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Abstract
This study presents the development of a data-driven predictive maintenance model in the context of
industry 4.0. The solution is based on a novel hybridization of Remaining Useful Life (RUL) gener-
ation, Min-Max normalization, random-sampling based class balancing, and XGBoost regressor. The
applicability is tested using the NASA’s C-MAPSS dataset, which contains aircraft engine simulation
data. The objective is to develop an effective and Artificial Intelligence (AI) assistive automated aircraft
engine’s RUL predictor. It can maximize the benefits of predictive maintenance. The rules based RUL
generation provides a ground truth for evaluating the performance of intended regressors. The Min-Max
normalization linearly transforms the intended dataset and scales the multi subject’s data in a common
range. The imbalance presentation among intended classes can lead towards a biasness in findings. This
issue is intelligently resolved using the uniformly distributed random sub-sampling. Onward, the perfor-
mance of robust machine learning and ensemble learning algorithms is compared for predicting the RUL
of the considered aircraft engine by processing the balanced dataset. The results have shown that the
XGBoost regressor, uses an ensemble of decision trees, outperforms other considered models. The root
mean square error (RMSE) and mean absolute error (MAE) indicators will be used to evaluate the pre-
diction performances. The devised method secures the RMSE value of 12.88%. It confirms a similar or
better performance compared to the state-of-the-art counterparts.

Keywords: XGBoost Regressor a Random-Sampling; Class Balancing; Remaining Useful Life (RUL);
C-MAPSS; Machine learning; Ensemble learning; Evaluation measures

1 Introduction
Over the past few decades, the manufacturing and industrial sector has witnessed continuous evolution and
growth. We have just entered the era of Industry 4.0, and yet we are already beginning to explore and envi-
sion the prospects of Industry 5.0. In this context of constant evolution [1], companies must proactively adapt
to changes to ensure their competitiveness, particularly in the maintenance of industrial equipment, which
plays a crucial role. Indeed, for optimal levels of quality and profitability in production, it is imperative to
maintain the equipment in an optimal operating condition [2]. Therefore, the central objective of industrial
maintenance is to ensure the availability, reliability and efficiency of machines and components, minimizing
unplanned downtime and optimizing production performance [3]. In this context, ensuring and maintaining
the health status of equipments and their components is a significant challenge in complex industrial systems
where fulfilling their function relies on ensuring their reliability and efficiency [4]. Prognostics and Health
Management (PHM) is a discipline that focuses on understanding the degradation mechanisms of systems,
aiming to estimate their health status and proactively anticipate potential failures [5]. Its ultimate objective
is to optimize maintenance tasks, ensuring improved system performance and reliability. PHM encompasses
different methods including monitoring, detection of anomalies, diagnostics of causes, prognosis of remain-
ing useful life (RUL) and optimization of maintenance [6]. It thus makes it possible to monitor the state of
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health of the system in real time and to provide relevant information for decision support on the actions
to be implemented to maintain the system in optimal operational conditions. The integration of the Inter-
net of Things (IoT) and hyper-connectivity of equipment in the industry has catapulted it into a new era
[3], where the massive data generated represents a formidable treasure and offers a wide array of possibili-
ties. At the same time, the integration of advanced technologies such as automation, exponential computing
capabilities, data analysis and machine learning, industrial maintenance aims to prevent breakdowns and
failures [4], anticipate repair needs and maximize the life of assets, enabling companies to remain competitive
and promoting their productivity and efficiency [7]. Predictive Maintenance (PdM)[1, 6] is one of the most
promising applications of PHM which aims to predict failures and errors by estimating the RUL of a system
or equipment. Over the past few decades, the literature has put forth various methods and approaches –
based on physics, data or experiences– [3] with diverse applications in manufacturing, telemetry [6], automo-
tive, railway, aviation and aeronotic [2], centrifugal compressor industry, industrial rotating machines and
semiconductor, batteries life estimation [8] and others domains [1]. Aircraft engine life estimation [2] is one
of the applications that have aroused growing interest in recent years, notably accentuated by the accessi-
bility of the C-MAPSS (Commercial Modular Aero-Propulsion System Simulation turbofan engine) dataset
provided by NASA1. for scientific communities working on the RUL prediction and development of new
methods [9]. Indeed, aircraft engines are crucial assets with stringent reliability requirements and demand-
ing airworthiness conditions. They face significant challenges as any unforeseen degradation can result in
substantial operational disruptions, delays, costly downtime, and potentially even fatal accidents [10]. In the
aerospace industry, maintenance is undergoing a swift transformation, moving from preventive strategy to
condition-based maintenance (CBM) [5] and predictive maintenance (PdM). In traditional preventive main-
tenance, maintenance actions such as replacements, inspections, and data collection are scheduled based
on fixed time intervals [3]. However, this method lacks the ability to assess each asset individually as their
behavior may vary under different contexts or operating conditions [2]. PdM seeks to address this limitation
by predicting the state and reliability of each asset, estimating its time to failure [10].

