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Abstract

Automatic evaluation for sentence simplifica-
tion remains a challenging problem. Most
popular evaluation metrics require multiple
high-quality references – something not read-
ily available for simplification – which makes
it difficult to test performance on unseen do-
mains. Furthermore, most existing metrics
conflate simplicity with correlated attributes
such as fluency or meaning preservation. We
propose a new learned evaluation metric (SLE)
which focuses on simplicity, outperforming al-
most all existing metrics in terms of correla-
tion with human judgements.

1 Introduction

Text simplification involves the rewriting of a text
to make it easier to read and understand by a
wider audience, while still expressing the same
core meaning. This has potential benefits for dis-
advantaged end-users (Gooding, 2022), while also
showing promise as a preprocessing step for down-
stream NLP tasks (Miwa et al., 2010; Mishra et al.,
2014; Štajner and Popovic, 2016; Niklaus et al.,
2016). Although some recent work considers sim-
plification of entire documents (Sun et al., 2021;
Cripwell et al., 2023a,b) the majority of work fo-
cuses on individual sentences, given the lack of
high-quality resources (Nisioi et al., 2017; Martin
et al., 2020, 2021).

A major limitation in evaluating sentence simpli-
fication is that most popular metrics require high-
quality references, which are rare and expensive
to produce. This also makes it difficult to assess
models on new domains where labeled data is un-
available. Another limitation is that many metrics
evaluate simplification quality by combining mul-
tiple criteria (fluency, adequacy, simplicity) which
makes it difficult to determine where exactly sys-
tems succeed and fail, as these criteria are often
highly correlated — meaning that high scores could
be spurious indications of simplicity (Scialom et al.,

Metric Simplification Semantic Ref-less

BLEU 7 7 7
BERTScore 7 3 7
QUESTEVAL 7 3 3
SARI 3 7 7
FKGL 3 7 3
LENS 3 3 7
SLE 3 3 3

Table 1: Desirable attributes of popular simplification
evaluation metrics — whether they are designed with
simplification in mind, use semantic representations, or
do not require references.

2021b). Table 1 describes how popular metrics con-
form to various desirability standards.

We propose SLE (Simplicity Level Estimate), a
learned reference-less metric that is trained to esti-
mate the simplicity of a sentence.1 Different from
reference-based metrics (which estimate simplicity
with respect to a reference), SLE can be used as
an absolute measure of simplicity, a relative mea-
sure of simplicity gain compared to the input, or
to measure error with respect to a target simplicity
level. In this short paper, we focus on simplic-
ity gain with respect to the input and show that
SLE is highly correlated with human judgements
of simplicity, competitive with the best performing
reference-based metric. We also show that, when
controlling for meaning preservation and fluency,
many existing metrics used to assess simplifica-
tions do not correlate well with human ratings of
simplicity.

2 A Metric for Simplicity

The SLE Metric. We propose SLE, a learned
metric which predicts a real-valued simplicity level
for a given sentence without the need for references.
Given some sentence t, the system predicts a score
SLE(t) ∈ R, with high values indicating higher

1Code and resources are available at https://github.
com/liamcripwell/sle/.
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simplicity. This can not only be used as an absolute
measure of simplicity for system output ŷ, but also
to measure the simplicity gain relative to input x:

∆SLE(ŷ) = SLE(ŷ)− SLE(x) (1)

In this paper we primarily focus on ∆SLE, as
it is the most applicable variant under common
sentence simplification standards.

Model. As the basis for the metric, we fine-tune a
pretrained RoBERTa model2 to perform regression
over simplicity levels given sentence inputs, using
a batch size of 32 and lr = 1e−5. We ran training
experiments on a computing grid with a Nvidia
A40 GPU.

Data. We use Newsela (Xu et al., 2015), which
consists of 1,130 news articles manually rewritten
at five discrete reading levels (0-4), each increasing
in simplicity. Existing works often assume sen-
tences have the same reading level as the document
they are from (Lee and Vajjala, 2022; Yanamoto
et al., 2022); however, we expect there to be a lot of
variation in the simplicity of sentences within doc-
uments and overlap across levels. As such, merely
training to minimize error with respect to these la-
bels would likely result in mode collapse within
levels (peaky, low-entropy distribution) and strong
overfitting to the Newsela corpus. To address this
mismatch between document- and sentence-level
simplicity, we take the following two mitigating
steps to allow the model to better differentiate be-
tween sentences from the same reading level.

