hand, the mod-
els used to describe the system are often simplified
to facilitate optimization over long periods of time,
typically spanning the system’s lifetime. These
simplifications lead to errors and uncertainties,
which have an influence on the sizing decisions.
Many of the modeling choices made in the litera-
ture, specifically battery modeling choices, are not
justified or simply lack arguments to support the
decision.

This paper aims to investigate the influence of
the accuracy level of LIB models on simulations
and constrained optimization of a microgrid. In
this context, oversizing microgrid component sizes
mean additional unnecessary costs for the opera-
tor of the system, while undersizing could result in
reduced self-sufficiency and the need to seek alter-
native resources, which if unavailable, could lead
to a black-out. The objective is to make modeling
choices with a maximum of information regarding
their impact and determine if a simple model can
be identified. Therefore, in this paper, the influ-
ence of the accuracy level of LIB models is studied
in order to identify the best compromise between
complexity and accuracy. Several model configu-
rations extracted from the literature [8–13] with
different levels of detail will be explored and ana-
lyzed, integrating in a coupled or decoupled way
energy efficiency and aging.

The remaining of the paper is organized as
follows. Section 2 is devoted to the description
of battery models integrating aging and energy
efficiency. Section 3 presents a simple case study
consisting in the robust optimization of a small
microgrid with battery storage and aiming at
characterizing the influence of the battery model
in the design process. Section 4 gives the results
associated with this case study and conclusions
are presented in section 5.

2 Models description

LIB models presented and discussed in this paper
are known as system models. They aim to cap-
ture some important macroscopic indicators such
as state of charge (SoC), energy efficiency and
state of health (SoH), while remaining suitable
for optimization problems with a large number
of variables. There exist more complex models to
assess the aging that describe intrinsic phenomena
occurring inside a LIB. Examples of these models
include multi-dimensional models, single particle
models, and equivalent circuit models[14].

Similarly, when it comes to energy efficiency
models, more accurate models are available in the
literature, such as the equivalent circuit models
(e.g. Tremblay-Dessaint [15]), which are relevant
for real-time control or health monitoring. How-
ever, using such models would require a finer time
step. Accuracy often comes with complexity, mak-
ing the aforementioned models not compliant with
the sizing optimization process.

2.1 The temporal model

Fig. 1 Multi-scale time model and link between scales.

Our time model includes three time scales
addressing different scopes. A fine scale modeled
by an hourly step to capture the intra-day dynam-
ics of the system, as well as a monthly time scale
to update our cycle based aging models and finally
a long scale with an annual step for investment
management. The link that is made between these
time scales can be seen in Figure 1.

The set of hours, months and years are
then respectively defined as h ∈ H = {1..H},
m ∈ M = {1..M}, y ∈ Y = {1..Y }, with associ-
ated time-steps ∆h, ∆m and ∆y verifying
∆y = 12∆m = 8760∆h.

2.2 The energy model

The energy model defines the State of Charge
(SoC ∈ [0, 1]) of the battery during its interac-
tion with the system. Specifically, here the LIB
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are operated within the limit of SoCmin = 0.2 and
SoCmax = 0.8.

SoCh+1 = SoCh − (ηch · P ch
h + ηdch

−1 · P dch
h ) ·∆h

E(t)
(1)

Equation (1) from [16] governs the battery SoC
at hourly intervals ∆h, where P ch

h ≤ 0
and P dch

h ≥ 0 respectively denotes the LIB
charge/discharge power at hour h. These variables
do not coexist, meaning if one is non-zero the
other one is. This equation has few parameters:
the charging or discharging power for the hour h
P ch
h , P dch

h , the energy efficiency η and the capacity
E(t) of the battery in [kWh] at instant t.

In order to take into account the influence of
the energy efficiency on the design of the LIB, two
models have been implemented.

2.2.1 Constant efficiency

The first model is simply a constant efficiency
”model” with ηch = ηdch. The chosen value of 99%
lies within the efficiency range of the model from
[13] to ensure that the simpler model efficiency is
of the same order of magnitude, thereby avoiding
any effects resulting from a significantly different
average efficiency.

2.2.2 Polynomial efficiency

This second model, originating from [13], differ-
entiates between charge and discharge efficiency
and describes the degradation of efficiency as a
polynomial function of the Crate:

ηch(Crate) = 0.0033·C2
rate−0.0297·Crate+0.99814

(2)

ηdch(Crate) = 0.002232 ·C2
rate − 0.0246 ·Crate + 1

(3)
Even if these two equations have different coeffi-
cients, they have the same form and are second-
degree equations. They both depend on the Crate,
which is the applied current in terms of the bat-
tery capacity. So a 1C current would discharge a
battery in an hour and a 2C current would dis-
charge it in 30 minutes. By considering both the
charge and discharge efficiencies, this model can

better predict the performance of LIB under var-
ious operating conditions. One could note that
when operating the battery with an hourly time
step and a state of charge (SoC) within the range
of [0.2, 0.8], the Crate remains within the interval
of [0, 0.6]. This implies that ηch ∈ [0.982, 0.998]
and ηdch ∈ [0.986, 1].

2.3 The aging models

The aging models represent the State of Health
evolution of the battery (SoH ∈ [0, 1]) during its
interactions with the system. The SoH represents
the actual capacity of the battery related to its
capacity at the beginning of life. In this study
the replacement threshold corresponding to the
battery End Of Life (EOL) is set to 80%, which
means the battery is replaced when SoH falls
below 80%. It is known that stationary storage can
be pushed to around 40% [17]. However, the mod-
els used in this study do not take account of the
rapid degradation phase occuring at the EOL. The
degradation rate can substantially increase shortly
after our 80% threshold, with the curve forming a
”knee” [18] depending on the battery usage during
its first life. This phenomenon can be explained by
hidden electrochemical mechanisms that are not
significant in terms of capacity degradation during
the beginning of a battery life but can become the
main degradation factor with aging. The ”knee”
is therefore a combination of multiple complex
mechanisms such as the Loss of Lithium Inventory
(LLI) and Loss of Active Materials (LAM) at the
electrodes. Therefore, we limit this study to an
area in which aging is better known. Nevertheless,
with the development of Second Life battery aging
models [19, 20], the impact of the EOL threshold
should be further studied as well as the control
strategies when the battery falls down beyond the
”knee” inflection point.

