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Introduction

Over the past few decades, the manufacturing and industrial sector has witnessed continuous evolution and growth. We have just entered the era of Industry 4.0, and yet we are already beginning to explore and envision the prospects of Industry 5.0. In this context of constant evolution [START_REF] Hafsi | Predictive maintenance for smart industrial systems: A roadmap[END_REF], companies must proactively adapt to changes to ensure their competitiveness, particularly in the maintenance of industrial equipment, which plays a crucial role. Indeed, for optimal levels of quality and profitability in production, it is imperative to maintain the equipment in an optimal operating condition [START_REF] Vollert | Challenges of machine learning-based rul prognosis: A review on nasa's c-mapss data set[END_REF]. Therefore, the central objective of industrial maintenance is to ensure the availability, reliability and efficiency of machines and components, minimizing unplanned downtime and optimizing production performance [START_REF] Nunes | Challenges in predictive maintenance -a review[END_REF]. In this context, ensuring and maintaining the health status of equipments and their components is a significant challenge in complex industrial systems where fulfilling their function relies on ensuring their reliability and efficiency [START_REF] Berghout | A systematic guide for predicting remaining useful life with machine learning[END_REF]. Prognostics and Health Management (PHM) is a discipline that focuses on understanding the degradation mechanisms of systems, aiming to estimate their health status and proactively anticipate potential failures [START_REF] Montero Jimenez | Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics[END_REF]. Its ultimate objective is to optimize maintenance tasks, ensuring improved system performance and reliability. PHM encompasses different methods including monitoring, detection of anomalies, diagnostics of causes, prognosis of remaining useful life (RUL) and optimization of maintenance [START_REF] Cardoso | Application of predictive maintenance concepts using artificial intelligence tools[END_REF]. It thus makes it possible to monitor the state of health of the system in real time and to provide relevant information for decision support on the actions to be implemented to maintain the system in optimal operational conditions. The integration of the Internet of Things (IoT) and hyper-connectivity of equipment in the industry has catapulted it into a new era [START_REF] Nunes | Challenges in predictive maintenance -a review[END_REF], where the massive data generated represents a formidable treasure and offers a wide array of possibilities. At the same time, the integration of advanced technologies such as automation, exponential computing capabilities, data analysis and machine learning, industrial maintenance aims to prevent breakdowns and failures [START_REF] Berghout | A systematic guide for predicting remaining useful life with machine learning[END_REF], anticipate repair needs and maximize the life of assets, enabling companies to remain competitive and promoting their productivity and efficiency [START_REF] Jagatheesaperumal | The duo of artificial intelligence and big data for industry 4.0: Review of applications, techniques, challenges, and future research directions[END_REF]. Predictive Maintenance (PdM) [START_REF] Hafsi | Predictive maintenance for smart industrial systems: A roadmap[END_REF][START_REF] Cardoso | Application of predictive maintenance concepts using artificial intelligence tools[END_REF] is one of the most promising applications of PHM which aims to predict failures and errors by estimating the RUL of a system or equipment. Over the past few decades, the literature has put forth various methods and approachesbased on physics, data or experiences- [START_REF] Nunes | Challenges in predictive maintenance -a review[END_REF] with diverse applications in manufacturing, telemetry [START_REF] Cardoso | Application of predictive maintenance concepts using artificial intelligence tools[END_REF], automotive, railway, aviation and aeronotic [START_REF] Vollert | Challenges of machine learning-based rul prognosis: A review on nasa's c-mapss data set[END_REF], centrifugal compressor industry, industrial rotating machines and semiconductor, batteries life estimation [START_REF] Meng | A review on prognostics and health management (phm) methods of lithium-ion batteries[END_REF] and others domains [START_REF] Hafsi | Predictive maintenance for smart industrial systems: A roadmap[END_REF]. Aircraft engine life estimation [START_REF] Vollert | Challenges of machine learning-based rul prognosis: A review on nasa's c-mapss data set[END_REF] is one of the applications that have aroused growing interest in recent years, notably accentuated by the accessibility of the C-MAPSS (Commercial Modular Aero-Propulsion System Simulation turbofan engine) dataset provided by NASA 1 . for scientific communities working on the RUL prediction and development of new methods [START_REF] Pater | Alarm-based predictive maintenance scheduling for aircraft engines with imperfect remaining useful life prognostics[END_REF]. Indeed, aircraft engines are crucial assets with stringent reliability requirements and demanding airworthiness conditions. They face significant challenges as any unforeseen degradation can result in substantial operational disruptions, delays, costly downtime, and potentially even fatal accidents [START_REF] Maulana | Explainable data-driven method combined with bayesian filtering for remaining useful lifetime prediction of aircraft engines using nasa cmapss datasets[END_REF]. In the aerospace industry, maintenance is undergoing a swift transformation, moving from preventive strategy to condition-based maintenance (CBM) [START_REF] Montero Jimenez | Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics[END_REF] and predictive maintenance (PdM). In traditional preventive maintenance, maintenance actions such as replacements, inspections, and data collection are scheduled based on fixed time intervals [START_REF] Nunes | Challenges in predictive maintenance -a review[END_REF]. However, this method lacks the ability to assess each asset individually as their behavior may vary under different contexts or operating conditions [START_REF] Vollert | Challenges of machine learning-based rul prognosis: A review on nasa's c-mapss data set[END_REF]. PdM seeks to address this limitation by predicting the state and reliability of each asset, estimating its time to failure [START_REF] Maulana | Explainable data-driven method combined with bayesian filtering for remaining useful lifetime prediction of aircraft engines using nasa cmapss datasets[END_REF].