PdM aims to incorporate reliable RUL prognostic into maintenance planning effectively [9]. The literature
is replete with data-driven works to estimate the RUL of aircraft engines. However, the machine learning-
based approaches proposed lack rigor, and the results are not thoroughly analyzed, leading to a lack of
continuation in the research. Additionally, while few works employ advanced conventional machine learning
methods such as KNN (K Neareast Neighbors), RF (Random Forest, SVM (Support Vector Machine) [4, 6],
many authors favor DL algorithms for its superior performance [9]. Nonetheless, the interpretation and
explainability of results is often absent [3], likely due to the black box aspect of DL. Consequently, the
prevailing observation is that the data-driven approach dominates the current research context [1]. In this
article, we address the challenges of predictive maintenance for aircraft engines, focusing specifically on the
RUL prognostic using ML techniques. Based on the issues highlighted in the literature, we propose a novel
method using conventional ML methods that offer both high performance and improved interpretability of
the training model.

1.1 Background

1.1.1 RUL Prediction

According to the previous section, PdM employs advanced data analysis techniques and artificial intelligence
to predict failures before they occur by monitoring early warning signals of malfunction. it involves predicting
the remaining useful life (RUL) of a component of equipment before it experiences a critical failure. This
helps in effectively scheduling maintenance, reducing downtime, and preventing unexpected breakdowns [2].

1C-MAPSS NASA Dataset: https://data.nasa.gov/dataset/C-MAPSS-Aircraft-Engine-Simulator-Data/xaut-bemq
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Fig. 1 System degradation over time and RUL estimation which represents the duration a system can continue operating
before it needs to undergo repair or replacement due to failure.

The RUL concept (figure 1) is based on the recognition that equipment undergoes progressive wear and
tear over time, which can lead to failures or malfunctions, by monitoring equipment operating parameters
in real-time, such as vibrations, temperature, pressure, and electrical currents, and using sophisticated
algorithms to analyze this data, collected from multiple sensors, it is possible to predict with some accuracy
the point at which a piece of equipment is likely to fail [4].

1.1.2 PdM Approaches

Four approaches are mainly used in the literature for RUL prediction: physical model-based, knowledge-
based model, data-driven model and hybrid model [1, 11]:

• Physical-based approach: describes the physical degradation process and fault propagation with
mathematical models [3]. It is particularly useful for understanding complex physical phenomena and
where data-driven models are not sufficient due to the lack of data, but it can be complex, computationally
expensive, inflexible, and require data calibration, updates, and significant initial investment [10].

• Data-driven approach: aims to detect the degradation evolution and forecast the future health state
of a system by leveraging historical data [? ], and relies on techniques such as statistical analysis, ML,
and DM to extract valuable insights. It is particularly adept at detecting patterns and uncovering hidden
correlations, leading to enhanced accuracy in failure predictions. Nevertheless, the lack of data, sys-
tem complexity, and varying operational conditions limit its widespread application. finally, the lack of
explainability of ML-based models represent a major limitation [12].

• Knowledge-based approach: utilizes human expertise and equipment-specific knowledge to anticipate
failures, by integrating and formalizing field observations, diagnostic rules, and technician experience [3].
It offer an explicative results and enhances data quality, models causal relationships, adapts to chang-
ing operational conditions and reduces dependence on large volumes of data. By incorporating domain
expertise, it fills the gaps in data-driven approaches, leading to more accurate models and better failure
anticipation[5]. However, it may face some limitations, such as the difficulty of obtaining precise knowledge
for predictability pruposes from experience and limited access to expert sources.

• Hybrid approach: combines two or more of the previous PdM approach for increasing predictive
accuracy [5, 12].