In this study, four aging models have been
implemented. They are presented in an increasing
order of captured aging dynamics.

2.3.1 Fixed lifetime model (FL)

The Fixed Lifetime (FL) model takes into account
only calendar aging. For this model, the SoH is
simply a function of the elapsing time, assuming
that the battery has a fixed lifetime.

∆cal(t) = 1− et·ccal (4)
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with ccal = 1.49 · 10−6 and t being the time in
hours.

The calendar degradation model is expressed
as a linear degradation extracted from the time
stress function of [9] and similar to [21]. Indeed,
the parameter ccal is obtained by isolating the
time-related stress factor for one hour. This is
achieved analytically by fixing the various model
parameters to the reference conditions, thereby
isolating the degradation caused by one hour of
calendar aging. The SoH is then computed as:

SoHh+1 = SoHh −∆cal(∆h) (5)

The next models implement at least a cycle aging
factor related to battery usage in addition to cal-
endar aging. While the cycling degradation model
is different for each aging model, this calendar
degradation model is shared with the next two
models.

2.3.2 Energy Throughput model (ET)

The Energy Throughput (ET) model [8] allows to
estimate the SoH according to a function of a total
amount of exchangeable energy and the part of
it already exchanged with the system. The maxi-
mum exchangeable energy Eex

tot depends on N cycle
tot

the achievable number of cycles for a fixed Depth
of Discharge (DoD) and on the nominal energy
Enom of the battery at 100% SoH,

Eex
tot = 2 ·N cycle

tot (DoDmax) ·DoDmax ·Enom (6)

where DoDmax is the maximum depth that a
half cycle (charge or discharge) can reach. It is
calculated via:

DoDmax = SoCmax − SoCmin (7)

In order to determine the parameter N cycle
tot , the

Number of Cycles-to-Failure (NCF) curve from
[9] was used, giving the number of cycles before
reaching EOL = 80%. For implementation pur-
poses, the relation N cycle

EOL = N cycle
tot × (1 − EOL)

needs to be define so that once the quantity Eex
tot

is exchanged, the battery ends up at SoH = 80%.
The hourly cycle degradation is then computed
according to the following equation, with Ph being

the LIB charge/discharge power in one hour h.

∆cyc(h) =
(|P ch

h |+ P dch
h ) ·∆h

Eex
tot

(8)

The SoH is finally computed as:

SoHh+1 = SoHh −∆cyc(h)−∆cal(∆h) (9)

Note that the model accuracy strongly depends
on the depth of the representative cycle, here
DoDmax. If DoDmax differs from the DoD
imposed by the battery profile, then the accuracy
of the aging model will be lower.

2.3.3 Rainflow model (RF)

In this model inspired from [10] the per cycle
degradation is evaluated by a Rainflow count. The
method consists in calculating a fatigue as a func-

tion of a SoC profile
−−→
SoC, in order to update the

SoH. More precisely, the total fatigue is obtained
by adding the fatigue associated to each half-cycle
(charge or discharge) of the profile. The induced
fatigue is a function of the depth of the half-
cycle in question. In order to obtain this profile,
the calculation of this fatigue is periodically per-

formed once a month (every ∆m). The
−−−−−→
SoCy,m

profile of the previous month SoC must be pro-
cessed to extract a vector containing the DoD of
each half-cycle performed during that month. The
extraction process is detailed in Fig. 2.

The value of the fatigue generated (10) during
the past month is then obtained via (10) where
−−−→
DoD is the vector of DoDs associated with the
SoC profile:

∆cyc(m) =

|
−−−→
DoD|∑
i=1

1

2 ·NCF (
−−−→
DoDi)

(10)

The factor 2 in the denominator comes from our
choice to consider half-cycles. The NCF function
provides, via the NCF curve supplied by the man-
ufacturer, the number of cycles achievable for a
given DoD before EOL. Finally, adding the calen-
dar degradation gives the equation for a monthly
update:

SoHm+1,1 = SoHm,H −∆cyc(m)−∆cal(∆m)
(11)
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Fig. 2 Rainflow cycle extraction flowchart.

2.3.4 Semi-Empirical model (SE)

This model from [9] incorporates empirical and
physical degradation parameters. It differs from
the other models because it takes account of sev-
eral electrochemical reactions taking place within
the battery at the beginning of its life, caused by
the consumption of lithium-ions and electrolyte to
form the passivation layer called Solid Electrolyte
Interphase (SEI). This layer is essential for the
battery longevity, as it protects the graphite from
direct contact with the electrolyte, but continues
to grow and thus degrades the battery capacity
during its life [22]. The general formula to com-
pute the degradation for a new battery is given
by :

SoHt = αsei · e−βsei·fdt + (1− αsei)e
−fdt (12)

with αsei = 5.75 · 10−2 and βsei = 121 being
empirical coefficients (fitted for an NMC battery
in [12]) describing SEI formation and fdt being
the global stress undergone by the battery until
time t depending on four parameters: the average
depth of discharge DoD, the elapsed time t, the
average state of charge SoC and the temperature
T . Hence, we consider fdunit as the unit equiva-
lent associated with a single half-cycle. Therefore,
fdt is defined as the sum of fdunit for each half-
cycle up to the instant t. The fdunit parameter is

calculated via the following equation:

fdunit = [
1

2
SDoD(DoD)+St(t)]SSoC(SoC)ST (T )

(13)
where Sx are the stress functions defined in [9]
which allow the calculation of the stress associated
with each degradation factor. Their parameters
are empirically estimated for an NMC battery in
[12].