PdM aims to incorporate reliable RUL prognostic into maintenance planning effectively [START_REF] Pater | Alarm-based predictive maintenance scheduling for aircraft engines with imperfect remaining useful life prognostics[END_REF]. The literature is replete with data-driven works to estimate the RUL of aircraft engines. However, the machine learningbased approaches proposed lack rigor, and the results are not thoroughly analyzed, leading to a lack of continuation in the research. Additionally, while few works employ advanced conventional machine learning methods such as KNN (K Neareast Neighbors), RF (Random Forest, SVM (Support Vector Machine) [START_REF] Berghout | A systematic guide for predicting remaining useful life with machine learning[END_REF][START_REF] Cardoso | Application of predictive maintenance concepts using artificial intelligence tools[END_REF], many authors favor DL algorithms for its superior performance [START_REF] Pater | Alarm-based predictive maintenance scheduling for aircraft engines with imperfect remaining useful life prognostics[END_REF]. Nonetheless, the interpretation and explainability of results is often absent [START_REF] Nunes | Challenges in predictive maintenance -a review[END_REF], likely due to the black box aspect of DL. Consequently, the prevailing observation is that the data-driven approach dominates the current research context [START_REF] Hafsi | Predictive maintenance for smart industrial systems: A roadmap[END_REF]. In this article, we address the challenges of predictive maintenance for aircraft engines, focusing specifically on the RUL prognostic using ML techniques. Based on the issues highlighted in the literature, we propose a novel method using conventional ML methods that offer both high performance and improved interpretability of the training model.

Background

RUL Prediction

According to the previous section, PdM employs advanced data analysis techniques and artificial intelligence to predict failures before they occur by monitoring early warning signals of malfunction. it involves predicting the remaining useful life (RUL) of a component of equipment before it experiences a critical failure. This helps in effectively scheduling maintenance, reducing downtime, and preventing unexpected breakdowns [START_REF] Vollert | Challenges of machine learning-based rul prognosis: A review on nasa's c-mapss data set[END_REF]. The RUL concept (figure 1) is based on the recognition that equipment undergoes progressive wear and tear over time, which can lead to failures or malfunctions, by monitoring equipment operating parameters in real-time, such as vibrations, temperature, pressure, and electrical currents, and using sophisticated algorithms to analyze this data, collected from multiple sensors, it is possible to predict with some accuracy the point at which a piece of equipment is likely to fail [START_REF] Berghout | A systematic guide for predicting remaining useful life with machine learning[END_REF].

PdM Approaches

Four approaches are mainly used in the literature for RUL prediction: physical model-based, knowledgebased model, data-driven model and hybrid model [START_REF] Hafsi | Predictive maintenance for smart industrial systems: A roadmap[END_REF][START_REF] Cao | Kspmi: A knowledge-based system for predictive maintenance in industry 4.0[END_REF]:

• Physical-based approach: describes the physical degradation process and fault propagation with mathematical models [START_REF] Nunes | Challenges in predictive maintenance -a review[END_REF]. It is particularly useful for understanding complex physical phenomena and where data-driven models are not sufficient due to the lack of data, but it can be complex, computationally expensive, inflexible, and require data calibration, updates, and significant initial investment [START_REF] Maulana | Explainable data-driven method combined with bayesian filtering for remaining useful lifetime prediction of aircraft engines using nasa cmapss datasets[END_REF]. • Data-driven approach: aims to detect the degradation evolution and forecast the future health state of a system by leveraging historical data [? ], and relies on techniques such as statistical analysis, ML, and DM to extract valuable insights. It is particularly adept at detecting patterns and uncovering hidden correlations, leading to enhanced accuracy in failure predictions. Nevertheless, the lack of data, system complexity, and varying operational conditions limit its widespread application. finally, the lack of explainability of ML-based models represent a major limitation [START_REF] Hagmeyer | On the integration of fundamental knowledge about degradation processes into data-driven diagnostics and prognostics using theory-guided data science[END_REF]. • Knowledge-based approach: utilizes human expertise and equipment-specific knowledge to anticipate failures, by integrating and formalizing field observations, diagnostic rules, and technician experience [START_REF] Nunes | Challenges in predictive maintenance -a review[END_REF].

It offer an explicative results and enhances data quality, models causal relationships, adapts to changing operational conditions and reduces dependence on large volumes of data. By incorporating domain expertise, it fills the gaps in data-driven approaches, leading to more accurate models and better failure anticipation [START_REF] Montero Jimenez | Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics[END_REF]. However, it may face some limitations, such as the difficulty of obtaining precise knowledge for predictability pruposes from experience and limited access to expert sources. • Hybrid approach: combines two or more of the previous PdM approach for increasing predictive accuracy [START_REF] Montero Jimenez | Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics[END_REF][START_REF] Hagmeyer | On the integration of fundamental knowledge about degradation processes into data-driven diagnostics and prognostics using theory-guided data science[END_REF]. in this present work, we are particularly interested in the data-driven approach using conventional ML applied to aircraft engine data. the next section discusses existing work in this area.

Related Works

Several works on RUL estimation of aircraft engines have been carried out since the release of the C-MAPSS dataset [START_REF] Vollert | Challenges of machine learning-based rul prognosis: A review on nasa's c-mapss data set[END_REF]. Many of these works have utilized DL algorithms [START_REF] Sateesh Babu | Deep convolutional neural network based regression approach for estimation of remaining useful life[END_REF][START_REF] Zheng | Long short-term memory network for remaining useful life estimation[END_REF][START_REF] Wang | Remaining useful life estimation in prognostics using deep bidirectional lstm neural network[END_REF][START_REF] Li | A directed acyclic graph network combined with cnn and lstm for remaining useful life prediction[END_REF][START_REF] Kong | Convolution and long short-term memory hybrid deep neural networks for remaining useful life prognostics[END_REF][START_REF] Mo | Multi-head cnn-lstm with prediction error analysis for remaining useful life prediction[END_REF][START_REF] Liu | Remaining useful life prediction using a novel feature-attention-based end-to-end approach[END_REF][START_REF] Kumar | Remaining useful life prediction of aircraft engines using hybrid model based on artificial intelligence techniques[END_REF][START_REF] Yu | A prediction model for remaining useful life of turbofan engines by fusing broad learning system and temporal convolutional network[END_REF][START_REF] Liu | Prediction of remaining useful life of turbofan engine based on optimized model[END_REF][START_REF] Asif | A deep learning model for remaining useful life prediction of aircraft turbofan engine on c-mapss dataset[END_REF][START_REF] Hu | Remaining useful life estimation in prognostics using deep reinforcement learning[END_REF], considering them the most appropriate for this dataset: Sateesh Babu et al. [START_REF] Sateesh Babu | Deep convolutional neural network based regression approach for estimation of remaining useful life[END_REF] employed Convolutional Neural Networks (CNN) to RUL estimation and de Pater et al. [START_REF] Pater | Alarm-based predictive maintenance scheduling for aircraft engines with imperfect remaining useful life prognostics[END_REF] developed an alarm-based maintenance planning framework that integrates RUL prognostic based on CNN in the maintenance schedule. Zheng et al. [START_REF] Zheng | Long short-term memory network for remaining useful life estimation[END_REF] implemented Long Short-Term Memory (LSTM) networks in their research and Wang et al. [START_REF] Wang | Remaining useful life estimation in prognostics using deep bidirectional lstm neural network[END_REF] opted for Bidirectional LSTM (BiLSTM) in their analysis. Liu et al. [START_REF] Liu | Prediction of remaining useful life of turbofan engine based on optimized model[END_REF] applied an Attention-based Bidirectional LSTM (Bi-LSTM) method. Some works have combined several approaches like CNN and LSTM [START_REF] Kong | Convolution and long short-term memory hybrid deep neural networks for remaining useful life prognostics[END_REF] or with BiLSTM [START_REF] Hong | Remaining useful life prognosis for turbofan engine using explainable deep neural networks with dimensionality reduction[END_REF]. Mo et al. [START_REF] Mo | Multi-head cnn-lstm with prediction error analysis for remaining useful life prediction[END_REF] developed a multi-head architecture that combines CNN and LSTM, Kumar [START_REF] Kumar | Remaining useful life prediction of aircraft engines using hybrid model based on artificial intelligence techniques[END_REF] introduced a hybrid model for their analysis, Asif et al. [START_REF] Asif | A deep learning model for remaining useful life prediction of aircraft turbofan engine on c-mapss dataset[END_REF] merged LSTM with Automatic Piecewise Linear Modeling, and Peng et al. [START_REF] Peng | A remaining useful life prognosis of turbofan engine using temporal and spatial feature fusion[END_REF] combined LSTM with a Fully Connected Layer CNN (FCLCNN) in their research. Other authors have proposed original methods such as Adaptive Gradient CNN (AGCNN) in [START_REF] Liu | Remaining useful life prediction using a novel feature-attention-based end-to-end approach[END_REF], a Broad Learning System (BLS) coupled with a Temporal Convolutional Network (TCN) is presented in [START_REF] Yu | A prediction model for remaining useful life of turbofan engines by fusing broad learning system and temporal convolutional network[END_REF], Li et al. [START_REF] Li | A directed acyclic graph network combined with cnn and lstm for remaining useful life prediction[END_REF] integrated Directed Acyclic Graphs (DAG) in their methodology and Liu et al. [START_REF] Liu | Prediction of remaining useful life of turbofan engine based on optimized model[END_REF] applied an Attentionbased Bidirectional LSTM (Bi-LSTM) method. Finally, Hu et al. [START_REF] Hu | Remaining useful life estimation in prognostics using deep reinforcement learning[END_REF] applied a Deep Reinforcement Learning approach for RUL estimation (DRLRULe) in their investigation. However, in this particular study, we demonstrate that traditional ML algorithms can also be highly effective.