Table 1 Comparison of PdM Approaches

Approach Advantages Disadvantages
Physics-based Without historical data, reliable Complexity of systems
Data-driven High accuracy Requires a large amount of data, interpretation

Knowledge-based Effective for simplified cases, explainability Low accuracy, limited in complex systems
Hybrid High Accuracy, explainability Hard to buid, fusion and incertainty management

in this present work, we are particularly interested in the data-driven approach using conventional ML
applied to aircraft engine data. the next section discusses existing work in this area.

1.2 Related Works
Several works on RUL estimation of aircraft engines have been carried out since the release of the C-MAPSS
dataset [2]. Many of these works have utilized DL algorithms [13–24], considering them the most appropriate
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for this dataset: Sateesh Babu et al.[13] employed Convolutional Neural Networks (CNN) to RUL estimation
and de Pater et al.[9] developed an alarm-based maintenance planning framework that integrates RUL
prognostic based on CNN in the maintenance schedule. Zheng et al.[14] implemented Long Short-Term
Memory (LSTM) networks in their research and Wang et al.[15] opted for Bidirectional LSTM (BiLSTM)
in their analysis. Liu et al.[22] applied an Attention-based Bidirectional LSTM (Bi-LSTM) method. Some
works have combined several approaches like CNN and LSTM [17] or with BiLSTM [25]. Mo et al.[18]
developed a multi-head architecture that combines CNN and LSTM, Kumar[20] introduced a hybrid model
for their analysis, Asif et al.[23] merged LSTM with Automatic Piecewise Linear Modeling, and Peng
et al.[26] combined LSTM with a Fully Connected Layer CNN (FCLCNN) in their research. Other authors
have proposed original methods such as Adaptive Gradient CNN (AGCNN) in [19], a Broad Learning
System (BLS) coupled with a Temporal Convolutional Network (TCN) is presented in [21], Li et al.[16]
integrated Directed Acyclic Graphs (DAG) in their methodology and Liu et al.[22] applied an Attention-
based Bidirectional LSTM (Bi-LSTM) method. Finally, Hu et al.[24] applied a Deep Reinforcement Learning
approach for RUL estimation (DRLRULe) in their investigation. However, in this particular study, we
demonstrate that traditional ML algorithms can also be highly effective.

1.3 Contribution
In this paper, a novel hybridization of RUL generation, Min-Max normalization, random-sampling based
class balancing, and XGBoost regressor is proposed for an automated aircraft engine’s RUL prediction.

• The rules based RUL generation provides a ground truth for evaluating the performance of intended
regressors.

• The Min-Max normalization linearly transforms the intended dataset and scales the multi subject’s data
in a common range.

• The imbalance presentation among intended classes can lead towards a biasness in findings. This issue is
intelligently resolved using the uniformly distributed random sub-sampling.

• The performance of robust ML and ensemble learning algorithms is compared for predicting the RUL
of the considered aircraft engine by processing the balanced dataset. The results have shown that the
XGBoost regressor outperforms other considered models.

• The devised method secures the RMSE value of 12.88%. It confirms a similar or better performance
compared to the state-of-the-art counterparts.

The rest of the paper is organized as follow: Section 2 describes the used materials and methods. The
findings are presented and described in Section 3. Finally, the conclusion is made in Section 4.

2 Materials and Methods

2.1 Methodology
In order to answer the problem mentioned above, we have implemented our solution according to the
methodology described by The functional diagram in Figure 2). The described architecture provides an
overview of key system components and their interconnections, demonstrating how data flows through the
system from one stage to another, and how the components interact with each other. All these steps will be
detailed in the following sections.
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Fig. 2 Proposed framework for RUL prediction based on Random Sampling Based Class Balancing Method.

2.2 Dataset
C-MAPSS (Commercial Modular Aeropropulsion System Simulation) is provided by NASA
(National Aeronautics and Space Administration) and was first made available in 2008 during the Interna-
tional Conference on PHM (Prognostics and Health Management). Since its release, it has been extensively
researched to enhance the accuracy of RUL prediction, with the ultimate goal of planning component main-
tenance before failure occurs [27]. C-MAPSS dataset is widely recognized as the benchmark dataset for
RUL prognostic. Moreover, its characteristics enable the findings to be applicable to various other research
and industrial use cases. The dataset includes multivariate time series augmented with metadata on opera-
tional settings. Additionally, it encompasses multiple physical interactions among the recorded properties.
The dataset also covers various fault modes and operating conditions, while considering manufacturing vari-
ations, distinct lifespans, and natural failures [2]. C-MAPSS is subdivised into four units: FD001, FD002,
FD003, and FD004 with different multivariate time series and various numbers of engines. Each unit contains
three files: training data, testing data and RUL data. Table 2 describes caracteristics of each unit.

