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Abstract 

We suggest an explicit solution to the graduation problem that aims at 
designing an optimal curve fit which simultaneously behaves as a 
smoothing B-spline in each time interval ( )jj tt ,1−  and as the Hodrick-

Prescott filter in the knots ....,,1, njt j =  We also outline its numerical 

performance and compare it to the existing estimates of the standard 
Hodrick-Prescott filter. 
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1. Introduction 

Graduation or data smoothing remains a powerful tool to construct life tables in 
actuarial science and identify trends or business growth, structural breaks and 
anomalies in econometric data series. This method seems also promising for other 
types of data series such as share prices and average temperature data. The Hodrick-
Prescott filter [12] is perhaps the most widespread graduation method used by almost 
all central banks to identify business growth in macroeconomic data series. The filter 
has been proposed originally by Leser [16] for the construction of life tables, 
building on the graduation method developed by Whittaker [33] and Henderson [11]. 
Seen as a spline smoothing filter, Spoerl [26] was the first to formulate and solve it 
as a discrete cubic spline smoothing problem. 

The filter as described in Spoerl [26], Leser [16] and later on by Hodrick and 
Prescott [12] defines a trend ( )nyyy ...,,1=  of a time series ( ),...,,1 nxxx =  

evaluated at times ,21 nttt <<<  as the minimizer of 

 ( ) ( )∑ ∑
= =

−− +−α+−
n
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for an appropriately chosen positive parameter α, called the smoothing parameter. 
To determine an appropriate value of the smoothing parameter α, Hodrick and 
Prescott suggested the time series of observations x satisfying the following linear 
mixed model: 
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where ( )nuINu 2,0~ σ  and ( )2
2,0~ −σ nv INv  and P, which stands for the second 

order backward shift operator, is the following ( ) nn ×− 2 -matrix: 
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With this notation, the minimizer of (1.1) reads 

 ( ) ( ) ., 1xPPIxy T
n

−α+=α  (1.4) 
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Using this model, the appropriate smoothing parameter turns out to be the noise- 

to-signal ratio 22
vu σσ=α  (see Schlicht [25]). This parameter is optimal in the sense 

that 

 { [ ] ( ) }.,minarg 222 xyxyvu α−|=σσ
α

E  (1.5) 

Also, the optimal trend (HP-trend) that minimizes (1.1) is given by the formula 
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The obtained trend, although optimal in the sense of (1.1), is only evaluated at each 
time .jt  This makes it of limited use for any analysis of the behavior of, e.g., the 

business growth or the average temperature in any of the time intervals ( )jj tt ,1−  

unless an appropriate smooth curve fit, such as polynomial splines, between the jt ’s 

is used. 

The purpose of this paper is to suggest a smooth curve fit which is consistent 
with the HP-filter, in the sense that the chosen smooth curve ( )ty  is such that 

 ( ) ....,,1, njyty jj ==  (1.7) 

Namely, we would like to construct a trend ( )ty  which minimizes the following cost 

functional: 

 ( ) ( ( )( ))∫ +λ+−=
nt

t
TT yWPPydttyyxyJ

1
,222  (1.8) 

for some smoothing parameters ( ),, Wλ  with 0>λ  and W positive definite matrix. 

Moreover, the smoothing parameters should satisfy a similar condition to (1.5). 
Namely, 

 ( )
{ }

[ ] ( ) .,,minarg, 2

definite positive ,0
xWyxyW

W
λ−|=λ

>λ

∗∗ E  (1.9) 

This graduation problem seems new as it aims at designing a curve fit which 
simultaneously behaves as a smoothing spline in each time interval ( )jj tt ,1−  and as 

the HP-filter in the knots ....,,1, njt j =  
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When ,0=λ  the problem reduces to the HP-filter, with ,2−α= nIW  and when 

,0=W  the problem reduces to the standard penalized polynomial spline smoothing, 
that we shortly recall below for the sake of clarity. 

Following Schoenberg [27], Reinsch [22] and Wecker and Ansley [29] (see also 
the nice note by Proietti [20]), given the set of points ,1 ntt <<  a polynomial 

spline ( )tf  of degree 12 −=p  with n knots ntt ...,,1  is a piece-wise polynomial 

of degree 12 −=p  in each of the intervals [ )1, +ii tt  so that the first 22 −  

derivatives of the splines are continuous, whereas the ( )1−p -st derivative has 

jumps at the knots. Moreover, a smoothing polynomial spline is (uniquely) the 
smoothest function that achieves a given degree of fidelity to the data set x. More 
precisely, the smoothing spline of degree 12 −  minimizes 

 ( )( ) ( ( )( ))∑ ∫
=

λ+−
n

i

t

t
ii

n
dttftfx

1

22

1
 (1.10) 

among all functions whose first 1−  derivatives are continuous and whose th 
derivative is square integrable, where 0>λ  controls the balance between the 
fidelity of the fitted spline to the data set and its roughness. 