In this paper, we consider that the LIB is
placed in a regulated thermal environment as close
as possible to Tref = 298.15K. Hence, despite the
influence of the temperature on the battery aging
[23]), this parameter is excluded from our study
(in Eq. (12), the value of ST (T ) is constant and
equal to 1).

Finally, Eq. (12) is computed each month with
an updated value for fdt. The update is done
monthly by adding to fdt all the fd

unit associated
with the cycles that have been performed during
the past month and is computed as follows:

fdt+∆m
= fdt +

Ncycle(m)∑
i=1

fduniti (14)

with Ncycle(m) being the amount of half-cycles
extracted from the SoC profile using the process
detailed in Fig. 2 and associated to the month m.
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A brief summary of the models features can
be found in Table 1. It should be noted in this
table that the first two aging models can easily
be implemented in Mixed Integer Linear Program-
ming (MILP)-based optimization methods [5, 21],
while the last two using the Rainflow counting
algorithm are highly non-linear and do not have a
closed form [24], making them unusable in these
methods commonly used for microgrid design.

Table 1 Aging models considered features.

Model FL ET RF SE
Calendar

√ √ √ √

Cycling -
√ √ √

Cycle Amplitude - -
√ √

Average SoC - - -
√

SEI Formation - - -
√

Linearization
√ √

- -

2.3.5 Calibration of the models for
meaningful comparison

In order to make our models as comparable as
possible, we have chosen to configure them using
the same data from [9]. The calendar part of the
degradation model is extracted by isolating the
calendar stress from the Semi-Empirical model.
The cycling part is calibrated using the NCF
curve for an NMC battery provided in the same
reference. For the Energy Throughput model, we
take from this NCF curve the number of cycles
achievable for a DoD of 60% (DoDmax), thus

obtaining the parameter N cycle
EOL . Finally the Rain-

flow model directly uses the NCF curve.
It is worth noting that although all models have
a calendar aging term, only the one in the Semi-
Empirical model is influenced by the average SoC
level.

2.4 Coupling between energy and
aging models

The term ”coupling” in this paper refers to the
influence of battery aging on its electrical charac-
teristics (i.e. capacity, internal resistance). Most
works in the literature consider the aging and
energy efficiency models in parallel, without any
link and without any modification of the battery
internal parameters during aging (e.g [5, 25–31]).

This is done for simplicity reasons and because it
increases the complexity of the optimization prob-
lem formulation which becomes nonlinear. Never-
theless, an approach to overcome these difficulties
is proposed in [32].

In our study, four types of coupling are consid-
ering as follows:

• The absence of coupling between energy and
aging models.

• The energy (E) coupling, which induces a loss of
capacity for the LIB defined as follows: E(t) =
Enom · SoHt.

• The internal resistance (R) coupling, which
induces a loss of efficiency by a linear
decrease as proposed in [11] or [21] via:
η(SoHt) = ηini − (0.2303·(1−SoHt)) with an
initial efficiency ηini given by the energy models
from section 2.2.

• The E and R (ER) coupling which applies both
simultaneously.

Finally when the R coupling is considered, the
polynomial efficiency is computed as follows:

ηch = ηch(Crate)− (0.2303 · (1− SoHt)) (15)

ηdch = ηdch(Crate)− (0.2303 · (1− SoHt)) (16)

It should be noted that ηch(Crate, SoHt) ∈
[0.935, 0.998] and ηdch(Crate, SoHt) ∈ [0.94, 1] for
the polynomial model.

3 Description of our case
study

3.1 The microgrid

A small microgrid with storage represented in
Fig. 3 is considered to observe the impacts of
the battery modeling with regard to the vari-
ous techno-economic indicators of the system. The
choice of a simple case study operated with a triv-
ial management policy allows us to conduct our
analyses over a 20-year horizon with an hourly
time step. The system sizing variables are:

• The battery size: Ebat [kWh].
• The peak power of the photovoltaic array: Ppv

[kWp].
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Fig. 3 Power flow diagram of our simple microgrid

• The subscribed power which, if exceeded, will
generate additional costs: Psub [kVA].

3.2 Techno-economical metrics

The system was evaluated with two main indi-
cators: the system cost and its self-sufficiency
level.

3.2.1 Self-sufficiency

The Renewable Energy Share (RES) is a metric of
the system self-sufficiency. It measures the share
of energy supplied by the PV panels in the total
energy consumption of the system. Since the sys-
tem has two possible suppliers, PV panels or grid,
this share is obtained from its complement (the
grid share):

RES = 1−
∑

P g,+∑
P load

(17)

With P g,+ being the power provided by the grid
each hour and P load the load demand.

3.2.2 System costs

The cost metric used in this study is the Net
Present Value (NPV). For its calculation Ci

y, C
o
y

are defined respectively as the investment and
operating costs for year y . Cs

Y is the residual value
of the equipment, calculated at the end of the time
horizon y = Y (non-zero only for y = Y ). For the
battery, a linear decrease of its value is considered,
reaching 0% at EOL. Finally, the discount rate
τ is set at 4.5%. The cost Cbase

y was deliberately

excluded from the calculations (the cost of meet-
ing demand over the simulation horizon by relying
exclusively on the grid) because it is independent
on the battery modeling choices. TheNPV is then
defined by (18).

NPV =

Y∑
y=1

(−Ci
y − Co

y + Cs
y)

(1 + τ)y
(18)

3.3 Details about the simulation
environment

To simulate the microgrid and conduct the anal-
ysis on the models, certain requirements must be
fulfilled. This includes obtaining input data to
evaluate the production and demand at each time
step, as well as determining the values of the siz-
ing and operating variables. This section outlines
the approach taken in this study to address these
considerations.

Scenarios

Regarding the scenarios, a set S of 16 scenarios of
20-year with an hourly time step was used. They
provide for each hour the energy demand and solar
radiation. In the context of this study, the use of
scenarios is three-fold. Firstly we want to account
for aleatory uncertainties, secondly we need to use
credible, reality-like data and finally we try to
avoid limiting the results to a specific case, thus
making them more general. Their generation is
done according to a Markov process described in
[33] with data from Ausgrid of 20 consumers over
the years 2010 to 2012 [34]. This method has the
advantage of allowing the generation of a large
number of artificial data from a reduced number
of initial data while keeping the consistency and
the correlation between the different time series.
More details can be found in the appendix A.