The dataset is composed of 21 sensors with the application of three different operating conditions in
relation to the cycle time for each engine. A turbojet engine is mainly composed of: Low Pressure Turbine
(LPT), High Pressure Turbine (HPT), Fan, Nozzle, Low Pressure Chamber (LPC), High Pressure Chamber
(HPC), etc.(Fig. 3) shows how these different components and the way they are interconnected.
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Table 2 Description of the properties and different batches of the C-MAPPS dataset.

FD001 Unit FD002 Unit FD003 Unit FD004 Unit
N° Engines available in train set 100 260 100 249
N° Engines available in test set 100 259 100 248
Operating conditions applied 1 6 1 6
Fault modes 1 1 2 2
Training set size 20,632 53,760 24,721 61,250
Testing set size 13,097 33,992 16,597 41,215

Fig. 3 Simplified C-MAPSS turbofan engine diagram [28]

According to the data description in Figure 2, units FD002 and FD004 exceptionally contain 6 operating
conditions with more than 200 tracking trajectories. Asif et al. demonstrated in [23] that the two subunits
possess irregular behavior, making the prediction of RUL for these complex sequences a challenging task. As
a result, most works in the literature concentrate on the FD001 and FD003 datasets due to their simplicity
and smaller data volume. Consequently, the FD004 dataset remains relatively underexplored in existing
literature.

This paper presents preliminary findings for the subset FD004. In future a detailed study will be
presented, in an upcoming journal paper, while considering all subsets of the C-MAPSS dataset

2.3 Remaining Useful Life (RUL) Generation
Each sub-dataset is composed of 26 columns in total, but the target RUL column is not included. The RUL
is determined by calculating the difference between the maximum time (in cycle) for a given unit and the
current time (in cycle). To achieve this, we proceeded as follows:

RULtrain(i) = max(Cycle)per unit(i)− Cycle(i) (1)
RULtest(i) = max(Cycle)per unit(i) + RUL given(i)− Cycle(i) (2)

where:

• RULtrain(i) and RULtest(i) are the RUL for the train and test sets respectively,
• max(Cycle)per unit(i) is the maximum number of cycles for each unit i,
• Cycle(i) is the current cycle number,
• RUL given(i) is the given cycles for each unit i in the RUL file.

2.4 Min-Max Normalization
Min-Max Normalization, also known as feature scaling, is a simple method used in data preprocessing to
scale numerical data. The goal of Min-Max Normalization is to transform features to fall within a specific
range, [0,1] in our case, thus ensuring that no particular feature dominates others during the learning
process, which can be crucial for some MLg algorithms [23]. The transformation is performed according to
the following formula:
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x′ =
x−min(x)

max(x)−min(x)
(3)

where:

• x is the current value that needs to be normalized.,
• x′ is the normalized value,
• min(x) and max(x) correspond to the minimum and the maximum values in the dataset, respectively.

2.5 Random-Sampling Based Class Balancing
The performance of ML algorithms can be affected because of the ample imbalances in the intended classes
[29]. This problem can be resolved to a certain extent using the subsampling, oversampling or reweighting
approaches [30]. In literature, it is shown that the class balancing can raise the performance of contemporary
classification algorithms in terms of accuracy and latency [31], [32].

In this study, we have devised a random sub-sampling approach for class balancing. It resolves the
problem of data misbalancing while diminishing the impact of biasing. Moreover, it also diminishes the
computational load and latency of the considered classifiers during the training and testing phases and
allows to compute empirical results using affordable personal computers.

The approach is based on the uniformly distributed random indexes generation. Let C =
{C1, C2, . . . , CK} is a set of intended classes, where K is presenting the considered count of classes. Let the
count of instances for these classes is defined by the set M = {M1,M2, . . . ,MK} and their corresponding
indexes ranges are defined as: R = {R1, R2, . . . , RK}. Where, elements of sets M and R belongs to the set
of positive integers. Then using the inversion method, based on the idea that “Continuous Cumulative Dis-
tribution Functions” (CDFS) have a uniform distribution over the open interval [0,1], the set of uniformly
distributed random indexes I1 = {n1, n2, . . . , nN} is generated for C1 [33]. A similar process is followed for
the generation of I2, I3, . . . , IK which are sets of the random indexes respectively for the C2, C3, . . . , CK .