Label Softening. We attempt to mitigate peak-
iness in the output distribution by softening the
quantized reading levels assigned to each sentence
in the training data. Specifically, we interpolate
regression labels throughout overlapping class re-
gions (±1) according to their Flesch-Kincaid grade
level (FKGL) (Kincaid et al., 1975). FKGL is
a readability metric often used in education as a
means to judge the suitability of books for students
(high values =⇒ high complexity).

If L is the set of sentences belonging to some
reading level, we define an intra-level ranking ac-
cording to re-scaled, negative FKGLs:

fL = {−fkgl(xi) | xi ∈ L}

f ′L,i = 2 · fL,i −min fL
max fL −min fL

(2)

2We fine-tune the pretrained roberta-base model from
https://huggingface.co/roberta-base with an
added regression head.

where f ′L,i is the revised FKGL score of sen-
tence xi. Intuitively, this inverts FKGL scores (so
that higher values = higher simplicity) and rescales
them to be ∈ [0, 2]. The [0, 2] scaling is used in
order for the distribution of final scores in each
reading level to have a ±1 variance and overlap
with adjacent groups (see Figure 1 for a visual rep-
resentation).

From this, we derive the final revised labels:

l′L,i = f ′L,i − f̄ ′L + lL,i (3)

where f̄ ′L is the mean of f ′L, lL,i is the reading
level for the ith sentence of L, and l′L,i is its revised
soft version.3

For example, if the original document has a read-
ing level of 3, and one of the sentences has a revised
FKGL (Equation 2) of 1.5, then the softened label
for that sentence will therefore be 3.5 (Equation 3).
Figure 1 shows the distributional differences be-
tween the original reading levels and the resulting
softened versions for the training data.

We report results for a model using softened
labels (SLE) as well as a variant using the original
quantized labels (SLEZ).

Document-Level Optimization. Given that
Newsela reading levels are assigned at the
document level, the labels of individual sentences
are likely noisy, but approach the document label
on average. We therefore observe and perform
early stopping with respect to the document-level
validation MAE (Mean Absolute Error) and use
a train/dev/test split (90/5/5) that keeps sentences
from all versions of a given article together. The
size of each data split is illustrated in Table 2.

3 Experiments

3.1 Similarity Metrics

We compare SLE with four reference-based and
two reference-less metrics previously used to as-
sess the output of simplification models. Table 1
summarizes their main features.

SARI. The most commonly used evaluation met-
ric is SARI (Xu et al., 2016), which compares n-
gram edits between the output, input and references.
Despite its widespread usage, SARI has known lim-
itations. The small set of operations it considers

3Note that we also account for extreme FKGL values by
excluding sentences with FKGL scores in the top or bottom
percentile.
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Figure 1: Distribution of (a) original quantized and (b) softened labels for sentences in the SLE training data.

0 1 2 3 4 Total

Train 52,488 63,993 61,248 55,620 60,416 293,765
Dev 3069 3,595 3,348 2,976 3,228 16,216
Test 2901 3,710 3,348 3,024 3,244 16,227

All 58,458 71,298 67,944 61,620 66,888 326,208

Table 2: Number of sentences sourced from documents of each quantized reading level.

makes it much more focused towards lexical sim-
plifications, showing very low correlations with
human ratings in cases where structural changes
(e.g. sentence splitting) have occurred (Sulem et al.,
2018). As it is token-based, it is totally reliant on
the references, without any robustness towards syn-
onomy.

BERTScore. Zhang et al. (2019) present
BERTScore, which overcomes some of these short-
comings given its use of embeddings to compute
similarities. It has been found to correlate highly
with human ratings of simplicity (Alva-Manchego
et al., 2021), but still requires references. It is
reportedly worse than SARI at differentiating
conservative edits (Maddela et al., 2022) and its
high correlation with simplicity ratings may be
spurious (Scialom et al., 2021b).

LENS. Recently, Maddela et al. (2022) propose
LENS, a learnable metric specifically designed for
simplification, which aims to better account for
different operation types. It is trained to focus
on semantic similarity without respect to writing
style via a reference-adaptive loss. A simplification
quality score is predicted given an output and a
set of references. LENS shows higher correlations
to human quality judgements than any previous
metric, but still requires multiple references to work

optimally.