Sizing

Concerning the sizing, assuming that the magni-
tude of the observed effects should vary with the
size of the system components, a set of values
is considered for the sizing parameters. The sub-
scribed power Psub is set to 10 kVA. The values
of the couple (Ppv, Ebat) are generated by a Sobol
sequence [35] whose bounds are min = (0,100),
max = (0,160) in order to cover the space under

7



consideration as uniformly as possible while keep-
ing the flexibility to increase the sizing amount
without having to rerun all the previous simula-
tions. Thus 1024 designs are generated and the
point (0,0) is added afterwards thus constituting
the design set D. By associating these sizing to the
scenarios, a set of 16400 configurations (1025 siz-
ing x 16 scenarios) is provided as input to simulate
the microgrid.

Operation policy

Finally the decisions regarding the power flows are
taken by a simple rule based controller. The rules
are as follows:

• In case of surplus (P load
h −P pv

h < 0) the battery
is charged. The excess is sold to the grid if SoC
reaches SoCmax.

• In case of a deficit (P load
h −P pv

h > 0) the battery
is discharged. The grid takes over if SoC reaches
SoCmin.

Altogether and combined, those elements allow
us to simulate the microgrid on a large and diverse
set of sizing configurations (16400).

3.4 Toward robust constrained
optimization

We remind that the problem is to find the cheapest
(NPV) robust design (battery and solar panels)
within the search space able to ensure a certain
level of self-sufficiency. The aleatory uncertainties
are here addressed via a set of scenarios S and in
our case the search space is represented by the set
D.

The robust optimization problem is defined as
follows:

min
d∈D

∑
s∈S

NPV (d, s)

Card(S)

s.t.
∑
s∈S

δφ(RES(d, s))

Card(S)
≥ β

δφ(x) =

{
1 if x ≥ φ

0 otherwise

(19)

This formulation consists in finding the design
within D that allows to obtain the minimum cost
on average over all the S scenarios, while ensuring
a level φ of self-sufficiency for at least a fraction

β of the scenarios. This is a Conditional Value at
Risk (CVaR) formulation [36], which incorporates
uncertainties while providing flexibility in self-
sufficiency and robustness. It can also be noted
that this formulation is linearizable [37]. For the
following results the β value is set to 15/16 to
ensure the robustness.

As the D set only consists of 1025 points, we
have chosen to address the optimization exhaus-
tively. This approach was adopted for a fair
comparison between the models, as these different
models would involve different optimization tech-
niques, including exact and heuristic optimization
methods, which would blur the conclusions. Our
aim in defining this type of optimization prob-
lem formulation is to provide an analysis of the
modeling factors that allow a model to efficiently
determine feasible solutions and identify the best
one among them. Ultimately, we want to deter-
mine the model with the lowest complexity that
successfully combines these two attributes.

3.5 Key data associated with costs

Table 2 provides some important cost data used
for our simulations and analysis.

4 Results

Before addressing the case of robust constrained
optimization we here present some preliminary
analysis.

4.1 Comparison of aging models on
artificial SoC profiles

In this section, aging models are compared accord-
ing to the artificial SoC profiles of Fig. 4. Those
profiles, which are voluntary simple, allow charac-
terizing the effect of the following variables related
to the cycles: average state of charge, depth of
discharge and frequency.

Fig. 5 shows the strong effect of the average
SoC only modeled in the Semi-Empirical model
in which, above the reference value (here set to
0.5) accelerates aging, while on the contrary, is
slowed down when the battery is operated below
the reference value (see profile 2 compared with
profile 3 and profile 4 compared with profile 5).

Note that if, out of all the profiles, the Semi-
Empirical model is generally the one with the
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Table 2 Main cost parameters.

Cost extra informations Reference
Subscription cost 203 e/year for 10

kVA
Data from the reference has been made
continuous by inter/extrapolation for
analysis purposes

[38]

Electricity tariffs 0.23 e/kWh VAT included for peak hours (with a
0.75 factor for off-peak hours).

[38]

Cost of exceeding the
subscription limit

10.2 e/h
Most offers trip the installation rather
than charging for the excess usage; here
we model the second option.

[39]

PV panels 1300 e/kWp [40]
Li-ion cells 300 e/kWh [40]
Selling price 0 e/kWh
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going artificial SoC profiles from Fig. 4.

shortest lifetime because it incorporates an addi-
tional irreversible degradation due to the forma-
tion of the SEI. The only cases contradicting this
statement are those where this effect is compen-
sated by the effect of the average SoC mentioned
in the previous paragraph. This is observable on
profiles 3 and 5 as well as their equivalent 9 and
11.

4.2 Reference model

In order to evaluate the relevance and accuracy
of the different models presented in this paper, a
reference is needed to compare the results. Con-
sidering the observation period required for such
a system, associated with the high level of invest-
ment, it seems difficult to have real data available
as a reference. If we take into account the need to
observe a large number of sizing operations carried
out under comparable conditions, it then becomes
impossible to access real data as a reference.

Therefore, among the possible model combina-
tions presented in the previous sections, the finest
model was chosen as the reference, which consists
of the Semi-Empirical model combined with the
polynomial efficiency model, with (ER) coupling
linking capacity and efficiency to the aging. This
choice is motivated by the fact that all the degra-
dation dynamics for NMC batteries identified by
[41] are captured and validated in [9] by excellent
experimental results.

4.3 Measuring the deviation from
the reference model

Here, we measure the gaps in the assessment
of the techno-economic indicators of our models
compared with the reference. We quantify the per-
centage deviation from the reference, according
to different metrics. For each model configura-
tion (aging, coupling and energy model), 16400
simulations are performed.