The generation process of I1 is achieved while respecting the corresponding index range, R1. In this
scenario, If x is a uniform random number on [0,1], then a random index im, from the standard normal
distribution and the specified CDF, F , is generated as: im = F−1(x) [33]. Where m ranges from [1, N ]. In
next step, the value of the generated im is adapted as per R1, the process is given as: nm = OS+round(im×
SF), where SF is the scaling factor and OS is the off-set. The values of SF and OS can be specific as a
function of the intended range from the set R. Also, for an effective class balancing, the value of N should
be less than or equal to the minimum element in the set M . In this study, the value of NTraining = 50 is
chosen and the value of NTesting = 25 is selected.
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Algorithm 1: Random-Sampling Based Class Balancing Algorithm - RSBCB
Input : Set of intended classes C = {C1, C2, ..., CK};
Count of instances for each class M = {M1,M2, ...,MK};
Index ranges for each class R = {R1, R2, ..., RK};
Scaling factor SF ;
Offset OS;
Number of training samples NTraining;
Number of testing samples NTesting;
Output: Randomly sampled dataset for class balancing

1 for each class Ci in C do
2 Generate uniformly distributed random indexes Ii = {n1, n2, ..., nN} for Ci within the index

range Ri;
3 for each index nm in Ii do
4 Generate a random number x as a uniform random number on [0, 1];
5 Generate a random index im from the standard normal distribution and the specified CDF

F using the inverse method: im = F−1(x);
6 Adapt the value of im as per the index range Ri: nm = OS + round(im × SF );
7 end
8 Select a random sample of NTraining instances from class Ci using the generated indexes Ii;
9 Store the selected instances in the training dataset;

10 end
11 for each class Ci in C do
12 Select a random sample of NTesting instances from each class Ci using the generated indexes Ii;
13 Store the selected instances in the testing dataset;
14 end

2.6 Boosting based Regression
Designed to have specific properties such as efficiency, flexibility and portability.The XGBoost (eXtreme
Gradient Boosting) Regressor is an optimized distributed gradient boosting library. By implenting ML
algorthms under the Gradient Boosting framework, it provides a parallel tree boosting (commonly known
GBDT or GBM) allowing to solve many data science problems quickly and precisely [34]. The core XGBoost
model is an ensemble of decision trees, where new trees are added to correct the errors made by existing
trees. The trees are added sequentially until no further improvements can be made.

Given a set of n instances (x1, y1), ..., (xn, yn) where xi ∈ Rm is a feature vector and yi ∈ R is the
corresponding label, XGBoost learns a function f : Rm → R that maps a feature vector to a label. The
function f is a series of K decision trees.

f(x) =

K∑
k=1

fk(x) (4)

where fk is a decision tree.

The objective of XGBoost is to minimize the following loss function:

L(y, f(x)) =

n∑
i=1

l(yi, f(xi)) +

K∑
k=1

Ω(fk) (5)

where l is a differentiable convex loss function that measures the difference between the prediction f(xi)
and the correct label yi, and Ω is a regularization term that penalizes the model complexity.

XGBoost offers several advantages as a fast and accurate method, but it also includes several regu-
larizations which help to reduce overfitting. Moreover, it supports missing values, allows for parallelizable
processing and provides several flexible features for user customization. Finally, several applications are
considered: regression solving, ranking, classification, user-defined prediction problems, etc.
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Algorithm 2: XGBoost Regressor Algorithm
1 Function my_XGB_Regressor(x, y):

Input : Training data x, Testing data y
Output: None

2 mse_test_list ← [],
3 rmse_test_list ← [],
4 mae_test_list ← []
5 for j in range(1, 11) do
6 normalized_train_df ← normalised_df(x)
7 normalized_test_df ← normalised_df(y)
8 train_selected ← Class_Balancing_RSBCB(normalized_train_df, NTraining , j)
9 test_selected ← Class_Balancing_RSBCB(normalized_test_df, NTesting, j)

10 X_train, Y_train, X_test, Y_test ← data_split(train_selected, test_selected)
// Create the XGBoost Regressor model

11 model ← XGBRegressor(n_estimators=100, max_depth=3, learning_rate=0.01,
subsample=0.5, colsample_bytree=0.5)