Poirier [21] (see also Proietti [20]) suggested that the knot it  is the timing of a 

structural break and the jump discontinuity at this knot reflects the occurrence of 
structural changes. Based on this interpretation, splines may ‘provide a framework in 
which structural change is viewed as occurring in a smooth fashion’. 

In this respect, a widely used smoothing polynomial spline model can be 
expressed using the truncated power basis of degree p as follows (see e.g., Green 
and Silverman [7], Ruppert et al. [23, 24] and Welham et al. [32]): 

 ( ) ( ) ( ) ( )∑
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When f is random, the spline coefficient ,iη  which regulates the size of the 

break is interpreted as a random shock that drives the evolution of ( )tf  and is 

subject to penalization (see e.g., Ruppert et al. [24]), whereas ( )p
itt +−  describes its 

impulse response function, that measures the impact on the future values of f. 

Denoting ( ) ( ) ( ) ( ( ) ( ) )p
pn tttttX 1101 ...,,,1,...,,,...,, −−=ββ=βηη=η  and 

( ) (( ) ( ) ),...,,1
p

n
p tttttZ ++ −−=  f reads 

( ) ( ) ( ) .η+β= tZtXtf TT  

The penalty in the minimizer (1.10) can be written as 

 ( ( )( ))∫ ηη=−nt

t
Tp Gdttf

1
,21  (1.12) 

where the matrix G is the Gramian associated with Z, defined by 

( ) ( )∫ −
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−

−
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Hence, the smoothing polynomial spline minimizes 

 ( )( )∑
=

ηλη+−
n

i

T
ii Gtfx

1

2 ,  (1.13) 

where, as noted above, the penalization is put on the shocks η. This is also the case 
for other families of splines such as the cubic splines with periodic constraints used 
in Kauermann et al. [13], or the P-splines, based on reduced knot B-spline bases, 
suggested by Eilers and Marx [6] (see also Egerstedt and Martin [5]), Kano et al. 
[14] and the references therein), whose close connection to the above mentioned 
family of penalized splines, using a truncated power function basis, is established in 
Welham et al. [32]. 

For a cubic smoothing spline, corresponding to ,3=p  the penalization in 

(1.13), put on the shocks η, does not correspond to the one imposed on the HP-trend 
in (1.1), and the constructed trend does not agree with the HP filter at the knots, 
unless the second derivative is replaced by its natural discretized version, which 
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amounts to fit a cubic spline, using the criterion (1.8) with 0=λ  and ,2−α= nIW  

as suggested in Spoerl [26] and recently proved by Paige and Trindade [19, 
Theorem 4.1]. 

In the main result of the paper (Theorem 1), using the control theoretic approach 
to smoothing splines suggested in Kano et al. [14], Welham et al. [32] or Egerstedt 
and Martin [5], we make use of B-spline functions to suggest a solution to the 
constrained minimization problem (1.7)-(1.9). The constructed optimal smooth curve 
is shown to be consistent with the HP-filter, for a given set of discrete data points 

( ),...,,1 nxxx =  observed at times (knots) .21 nttt <<<  

The flexibility of this approach seems suit well our purpose to design an optimal 
smoothing spline which coincides with the HP-filter. Choosing to use B-splines 
among other functions is a matter of taste. We simply find them attractive for 
nonparametric modeling and numerically tractable (see Eilers and Marx [6] for 
further details). 

In Section 2, we review the control theoretic approach to smoothing B-splines 
which will be applied in Section 3 to construct an optimal smoothing B-spline trend 
for the HP-filter. Finally, in Section 4, we present some numerical examples. The 
displayed examples are not aimed at proving the superiority of this graduation 
technique compared with either the HP-filter or the smoothing splines. A comparison 
between these smoothing techniques needs a more involved analysis of many data 
sets than aimed in this paper. 

2. Optimal Smoothing B-splines 

In this section, we briefly review the control theoretic approach to smoothing 
splines suggested in Kano et al. [14], Welham et al. [32] or Egerstedt and Martin [5] 
to construct optimal “smooth” curve for a given set of discrete data points 

( ),...,,1 nxxx =  observed at times (knots) ,21 nttt <<<  by using B-spline 

functions. 