Fig. 6 displays part of our results (we only
show results for ER coupling and no coupling and
the result shown only include the energy model

9



Constant Efficiency). It can be seen that the met-
ric primarily impacted by the level of accuracy
of the aging model seems to be the NPV. Mean-
while the RES is mainly affected by the choice of
incorporating or not the coupling.

Secondly, we observe that the dispersion of
the deviations for the cost metric is quite large
and that its amplitude increases when the models
incorporate fewer features, up to approximately
[−30,+30]% with the Fixed Lifetime model. The
deviation can be positive or negative although it
is mostly negative. Not incorporating the coupling
increases the trend towards the negative part.
These underestimations of the cost are mostly due
to an overestimation of the life expectancy of the
battery, which ultimately leads to fewer replace-
ments (or a higher salvage value). It could be
noted that the efficiency model is of low impor-
tance by examining the right-hand side of Fig. 6b.
This implies that the results obtained with the
Polynomial Efficiency are very similar. Conse-
quently, we will not display them. Indeed, the
distribution of error induced by implementing a
Constant Efficiency model is highly limited.

Finally, we can measure the effect of modeling
the coupling alone by comparing the reference to
its equivalent without coupling. We note that the
magnitude of the effect on NPV is smaller than the
one due to aging models. On the other hand, we
can see that the magnitude of the effect on RES
is totally due to this factor.

4.4 Quantitative differences but
qualitative similarities?

The quantitative deviations of the battery models
investigated in the paper have been character-
ized in the previous section with regard to the
RES and NPV criteria. We now examine the qual-
itative differences of those models with respect
to the microgrid configurations and scenarios of
Section 3.3. For each model, 16400 simulations
are carried out and sorted in ascending order of
the considered criterion (i.e. RES or NPV). The
similarity of the rankings between two models i
and j is estimated using the Spearman correlation
defined as follows:

rij = 1− 6

n(n2 − 1)

n∑
k=1

d2k (20)

where n = 16400 is the total number of tests and
dk denotes the difference between two rankings in
the sorts. A value of rij close to 1 indicates similar
rankings (i.e. same behavior between models i and
j) while a value of rij close to 0 means that both
models are totally uncorrelated.

Table 3 compares 16 battery model configu-
rations to the reference with respect to the rij
coefficient and NPV criterion. It can be seen that
Spearman coefficients are relatively high leading
to similar behaviors.

Without surprise, the lowest coefficient is
between the Fixed Lifetime model (considered as
the less quantitatively accurate) and the Semi-
Empirical model (supposed to be the most quan-
titatively accurate). Both Rainflow and Energy
Throughput models perform similarly with a short
advantage for the latter. It is noticeable that it is
easier for the models to rank input configurations
rather than sizing (with an average cost over the
scenarios), this is observable in Table 3 through
higher scores on the first result line than on the
second one. This can be explained by the fact that
some scenarios have higher demands and are unan-
imously more expensive than others. It is therefore
easy to rank them, thus increasing the correlation
score.

The Spearman coefficient results associated
with the RES are rounded to one while not being
strictly perfect. But the minor inversions happen-
ing still result in a very high correlation which
implies an almost perfect similarity between all
models. This can be justified by the small quan-
titative differences and low dispersion noted for
that criterion in Fig. 6.

4.5 Conclusions of the preliminary
analysis

Previous sections contains results that tend to
show that despite having different behaviors and
aging trajectories, resulting in distant quantitative
evaluations in terms of NPV (cf. Fig. 6), the mod-
els propose similar rankings but not identical. It
was also shown that the main aspect in order to
assess the self-sufficiency of the system rather than
the aging model is the capacity reduction induced
by the aging here named (E) coupling. One could
argue that since the capacity reduction is a direct
function of the SoH governed by the aging model,
the aging model should be of great importance. In

10



Fixed Lifetime Energy Throughput Rainflow Semi-Empirical
Aging model

30

20

10

0

10

20

30
D

ev
ia

tio
n 

(%
)

Metrics
RES
NPV

Fixed Lifetime Energy Throughput Rainflow Semi-Empirical
Aging model

30

20

10

0

10

20

30

D
ev

ia
tio

n 
(%

)

Metrics
RES
NPV

(a) No coupling

Fixed Lifetime Energy Throughput Rainflow Semi-Empirical
Aging model

30

20

10

0

10

20

30

D
ev

ia
tio

n 
(%

)

Metrics
RES
NPV

Fixed Lifetime Energy Throughput Rainflow Semi-Empirical
Aging model

30

20

10

0

10

20

30

D
ev

ia
tio

n 
(%

)

Metrics
RES
NPV

(b) ER coupling

Fig. 6 Distribution of the deviation in percentage from the reference for different models and computed as:
(val−ref)·100

ref
.

The horizontal dotted lines represent the quartiles. The efficiency model considered here is the Constant one.

order to answer this question, the distribution of
the average SoH over the 16400 input configura-
tions is provided in Fig. 7. During the simulations
the SoH level and thus the available battery capac-
ity remains on average relatively similar between
the models. On the other hand, the replacement of
the batteries occurs at different frequencies. This
will result in significant differences on the system
costs, but much less on their self-sufficiency.

Considering these preliminary results, it is
important to understand whether a simple model
can lead to similar results as the finest one for the
design problem with a self-sufficiency constraint.
For this purpose, we will now address the case of

optimization using the formulation introduced in
Section 3.4.