12 model.fit(X_train, Y_train)
// Test

13 y_pred_test ← model.predict(X_test)
14 mse_test ← mean_squared_error(Y_test, y_pred_test)
15 rmse_test ← sqrt(mse_test)
16 mae_test ← mean_absolute_error(Y_test, y_pred_test)
17 mse_test_list.append(mse_test)
18 rmse_test_list.append(rmse_test)
19 mae_test_list.append(mae_test)

// Print results: mae_test, rmse_test
20 end
21 mean_mae ← mean(mae_test_list)
22 mean_rmse ← mean(rmse_test_list)

// Print Mean MAE and Mean RMSE
23 print("Mean MAE:", mean_mae)
24 print("Mean RMSE:", mean_rmse)

Following the RUL generation and data normalization, the next stage is to proceed to ten iterations.
During each iteration, a random sampling-based class balancing operation is performed. Subsequently, the
Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE) are calculated to evaluate the
performance of the model. These two error metrics are then stored and accumulated throughout the 10
iterations. At the end of the 10 iterations, the algorithm computes the average of the 10 MAE and RMSE
values. These averages represent the global error rates of our model. In simpler terms, the algorithm performs
10 learning and evaluation experiments, and it utilizes the outcomes to deliver an overall performance
evaluation of the model.

2.7 Evaluation Measures (RMSE and MAE):
In the domain of ML, a metric refers to a function employed to quantify the performance of a model
or algorithm. In essence, metrics are utilized to measure how accurately a model’s predictions align with
the actual data [4]. There are several metrics divided into two categories based on the type of problem:
classification problems and regression problems. In the context of regression, two of the most commonly
used metrics are the MAE (Mean Absolute Error) and the RMSE (Root Mean Squared Error). Both MAE
and RMSE express average model prediction error in units of the variable of interestn these two scores are
said to be negatively-oriented, meaning that lower values are better.

1. Mean Absolute Error (MAE): measures the average magnitude of the errors in a set of predictions,
regardless of their direction. It is can be considered as the average over the test sample of the absolute
differences between prediction and actual observation where all individual differences have equal weight
as shown in Formula (6). MAE is less sensitive to outliers compared to RMSE [35].

2. Root Mean Squared Error (RMSE): is a quadratic scoring rule that also measures the average
magnitude of the error. It is based on the square root of the average of squared differences between
prediction and actual observation. The RMSE gives a relatively high weight to large errors because the
squared large difference of prediction and the actual observation leads to even larger contributions to the
mean as shown in Formula (7). The effect is to pay more attention to large errors [35].
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MAE =
1

n

n∑
i=1

|yi − ŷi| (6)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (7)

where:

• yi is the actual RUL value of the aircraft engine,
• ŷi is the predicted RUL value by the model,
• n is the total number of observations.

3 Results & Discussion
In this work, two regression models namely, the KNN and XGBoost are considered for processing the
subset FD004 – The KNN Regressor algorithm is well detailed in the article [36] – In our study, the work
carried out with the KNN allowed us to find the most optimal parameters described as follows: best number
of neighbors 46 and the distance metric as Manhattan distance in the 5th iteration out of a total of 10
tuning iterations with the class balancing. The performance of the considered regressors is evaluated for
two different scenarios. In first case, the intended dataset is processed only after normalization. However,
in the second case, the intended dataset is normalized and onward the class balancing is performed using
the devised random-sampling based approach. The findings are outlined in Table 3.

In the first case the XGBoost regressor attains 19.22% RMSE and 14.48% MAE values respectively.
KNN regressor performs better than the XGBoost regressor in this scenario by securing 15.71% RMSE and
11.58% MAE values respectively. In the second case the KNN regressor attains 13.10% RMSE and 09.55%
MAE values respectively. XGBoost regressor outperforms by securing 12.88% RMSE value. However, the
MAE value of the KNN regressor is 0.52% lesser than the MAE score achieved with the XGBoost regressor.

These results confirm the benefit of using random-sampling based class balancing on the normalized
data before conveying it to the regression stage. For both considered regressors the accuracy is improved
for the aforementioned second case. In the case of KNN regressor the respective error reduction in RMSE
and MAE is 02.61% and 02.03%. In the case of XGBoost regressor the respective error reduction in RMSE
and MAE is 06.34% and 04.41%.

Table 3 Evaluation Measures of Considered Regressors : KNN and XGBoost.