Contribution

In this paper, a novel hybridization of RUL generation, Min-Max normalization, random-sampling based class balancing, and XGBoost regressor is proposed for an automated aircraft engine's RUL prediction.

• The rules based RUL generation provides a ground truth for evaluating the performance of intended regressors. • The Min-Max normalization linearly transforms the intended dataset and scales the multi subject's data in a common range. • The imbalance presentation among intended classes can lead towards a biasness in findings. This issue is intelligently resolved using the uniformly distributed random sub-sampling. • The performance of robust ML and ensemble learning algorithms is compared for predicting the RUL of the considered aircraft engine by processing the balanced dataset. The results have shown that the XGBoost regressor outperforms other considered models. • The devised method secures the RMSE value of 12.88%. It confirms a similar or better performance compared to the state-of-the-art counterparts.

The rest of the paper is organized as follow: Section 2 describes the used materials and methods. The findings are presented and described in Section 3. Finally, the conclusion is made in Section 4.

Materials and Methods

Methodology

In order to answer the problem mentioned above, we have implemented our solution according to the methodology described by The functional diagram in Figure 2). The described architecture provides an overview of key system components and their interconnections, demonstrating how data flows through the system from one stage to another, and how the components interact with each other. All these steps will be detailed in the following sections. Fig. 3 Simplified C-MAPSS turbofan engine diagram [START_REF] Saxena | Damage propagation modeling for aircraft engine runto-failure simulation[END_REF] According to the data description in Figure 2, units FD002 and FD004 exceptionally contain 6 operating conditions with more than 200 tracking trajectories. Asif et al. demonstrated in [START_REF] Asif | A deep learning model for remaining useful life prediction of aircraft turbofan engine on c-mapss dataset[END_REF] that the two subunits possess irregular behavior, making the prediction of RUL for these complex sequences a challenging task. As a result, most works in the literature concentrate on the FD001 and FD003 datasets due to their simplicity and smaller data volume. Consequently, the FD004 dataset remains relatively underexplored in existing literature.