4.6 Constraint satisfaction front line
comparison

Considering our problem formulation, we first
want to identify if the models agree on the set
of solutions that fulfills the constraints. Assum-
ing that the NPV and RES criteria are in most
cases antagonistic, the cheapest feasible solution is
expected to be found on the edge of the constraint
satisfaction front line. Therefore, an error regard-
ing the estimation of this line by a model could
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Table 3 Spearman correlation coefficient for each model configuration with regard to the reference. The NPV and RES
columns use the ranking of input configurations (16400 combinations of sizing and scenarios), while the NPV mean and
RES mean columns use the ranking of sizing (for each sizing, the average across different scenarios is used) Legend: ∅ is
the absence of coupling and ER means both couplings (E and R)

Aging Efficiency Coupling NPV Averaged NPV RES Averaged RES

Fixed Lifetime
Constant

∅ .87 .82 1 1
ER .88 .83 1 1

Polynomial
∅ .87 .82 1 1
ER .88 .83 1 1

Energy Throughput
Constant

∅ .93 .91 1 1
ER .94 .92 1 1

Polynomial
∅ .93 .91 1 1
ER .94 .92 1 1

Rainflow
Constant

∅ .93 .90 1 1
ER .93 .92 1 1

Polynomial
∅ .92 .90 1 1
ER .93 .92 1 1

Semi-Empirical
Constant

∅ 1 1 1 1
ER 1 1 1 1

Polynomial
∅ 1 1 1 1
ER 1 1 1 1

86 88 90 92 94
Mean SOH (%)
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Fig. 7 Mean SoH Distribution. Red line stand for the Fixed Lifetime model.

result in a very different and distant optimal solu-
tion proposal within the search space. To observe
this line, every design within D over the scenarios
of S was simulated. Then, the front satisfaction
line for a given RES constraint as defined in (19)
is drawn. We chose to display the comparison for

an arbitrary set of five levels of self-sufficiency
φ in order to draw conclusions for different case
studies.
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black dot is a design from D. Leftward-pointing triangles stand for the reference and rightward-pointing triangles stand for
the reference model but without coupling.

Influence of energy-aging coupling

As expected, Fig. 8 shows that the absence of
coupling (and especially (E) coupling) results in
a huge overestimation of the RES, leading to the
consideration of many solutions that would not
meet the constraint. It is noticeable that this effect
increases with the constraint level φ, while no dif-
ference is observed for φ = 30%, a difference of
more than 20 kWh in battery sizing for a con-
straint level φ = 90% is perceived. This effect was
expected considering the results from Section 4.3.
The absence of (E) coupling leads to an overesti-
mation of the average battery capacity during its
life, making the task of ensuring self-sufficiency
easier since more energy capacity is available.

Influence of the energy model

On the other hand, Fig. 9 shows a small effect in
the opposite direction with the Constant energy
efficiency model providing a slightly worse effi-
ciency on average than the Polynomial energy
efficiency model. This results in an underestima-
tion of the RES, leading not to consider some
feasible solutions. However, the intensity of this
effect is much lower than that observed for (E)
coupling.

Influence of the aging model

Finally, it can be observed from Fig. 10 and Fig. 11
that the LIB aging model seems to be of relatively
minor importance when it comes to estimating
the constraint satisfaction front line. This con-
clusion had already been observed in previous
quantitative analyses. Ultimately, this translates
into very good results achieved with the simplest
model configurations (roughly modeling aging and
efficiency) as long as (E) coupling is integrated.

In conclusion, we can see that the decisive
factor for correctly estimating the self-sufficiency
constraint is the (E) coupling. In fact, a simple
aging and/or efficiency model can be associated
with it and still provide a very good estimate of
the self-sufficiency constraint. However, it is likely
that lowering the battery replacement threshold
SoHthreshold would result in bigger averaged SoH
gaps between models. This would imply bigger
gaps in capacity which would, in the end, lead
to an inaccurate evaluation of the self-sufficiency.
Consequently it is important to remind that this
study is conducted on first life batteries operated
in the [100-80]% SoH range, it could be interest-
ing to investigate similar analyses on wider SoH
ranges and on second-life batteries.
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Fig. 9 Constraint satisfaction front line comparison, the effect of energy efficiency model. Every black dot is a design from
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Fig. 10 Constraint satisfaction front line comparison, the simplest aging model (FL) and efficiency model (Constant
Efficiency) with coupling ER compared to the reference

4.7 Search space map

Having shown that the integration of (E) coupling
is necessary, we will now only consider models
incorporating it. Fig. 12 shows a NPV map over
each possible sizing for each aging model and each
energy efficiency model with (ER) coupling.

As seen on the maps, the cost mainly varies
with the PV axis for all models. However, when
comparing the optimal zone for each model, Fixed
Lifetime tends to find lower costs for solutions
with relatively high PV peak powers and battery
sizes, since it overestimates the battery lifetime by
only considering calendar aging.

14



0 20 40 60 80 100 120 140 160
Battery size (kWh)

0

20

40

60

80

100
PV

 si
ze

 (k
W

p)
Constraint satisfaction front comparaison 

 Energy Throughput, Constant , ER and  Semi-Empirical, Polynomial , ER

Model configuration
Reference
EE, Const , ER

RES Constraint ( ) 
 with  = 15/16

30%
60%
75%
90%
95%

Fig. 11 Constraint satisfaction front line comparison, a simple model with coupling ER compared to the reference

0 20 40 60 80 100 120 140 160
 

0

50

100

PV
 (k

W
p)

Fixed Lifetime, Constant 

0 20 40 60 80 100 120 140 160
 

Fixed Lifetime, Polynomial 

0 20 40 60 80 100 120 140 160
 

0

50

100

PV
 (k

W
p)

Energy Throughput, Constant 

0 20 40 60 80 100 120 140 160
 

Energy Throughput, Polynomial 

0 20 40 60 80 100 120 140 160
 

0

50

100

PV
 (k

W
p)

Rainflow, Constant 

0 20 40 60 80 100 120 140 160
 

Rainflow, Polynomial 

0 20 40 60 80 100 120 140 160
Battery (kWh)

0

50

100

PV
 (k

W
p)

Semi-Empirical, Constant 

0 20 40 60 80 100 120 140 160
Battery (kWh)

Semi-Empirical, Polynomial 

92093

100000

120000

140000

160000

180000

200000

220000

233142
Cost( )

Fig. 12 NPV values over the search space for each energy and aging models with ER coupling. The black star represent
the optimal solution within each search space.