FKGL. The Flesch-Kincaid grade level
(FKGL) (Kincaid et al., 1975) is a document-level
metric used to measure text readability without
any references. It is based on basic surface-level
features like word/sentence lengths. It has seen
some success in evaluating simplification (Scialom
et al., 2021b). Unlike most other metrics, it does
not explicitly consider the adequacy and fluency
dimensions, as it is reference-less and assumes the
text is already well-formed (Xu et al., 2016).

QUESTEVAL. Scialom et al. (2021a) propose
QUESTEVAL, a reference-less metric that com-
pares two texts by generating and answering ques-
tions between them. Although originally intended
for summarization, it has shown some promise as a
potential meaning preservation metric for simplifi-
cation (Scialom et al., 2021b).

3.2 Evaluation

We evaluate SLE both in terms of its ability to per-
form the regression task and how well it correlates
with human judgements of simplicity. For the lat-
ter we consider ∆SLE, as this conforms with what
human evaluators were asked when giving ratings
(to measure simplicity gain vs. the input).
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Regression. To evaluate regression models we
consider (i) the MAE with respect to the original
quantized reading levels, (ii) the document-level
error when averaging all sentence estimates from a
given document (Doc-MAE), and (iii) the F1 score
as if performing a classification task, after round-
ing estimates. We expect the best model for our
purposes to achieve a lower Doc-MAE as it should
better approximate true document-level simplicity
labels in aggregate.

Correlation with Human Simplicity Judgments.
We test the effectiveness of the metric by com-
paring its correlation with two datasets of hu-
man simplicity ratings: Simplicity-DA (Alva-
Manchego et al., 2021) and Human-Likert (Scialom
et al., 2021b). Simplicity-DA contains 600 sys-
tem outputs, each with 15 ratings and 22 refer-
ences, whereas Human-Likert contains 100 human-
written sentence simplifications, each with ∼60
simplicity ratings and 10 references. We use all
references when computing the reference-based
metrics and consider the average human simplicity
rating for each item.

As Simplicity-DA consists of system output sim-
plifications, it naturally contains some sentences
that are not fluent or semantically adequate. In
such cases, humans would likely give low scores
to the simplicity dimension as well (e.g. it is not
simple to understand non-fluent text) — this is re-
flected in the inter-correlation between simplicity
and the two other dimensions (Pearsons’ r of 0.771
for fluency and 0.758 for adequacy). Thus, we
only consider a subset (Simplicity-DA3) contain-
ing those system outputs with both human fluency
and meaning preservation ratings at least 0.3 std.
devs above the mean (top ∼30%)4 which allows us
to more appropriately consider how well metrics
identify simplicity alone. For Human-Likert, the
inter-correlation with fluency and meaning preser-
vation are less pronounced, but do still exist (0.736
and 0.370).5 As such, a metric with high cor-
relation on Human-Likert but low correlation on
Simplicity-DA3means it is likely measuring one
of the other aspects rather than simplicity itself.

4 Results

Results on the regression task can be seen in Ta-
ble 3. We see that although using soft labels ob-

4We also exclude 166 examples that exist within the LENS
training data.

5We do not perform any filtering on Human-Likert.

Model MAE ↓ Doc-MAE ↓ F1 ↑
SLEZ (quantized) 0.825 0.544 0.401
SLE (softened) 0.924 0.448 0.402

Table 3: Accuracy results for reading level estimators.
Errors are calculated according to the original quan-
tized reading level labels.

Metric Human-Likert Simplicity-DA3

LENS 0.531** 0.429**
SARI 0.395** 0.109
BERTScore 0.389** 0.142
BLEU 0.333** 0.084

∆SLE 0.516** 0.381**
∆SLEZ 0.479** 0.328**
FKGL 0.354** 0.260*
QUESTEVAL 0.134 0.090

Table 4: Absolute Pearson correlations with human
judgements of simplicity. The top tier contains
reference-based metrics and the bottom reference-less.
* indicates significance with p-value < 0.01 and ** <
0.001.

viously worsens MAE with respect to the origi-
nal reading levels, the document-level MAE is im-
proved, suggesting that quantized labels lead to
more extreme false negatives under uncertainty, as
scores are drawn towards integer values. When
treated as a classification task (by rounding predic-
tions) both systems show similar performance (F1).
This shows us that SLE is better able to approxi-
mate document-level simplicity ratings on average,
with little to no drawback at the sentence level (as-
suming quantized labels were correct).