Let ( )sBk  be a normalized, uniform B-spline of degree k with integer knot 

points (cf. de Boor [1]) defined by 

 ( )
( )

⎪⎩

⎪
⎨
⎧

≤+≤

=+≤≤−
=

−

.1,0,0

,...,,0,1,,

tkt

kjjtjjtN
tB

kjk
k  (2.1) 
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The basis elements ( )tN kjk ,−  are obtained recursively by the following scheme: 

( )

( ) ( )

( ) ( )

( ) ( ) ( )⎪
⎪
⎪
⎪
⎪
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ttN

tN
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 (2.2) 

together with the normalization 

 ( )∑
=

≤≤=
k

j
kj ttN

0
, .10,1  (2.3) 

Let 1−+= knm  for 1,1 ≥−≥ kkn  and consider the curve ( )tf  generated 

by weighted and time shifted sum of B-splines, namely 

 ( ) ( ( ))∑
=

− ≤≤−βτ=
m

j
nkjkj tttttBtf

1
1 .,  (2.4) 

Here 0>β  is a constant and jt ’s are equally spaced knot points with 

 .1
1 β

=−+ ii tt  (2.5) 

By a suitable choice of the coefficients, or control points ,iτ  ( )tf  can represent 

arbitrary polynomial splines of degree k in the interval [ ].,1 ntt  

Denote 

( ) ,...,,1
mT

m R∈ττ=τ  (2.6) 

( ) ( )( ) ( )( )( ) mT
nkkk ttBttBtb R∈−β−β= −− 11 ...,,  (2.7) 

and 

 ( ) ( )( ) ,...,,1
mn

ntbtbB ×∈= R  (2.8) 
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and, finally, let f  denote the column vector 

 ( ) ( )( ) ....,,1
T

ntftff =  (2.9) 

In view of (2.4), we have 

 ( ) ( )tbtf Tτ=  (2.10) 

and 

 .τ= Bf  (2.11) 

A smoothing spline is required to have a continuous first derivative and a square 
integrable second derivative which, in terms of the control points τ, can be expressed 
as 

 ( ( )( ))∫ ττ=
nt

t
T Gdttf

1
,22  (2.12) 

where mmG ×∈ R  is the Gramian associated to b defined by 

 ( ) ( )∫=
nt

t

T
dt

dt
tbd

dt
tbdG

1
.2

2

2

2
 (2.13) 

The criterion (1.10) of finding optimal smoothing splines, translates into finding 
optimal control points τ which minimize the following cost functional: 

 ( ) ,2 τλτ+−τ=τ GxBJ T  (2.14) 

where 0>λ  is a smoothing parameter. Minimizing ( )τJ  with respect to τ is by 

now standard, and the optimal solution is obtained by 

 ( ) ,1 xBBBG TT −∗ +λ=τ  (2.15) 

provided that the matrix BBG T+λ  is positive definite. In general, G and BBT  are 
only positive semi-definite. But, for specific classes of B-splines such as the cubic 
splines ( )3=k  that are most frequently used in many applications, the matrix 

BBG T+λ  is positive definite. Indeed, for the cubic splines, Kano et al. [14] (see 
Lemma 2 and Theorem 3), obtained the normalized B-uniform spline function ( )tB3  

and the Gramian G explicitly and analyzed many of their properties. 
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In particular, 

( )

( )

( ) ( ( ) ( ) ( ) )

( ) ( ( ) ( ) )

( ) ( )

⎪
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⎪
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⎪
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⎪
⎪
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,21,13131316
11

,10,6
1

3
3,0

32
3,1

32
3,2

3
3,3

3

tttN

ttttN

tttttN

tttN

tB  (2.16) 

Moreover, the matrix 2+×∈ nnB R  is explicitly obtained as 

 .
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00141
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⎜

⎝

⎛
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The rank of B being n, it follows that TBB  is invertible. 

We have the following. 

Lemma 2.1 (Kano et al. [14]). For the cubic B-splines, let Ω be a positive 

definite matrix. Then it holds that BBG TΩ+λ  is definite positive. 

In the rest of the paper, we will only consider cubic splines, but the results 
extend easily to general splines provided some further assumptions on the matrix B 
and the Gramian G. 