As for Rainflow and Energy Throughput, they
show similar results since both model calcula-
tions are dependent on the SoC variations during
battery usage, meaning that the SoH is a direct
image of the SoC profile. Fig. 7 confirms this
last statement, since the SoH distribution for
both models shows similar patterns. The results
obtained with the reference model indicate that

the other three models underestimate the actual
NPV in some regions, mainly towards solutions
with bigger solar panels and batteries. This is due
to the fact that for the Semi-Empirical model,
over-sized solar panels tend to maintain high levels
of SoC within the batteries, penalizing the calen-
dar and cycling aging factors which are dependent
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Fig. 13 NPV gap map (in percentage) between a sample of model configurations and the reference. The gap is computed
for a given model x as 100 · (NPVx −NPVref )/NPVref

on the average SoC level. On the other hand, the
other aging models overestimate the cost com-
pared to the reference for small-sized solar panels,
and the more the battery represents a significant
portion of the system cost, the more pronounced
this effect becomes. In this case, the SoC will
generally remain low, which will result in slower
aging for the reference model. These conclusions
are highlighted in the left column of Fig. 13.

Fig. 12 also gives important insights for the
study of optimal solutions found for different RES
constraints. If a given model is capable of find-
ing the constraint satisfaction front line correctly,
since the NPV map patterns are the same, even if
their quantitative results are not, then the model
will be able to find the optimal solution. As seen
before, this means that even if they are off on the
quantitative aspect, they manage to correctly rank
the models.

Fig. 12 provides an overview of the NPV solu-
tions landscape. It has been observed that these
landscapes have similar patterns but with different
NPVs for a given sizing. We propose to investigate
the extent and causes of these differences through
Fig. 13.

Firstly, it is evident that the effects are
strengthened by increasing the battery size, while

they are diminished or even eliminated if the bat-
tery size is small or zero. Secondly, on the left
column, it can be observed that there is a tipping
line, beyond which the effects change qualitatively.
This tipping is explained by a SoC level that is suf-
ficiently high so that the stress factor SSOC of the
Semi-Empirical model has an accelerating effect
on aging. For a given battery size, there exists a
solar panel size around which the battery is either
frequently full or frequently empty. Beyond a zone
close to this band, the effect does not appear to be
influenced by the size of the solar panel. It seems
that there is a narrow equilibrium point around
which the stress factor SSoC of the Semi-Empirical
model is at reference and so is ineffective.

Finally, it can be observed that the effects in
the right column are quantitatively much weaker
than those observed in the left column. This
reveals that the main factor for evaluating the
NPV of the solutions is the aging model rather
than the coupling or the energy efficiency model.
This is obviously true when comparing the aging
model with itself but with different coupling con-
figurations. The statement is valid as long as the
battery model precisely predicts the average SoH
during its usage and the time before EOL.
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4.7.1 Sensitivity to PV panels &
battery costs

As it turns out, meeting self-sufficiency constraints
does not depend on system costs, so the con-
clusion regarding the sufficiency of coupling to
estimate constraint front-lines remains valid. In
this case, it is reasonable to assume that only the
pattern of the objective landscape will be affected
by variations in system costs. This pattern will
presumably be influenced by the relative prices of
different system components. Therefore, to ensure
methodological consistency, the decision was made
to keep the electricity price fixed and vary the bat-
tery price at three levels (+50%, +0%, -50%) and
the solar panel price at two levels (+0%, -50%)
providing a combination of 6 system costs set.

Fig. 14 shows a comparison of landscape pat-
terns for two models: the reference model on the
right and the Energy Throughput, Constant Effi-
ciency, and (ER) coupling on the left, for six sets
of prices. The color bar is adjusted to each plot
to better highlight the landscape pattern rather
than the quantitative value. Through observation,
it is noted that the landscapes display a consistent
degree of similarity across all instances. However,
the error amplification and the extent of varia-
tion in landscapes become more pronounced as the
battery price increases in relation to the prices of
electricity and solar panels, as evident from rows
3 and 6. In some specific cases, with high con-
straint levels and high battery costs, this can lead
to greater errors in the optimal solution proposed
by the simple model.

4.7.2 Sensitivity to feed-in tariffs

It is also important to study if these results hold
in a case where it is possible to sell energy to
the grid, since most energy markets worldwide
have already implemented the necessary regula-
tions to permit this action. To explore this issue,
a simple model was used where the price of the
feed-in tariffs is set as a percentage of the energy
retail price [42]. In this case study, an arbitrar-
ily value of 50% of the buying price was chosen.
Aside from the quantitative aspect, this value is
expected to be of little importance since it will not
change the way the battery is operated. Fig. 15
displays the NPV values over the research space
with feed-in tariffs. Obviously the possibility of

selling supplementary electricity makes the invest-
ment in solar panels much more attractive. It is
also interesting to note that the models display
similar NPV patterns. However a potential prob-
lem can be perceived: despite producing similar
patterns, the Fixed Lifetime model finds that buy-
ing a battery is profitable. This is not the case
for the optimal solution of the other models. This
discrepancy arises from an overestimation of the
battery’s lifetime. While this simple model illus-
trates this effect with the feed-in tariffs used for
the simulation, it is very likely that other mod-
els could also reveal this issue under specific price
conditions.

Fig. 16 shows that the effect on the NPV gap
map is similar to the previous case study without
the implementation of feed-in tariffs. This similar-
ity is explained by the battery being operated in
the same way, leading to the same model errors
and differences in life expectancy. However, the
percentage of underestimation increases since the
CAPEX gap represents a greater share of the total
cost in solutions with feed-in tariffs, where prices
are inevitably equal to or lower than those in
simulations without feed-in tariffs.