Correlations with human ratings of simplicity
are shown in Table 4. The best metric on Human-
Likert is LENS, closely followed by ∆SLE, with
other metrics lagging quite far behind. This clearly
shows the effectiveness of ∆SLE as it is able to
outperform all existing metrics but for LENS, with-
out requiring any references and using a smaller
network architecture than LENS and BERTScore.
On Simplicity-DA3, metrics follow a similar rank
order except for certain metrics dropping substan-
tially (SARI, BERTScore, BLEU).6 As Human-
Likert still has moderate inter-correlation between
evaluation dimensions, the large drops in perfor-
mance can likely be attributed to these mostly mea-

6Scialom et al. (2021b) report very poor reference-based
metric correlations on Human-Likert, substantially lower than
our results. When discussed with the authors, they were no
longer in possession of code that could reproduce their origi-
nally reported results.
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suring semantic similarity with references rather
than the actual simplicity. Accounting for the inter-
correlation between dimensions has less impact
on metrics like ∆SLE and FKGL, confirming the
validity of readability-based metrics as potential
measures of pure simplicity.

5 Related Work

Štajner et al. (2014) attempt to assess each quality
dimension of simplifications by training classifiers
of two (good, bad) or three (good, medium, bad)
classes using existing evaluation metrics as fea-
tures. However, when the simplicity dimension is
considered, performance was poor (Štajner et al.,
2016). Later, Martin et al. (2018) were able to
slightly improve this after exploring a wide range
of features. However, these works do not predict
real-valued estimates of simplicity nor have been
adopted as evaluation metrics.

Some studies from the automatic readability as-
sessment (ARA) literature use quantized Newsela
reading levels as labels to train regression mod-
els. Lee and Vajjala (2022) do so in order to pre-
dict the readability of full documents, which does
not extend to sentence simplification. Yanamoto
et al. (2022) predict a reading level accuracy within
an RL reward for sentence simplification, but do
so using the reading levels that were assigned to
each document. This too does not transfer well
to sentence-level evaluation, given the imprecision
and noise introduced by the use of quantized ratings
that were assigned at the document level. These
approaches have not been applied to the actual eval-
uation of sentence simplification systems.

6 Future Directions

In this paper we explore the efficacy of SLE as
a measure of raw simplicity or relative simplicity
gain (∆SLE). However, given the flexibility of not
relying on references, SLE can potentially be used
in other ways. For example, one could measure an
error with respect to a target simplicity level, l∗:

εSLE(ŷ) = |SLE(ŷ)− l∗| (4)

This could be useful in the evaluation of control-
lable simplification systems, which should be able
to satisfy simplification requirements of specific
user groups or reading levels (Martin et al., 2020;
Cripwell et al., 2022; Yanamoto et al., 2022). As it
is trained with aggregate document-level accuracy

in mind, SLE could also possibly be used to evalu-
ate document simplification — either via averaging
sentence scores or using some other aggregation
method.

7 Conclusion

In this paper we presented SLE — a reference-less
evaluation metric for sentence simplification that is
competitive with or better than the best performing
reference-based metrics in terms of correlation to
human judgements of simplicity. We reconsider the
ability of popular metrics to accurately gauge sim-
plicity when controlling for other factors such as
fluency and semantic adequacy, confirming suspi-
cions that many do not measure simplicity directly.
We hope this work motivates further investigation
into the efficacy of standard simplification evalu-
ation techniques and the proposal of new method-
ologies.
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9 Limitations

The SLE metric model is trained entirely on
English-language data and therefore will not be
effective for evaluating simplification in other lan-
guages. Producing a multilingual version of the
metric is likely possible by using either different
datasets or adapting other methods from the multi-
lingual NLP literature, but we leave this to future
work.

Furthermore, as SLE has been primarily trained
on news articles, it could exhibit a drop in perfor-
mance quality when used to evaluate text from spe-
cialized domains that use vocabularies likely not
encountered during training (e.g. medical, legal do-
mains). In such cases, producing a domain-specific
version of SLE via specialized pretraining or fine-
tuning should be feasible, given sufficient data.
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A Validation Set Results

Table 5 lists the model performances on the valida-
tion set. Notice they follow a very similar pattern
to what is seen in the test set results in Table 3.

B Regression Entropy

Figure 2 shows the distributional difference be-
tween the predictions from the SLE model with
softened vs. quantized labels. Using the soft-
ened labels leads to predictions following a much
smoother distribution.
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Figure 2: Distribution of test set predictions from SLE
models trained on quantized vs. softened labels.
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