3. A Smoothing B-spline Trend for the HP-filter 

In this section, we apply this control theoretic approach to optimal smoothing 
B-splines to construct a smoothing cubic spline curve ( )ty  which coincides with 

optimal trend given by the Hodrick-Prescott filter at the knots .21 nttt <<<  

This amounts to finding an optimal curve which satisfies the criterion (2.14) and, 
moreover, is smooth at the knots in the sense that the backward second difference of 
the ( )ii tyy =: ’s is white noise. Namely, we would like to construct a trend ( )ty  
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that satisfies (recall the notation above) 

 

( ) ( )⎪
⎪
⎩

⎪⎪
⎨

⎧

τ=

=

+=

,

,

,

Ttbty

vyP

uyx

 (3.1) 

where ( )nuINu 2,0~ σ  and ( ),,0~ 2
2

−σ nv INv  which minimizes the following cost 

functional: 

 ( ) ( ( )( ))∫ +λ+−=
nt

t
TT yWPPydttyyxyJ

1
,222  (3.2) 

for some smoothing parameters ( ),, Wλ  with 0>λ  and W positive definite matrix. 

The smoothing parameters should satisfy a similar condition to (1.5). Namely, using 
the notation ,τ= By  

 ( )
{ }

[ ] ( ) .,,ˆminarg, 2

definite positive ,0
xWBxyW

W
λτ−|=λ

>λ

∗∗ E  (3.3) 

In terms of the control points τ, since ( ) ( ) ,τ= Ttbty  the cost functional (3.2) 

can be written as a quadratic function of τ as follows: 

 ( ) ( ( )( ))∫ +λ+−=τ
nt

t
TT yWPPydttyyxJ

1

222  

( ) ( ) ττ+τλτ+−−= WPBPBGyxyx TTTTT  

ττ+τλτ+ττ+τ−= WPBPBGBBxBxx TTTTTTTTT 2  

( ( ) ) τ++λτ+τ−= BWPPIBGxBxx T
n

TTTTT 2  

,2 ττ+τ−= LxBxx TTTT  (3.4) 

where 

 ( )BWPPIBGL T
n

T ++λ=  (3.5) 

and mmG ×∈ R  is the Gramian (2.13) associated to ( ).tb  We notice that the matrix 

WPPI T
n +=Ω  is positive definite, since it is the sum of a positive definite and a 
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positive semi-definite matrix. Hence, by Lemma 2.1, L in (3.5) is positive definite. 
Thus, the optimal solution of (3.4) is 

,ˆ 1 xBL T−=τ  

which, in terms of ( )W,λ  and x, reads 

( ) ( ( ) ) .,,ˆ 1 xBBWPPIBGxW TT
n

T −++λ=λτ  

Therefore, by (3.1), our cubic B-spline optimal trend is 

 ( ) ( ) [ ].,,ˆˆ 1 n
T ttttbty ∈τ=  (3.6) 

In view of (1.6), ( )∗∗λ W,  is optimal for the problem (3.3) if and only if 

( ) ,,,ˆ
1

2

2
xPPIxWB T

v

u
n

−
∗∗

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

σ

σ
+=λτ  

or, equivalently, if and only if 

 ( ( ) ) .
1

2

2
1 xPPIxBBPWPIBGB T

v

u
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TT
n

T
−

−∗∗
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ

σ
+=++λ  (3.7) 

We need to show that there is always a pair ( )∗∗λ W,  such that (3.7) holds and 

to find the optimal ( ).,,ˆ xW ∗∗λτ  

Theorem 1. Given a time series x and a parameter ,022 >σσ vu  there is a set of 

smoothing parameters ( ) 0,, >λλ ∗∗∗ W  and ∗W  positive definite, such that 

 ( ) ,,,ˆ
1

2

2
xPPIxWB T

v

u
n

−
∗∗

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ

σ
+=λτ  (3.8) 

where ( )xW ,,ˆ ∗∗λτ  is explicitly given by 

 ( ) ( ) .,,ˆ
1

2

2
1 xPPIBBBxW T

v

u
n

TT
−

−∗∗
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

σ

σ
+=λτ  (3.9) 

Moreover, the set of smoothing parameters ( )∗∗λ W,  must satisfy the balance 
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equation 

( ) ( ) ( ) ( ) ,1111
22

2
−−−−∗

−
∗ λ−

σ

σ
= TTTTTT

n
v

u PPPBBBGBBBPPPIW  

which always has a feasible solution. 