4.8 Location of the optimal solutions

Fig. 17 shows the best solution for a sample of
four model configurations and the optimal solu-
tion found for the reference model considering
multiple RES constraints. For display purposes we
chose to link the solutions forming the constraint
satisfaction front line of the reference model.
The configuration associating the Fixed Lifetime
aging model with no coupling to the Constant
Efficiency, represented with filled squares, is the
simplest one and performs quite badly for differ-
ent reasons, depending on the level of constraint.
In case of high self-sufficiency, this model is unable
to accurately estimate the constraint front line.
Thus the optimal is found within solutions with
smaller PV and battery sizes. On the contrary, in
case of low self sufficiency (here 30%) the error
comes from the fact that the optimal solution is
found with a bigger battery because its durability
is overestimated. This effect was already seen in
Fig. 12. When the same model configuration with
ER coupling is considered, represented with empty
circles, the error regarding the low self-sufficiency
constraint remains, because that it is not due to
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Fig. 14 Comparison of the NPV landscape between two model configurations across 6 price sets. Each map has its own
color scale to better display the landscape pattern.

the coupling effect. However, when it comes to
higher self-sufficiency, the model tends to estimate
the optimal area decently while never finding the
exact solution. The results for the model con-
figuration Energy Throughput, Constant η with
(ER) coupling and the Rainflow, Polynomial η
with (ER) coupling (respectively the diamond and
empty upward triangles) are quite satisfactory.
Indeed, at any self-sufficiency level, the estimation
of the optimal solution is fairly accurate. The for-
mer and simpler of the two models is even able
to provide the optimal solution in the case of
90% RES level. It is worth noting its good per-
formance, achieving good estimation by roughly
modeling the aging and energy efficiency dynam-
ics. The optimal solution for the reference model
in the case where φ = 30% is surprisingly not
found alongside from the constraint satisfaction
line. This implies that there is some kind of equi-
librium here where it is possible to make profit by
improving the self-sufficiency. However this is true
for the specific set of values shown in Table 2 and
would be different for a different balance between
those costs.

5 Conclusion

In this paper, we have provided a comprehen-
sive understanding of the impact of LIB modeling
choices in the context of microgrid design with
regard to NPV and self-sufficiency optimization.
Several battery models coupling energy efficiency
and aging, characterized by different levels of
accuracy and complexity, have been compared.
The analysis of those models on a simple microgrid
with battery storage for different sizing configura-
tions and multiple scenarios of PV production and
electricity consumption has allowed us to draw the
following conclusions. On one hand, representing
the coupling between aging and energy efficiency
(especially the loss of battery capacity) is essen-
tial for determining robust microgrid solutions
with respect to NPV minimization under a self-
sufficiency constraint. On the other hand, when
this coupling is integrated, using simple models for
the energy efficiency (i.e. Constant average effi-
ciency) and for aging (i.e. Energy Throughput) is
then sufficient for identifying the feasible solutions
and approximate the optimal sizing. However, for
assessing the quantitative value of those solutions,
a more accurate aging model (i.e. Semi-Empirical)
is required. Finally, it should be noted that these
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Fig. 15 NPV values over the research space with feed-in tariffs for each energy and aging models with ER coupling. The
black star represent the optimal solution within each search space.
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Fig. 16 NPV gap map (in percentage) with feed-in tariffs between a sample of model configurations and the reference.
The gap is computed as 100× (NPVx −NPVref )/NPVref

conclusions were only confirmed for the considered
input data and battery technologies used in the
paper. Their generalization needs to be either con-
firmed or refuted by future studies investigating

other technologies and more complex microgrid
architectures.
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Fig. 17 Optimal solution for different models compared to the reference optimal over various constraint self-sufficiency
levels. Colored lines represent the constraints satisfaction front lines for the reference model.

6 Data Availability statement

To produce the results and figures presented in
this paper, we utilized data and code. All the nec-
essary files are available in the repository [43]. The
repository contains a comprehensive collection of
resources, including the cleaned data associated
with Ausgrid’s clients from [34]. Moreover, it con-
tains the scripts required to use this data for
generating scenarios.

The repository offers access to a file contain-
ing 50 scenarios produced with the aforementioned
script. Specifically, the first 16 scenarios displayed
on A1 and A2 were utilized in the scripts to gener-
ate the results showcased in this paper. Addition-
ally, the repository contains a complete version of
the micro-grid simulation package employed in our
studies.

In order to mimic the parameterization of
our battery models, we also provide the cycle-to-
failure curve. This curve is crucial for configuring
most of our aging models.

Furthermore, we have included the simulation
script within the repository. This script enables
the replication of the grid simulations and the
exploitation of the results to generate the various
figures and tables found in this paper (exclud-
ing the appendix). Finally we have provided a

separate set of result files which is the result of
our simulations for those who want to skip the
simulation phase and only analyze their outputs.
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Appendix A Scenario
profiles

16 distinct one-year scenarios were generated
using a Markov approach. The profiles are gen-
erated by applying the method from [33] on the
Ausgrid distribution network data set, specifically
on 20 customers for whom we have 3 years of data
at 30-minute intervals. A deeper analysis of this
data set is available in [44]. The demand profiles
are an aggregation of 5 artificial profiles, implying
that the demand corresponds to 5 households.

Each scenario is then duplicated over 20 years
to enable simulations over the system’s time hori-
zon. Fig. A1 and Fig. A2 allow the visualization
of the initial annual data profiles, which are repli-
cated for each scenario. The fact of correlating
the years is debatable, as it is rather unrealistic,
but we made this choice to allow a better differ-
entiation of the input scenarios from the robust
optimization problem, given the small number
used in the robust design process (only 16). Using
profiles synthesized directly over 20 years with
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Fig. A1 Electricity load profile visualization for every yearly scenarios. The blue line represents the load profile for the
corresponding panel, while the light gray lines in the background depict the profile of the other scenarios.

Fig. A2 Solar production profile visualization for every yearly scenarios. The green line represents the generation profile
for the corresponding panel, while the light gray lines in the background depict the profile of the other scenarios.

uncorrelated years, or obtained by randomly mix-
ing the 16 basic profiles presented here would be

more realistic, but would undoubtedly be less sen-
sitive to the variance between the different battery
models we wish to characterize.
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