FD004
Method RMSE MAE
KNN Regressor + Normalization 15.71 11.58
KNN Reg + Normalization + Random-Sampling Based Class Balancing 13.10 9.55
XGBoost Reg + Normalization 19.22 14.48
XGBoost Reg + Normalization + Random-Sampling Based Class Balancing 12.88 10.07

In order to evaluate and compare the results of our study with litterature works, we used the RMSE
metric which is commonly used in the majority of studies conducted on the C-MAPSS dataset [13–24]. The
results obtained with the tested methods are displayed in Table 3, they show that XGBoost Regressor model
with normalization and Random-Sampling Based Class Balancing achieved the best result based on RMSE.
Table 4 presents a comprehensive comparison of innovative and successful methods from the literature
including our method. The table includes 13 different methods, their respective preprocessing steps, and a
performance comparison based on their RMSE values.
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Table 4 Performance comparison with state-of-the-art counterparts and preprocessing steps detailed.
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RMSE
1 CNN Sateesh Babu et al.[13] 2016 x x 29.15
2 LSTM Zheng et al.[14] 2017 x x 28.17
3 BiLSTM Wang et al.[15] 2018 x x x 24.86
4 DAG Li et al.[16] 2019 x x x 22.43
5 CNN+LSTM Kong et al.[17] 2019 x x x 23.25
6 Multi-head CNN+LSTM Mo et al.[18] 2020 x x 22.89
7 AGCNN Liu et al.[19] 2020 x x x 21.15
8 Hybrid model Kumar[20] 2021 x x x 22.32
9 BLS+TCN Yu et al.[21] 2022 18.12
10 BiLSTM+Attention meth Liu et al.[22] 2022 x 16.96
11 LSTM+Auto piecewise Asif et al.[23] 2022 x x x x x 17.63
12 DRLRULe Hu et al.[24] 2023 x x x 18.87
13 Proposed approach Barry et al. 2023 x x x 12.88

Legend:
STW Proc.: Sliding Time Window Processing
RSBCB: Random Sampling Based Class Balancing

The methods include a range of techniques based on different types of neural networks (CNN, LSTM,
BiLSTM), hybrid models, and other advanced ML techniques. Each method is accompanied by specific
preprocessing steps such as normalization, feature selection, RUL target function, and others. The best
RMSE from prior state-of-the-art methods is 16.96% using Bi-LSTM + Attention [22], while the worst
RMSE is 29.15% from CNN [13]. Our proposed method achieves an RMSE of 12.88%, which is 4.08%
lower than the best previous method and 16.27% lower than the worst previous method. This underlines
the meaningful advancements in RUL prediction accuracy gained by the proposed method over current
techniques. The results validate the efficacy of the proposed innovations in improving model performance.

4 Conclusion
In this paper, a novel data-driven predictive maintenance model is presented in the context of industry 4.0.
The proposed method is based on a new fusion of XGBoost regressor, Min-Max normalization, Random-
Sampling based class balancing, and Remaining Useful Life (RUL) generation. The performance of the
intended regressors is assessed using the ground truth, computed by the rules-based RUL generation. The
Min-Max normalization adjusts the data from several subjects in a common range by performing the lin-
ear transformation. An unbalanced presentation of the intended classes may result in biased findings. The
uniformly distributed random sub-sampling is used to intelligently handle this problem. It not only dimin-
ishes the biasness in findings but also relaxes the requirements of computational resources. The performance
of considered robust machine learning and ensemble learning algorithms is compared for predicting the
RUL of the considered aircraft engine by processing the balanced dataset. The results have shown that
the XGBoost regressor outperforms other considered models. The devised method secures the Root Mean
Squared Error (RMSE) value of 12.88%. It is shown that the proposed approach secured a similar or bet-
ter performance compared to the state-of-the-art counterparts. In this study, the performance of devised
approach is evaluated only for the subset FD004. In future, a detailed analysis will be presented while con-
sidering all available subsets in the C-MAPSS dataset. Moreover, the incorporation of feature selection and
deep learning approaches can enhance the performance of suggested solution. The feasibility of this concept
will be investigated in future.
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Abbreviations

AI Artificial Intelligence
CBM Condition-Based Maintenance
CNN Convolutional Neural Networks
DL Deep Learning
DM Data Mining
IoT Internet of Things
KNN K-Nearest Neighbor
XGBoost eXtreme Gradient Boosting
LSTM Long Short-Term Memory
ML Machine Learning
PdM Predictive Maintenance
PHM Prognostics and Health Management
RUL Remaining Useful Life
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