Finally, the cubic B-spline optimal trend is 

 ( ) ( ) ( ) .ˆ
1

2

2
1 xPPIBBBtbty T
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u
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TTT
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Proof. Consider the problem 

( ) ( ( ) ) .,,ˆ
1
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2
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v
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σ
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If there are ( )∗∗λ W,  such that (3.11) holds, then it is solved using the fact that 

( ( ) ) ( ) ,
1

2

2
11

−
−−∗∗

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ

σ
+=++λ PPIBBBBBPWPIBG T

v

u
n

TTTT
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which, in turn, may be rewritten as 

( ) ( ) ( ) ( ) ,1111
22

2
−−−−∗

−
∗ λ−

σ

σ
= TTTTTT

n
v

u PPPBBBGBBBPPPIW  (3.12) 

using the fact that TBB  and TPP are invertible. This is the relation that must hold 

between ∗W  and ∗λ  for the solution to hold. The first part of the proof is dedicated 

to proving that there exists a set ( )∗∗λ W,  such that (3.12) has a solution. 

The first part of the expression on the right hand side of (3.12) is positive 

definite, since 2−nI  is just the identity matrix and the parameter .022 >σσ vu  Since 

( ) (( ) ) ( ) (( ) )TTTTTT BBBBPPPP 1111 , −−−− ==  and G is positive semi-definite and 

symmetric, as seen in Kano et al. [14], 

( ) ( ) ( ) ( ) APPPBBBGBBBPPP TTTTTT ∗−−−−∗ λ=λ :1111  

is positive semi-definite. 
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For ,3≥n  set 

,max
2...,,2,1,2 i

T
inivn Avv

i −=− =λ  

where 
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are the eigenvectors of .2−nI  
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i
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2
 is positive definite if 
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Defining the semi-norm Azzz T=2  and using the Cauchy-Schwarz inequality, 
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where we have used the fact that .max 22...,,2,1, −−= λ≤ nj
T
jniv Avvi  Therefore, 
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which is strictly positive for any 
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−
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This proves that there exists a parameter set ( )∗∗λ W,   such that 0>λ∗  and ∗W   

positive definite that solves equation (3.11). 

Taking a set ( )∗∗λ W,  such that (3.12) holds, (3.11) is solved by taking 
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Hence, the cubic B-spline that coincides with the Hodrick-Prescott trend at the times 

( ),...,,, 21 nttt  using the smoothing parameter ,22
vu σσ  may be written as 
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4. Numerical Illustration 

Given the time series ( ),...,,1 nxxx =  we will compare the results of the spline 
approximation (3.10) of the trend y  defined in (1.2) using different estimators 

of the optimal smoothing parameter .22
vu σσ  The first estimator we use is the 

consistent estimator of the noise-to-signal ratio 2 2
DDR u vα = σ σ  proposed in 

Dermoune et al. [4], 
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⎜ ⎟⎪ ⎪− ξ ξ⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑
∑

 (4.1) 

where .Px=ξ  Secondly, we look at the Generalized Cross Validation (GCV) 
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estimator of ,,22
GCVvu ασσ  which is the minimizer of the GCV score, as described 

in Wahba [28], and solved efficiently in Weinert [30, 31]. The third smoothing 
parameter we use is the one proposed by Hodrick and Prescott [12], ,1600=αHP  

for quarterly time series. 

The resulting smoothing parameters are presented in Table 1 and the fitted 
trends using these parameters are presented in Figures 1-4, where we see that the 
cubic spline coincides perfectly with the HP-trend at the knot points, as predicted in 
Theorem 1. 

Table 1. Estimated values of the smoothing parameter α as defined in Section 4 

 US GNP GBP/USD S&P500 NIKKEI225 

DDRα  0.321 0.446 0.267 0.539 

GCVα  0.240 0.198 3.65e-3 0.263 

HPα  1600 1600 1600 1600 

 
 

 

Figure 1. US quarterly GNP from 1947 Q1 to 2010 Q2. Index number 2005 = 100. 
The cross is the resulting HP-trend while the solid line is the time series and the 
dotted line is the cubic spline using .DDRα  
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Figure 2. Daily GBP/USD close prices from 03/31/03 to 10/01/10. The cross is the 
resulting HP-trend while the solid line is the time series and the dotted line is the 
cubic spline using .DDRα  

 

Figure 3. Monthly close prices of S&P500 from Dec. 1987 to Aug. 2010. The cross 
is the resulting HP-trend while the solid line is the time series and the dotted line is 
the cubic spline using .DDRα  
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Figure 4. Daily adjusted close prices of NIKKEI225 from 01/04/02 to 10/01/10. The 
cross is the resulting HP-trend while the solid line is the time series and the dotted 
line is the cubic spline using .DDRα  
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