This paper presents preliminary findings for the subset FD004. In future a detailed study will be presented, in an upcoming journal paper, while considering all subsets of the C-MAPSS dataset

Remaining Useful Life (RUL) Generation

Each sub-dataset is composed of 26 columns in total, but the target RUL column is not included. The RUL is determined by calculating the difference between the maximum time (in cycle) for a given unit and the current time (in cycle). To achieve this, we proceeded as follows:

RUL train (i) = max(Cycle) per unit (i) -Cycle(i) (1) RUL test (i) = max(Cycle) per unit (i) + RUL given(i) -Cycle(i) (2) 
where:

• RUL train (i) and RUL test (i) are the RUL for the train and test sets respectively,

• max(Cycle) per unit (i) is the maximum number of cycles for each unit i,

• Cycle(i) is the current cycle number,

• RUL given(i) is the given cycles for each unit i in the RUL file.

Min-Max Normalization

Min-Max Normalization, also known as feature scaling, is a simple method used in data preprocessing to scale numerical data. The goal of Min-Max Normalization is to transform features to fall within a specific range, [0,1] in our case, thus ensuring that no particular feature dominates others during the learning process, which can be crucial for some MLg algorithms [START_REF] Asif | A deep learning model for remaining useful life prediction of aircraft turbofan engine on c-mapss dataset[END_REF]. The transformation is performed according to the following formula:

x ′ = x -min(x) max(x) -min(x) (3) 
where:

• x is the current value that needs to be normalized., • x ′ is the normalized value,

• min(x) and max(x) correspond to the minimum and the maximum values in the dataset, respectively.

Random-Sampling Based Class Balancing

The performance of ML algorithms can be affected because of the ample imbalances in the intended classes [START_REF] Idrissi | Simple data balancing achieves competitive worst-group-accuracy[END_REF]. This problem can be resolved to a certain extent using the subsampling, oversampling or reweighting approaches [START_REF] Sun | Class-imbalanced dynamic financial distress prediction based on adaboost-svm ensemble combined with smote and time weighting[END_REF]. In literature, it is shown that the class balancing can raise the performance of contemporary classification algorithms in terms of accuracy and latency [START_REF] Fotouhi | A comprehensive data level analysis for cancer diagnosis on imbalanced data[END_REF], [START_REF] Duan | Self-balancing federated learning with global imbalanced data in mobile systems[END_REF].

In this study, we have devised a random sub-sampling approach for class balancing. It resolves the problem of data misbalancing while diminishing the impact of biasing. Moreover, it also diminishes the computational load and latency of the considered classifiers during the training and testing phases and allows to compute empirical results using affordable personal computers.

The approach is based on the uniformly distributed random indexes generation. Let C = {C 1 , C 2 , . . . , C K } is a set of intended classes, where K is presenting the considered count of classes. Let the count of instances for these classes is defined by the set M = {M 1 , M 2 , . . . , M K } and their corresponding indexes ranges are defined as: R = {R 1 , R 2 , . . . , R K }. Where, elements of sets M and R belongs to the set of positive integers. Then using the inversion method, based on the idea that "Continuous Cumulative Distribution Functions" (CDFS) have a uniform distribution over the open interval [0,1], the set of uniformly distributed random indexes I 1 = {n 1 , n 2 , . . . , n N } is generated for C 1 [START_REF] Cheung | Hardware generation of arbitrary random number distributions from uniform distributions via the inversion method[END_REF]. A similar process is followed for the generation of I 2 , I 3 , . . . , I K which are sets of the random indexes respectively for the C 2 , C 3 , . . . , C K .

The generation process of I 1 is achieved while respecting the corresponding index range, R 1 . In this scenario, If x is a uniform random number on [0,1], then a random index i m , from the standard normal distribution and the specified CDF, F , is generated as: i m = F -1 (x) [START_REF] Cheung | Hardware generation of arbitrary random number distributions from uniform distributions via the inversion method[END_REF]. Where m ranges from [1, N ]. In next step, the value of the generated i m is adapted as per R 1 , the process is given as: n m = OS + round(i m × SF), where SF is the scaling factor and OS is the off-set. The values of SF and OS can be specific as a function of the intended range from the set R. Also, for an effective class balancing, the value of N should be less than or equal to the minimum element in the set M . In this study, the value of N Training = 50 is chosen and the value of N Testing = 25 is selected. Select a random sample of N Testing instances from each class C i using the generated indexes I i ;
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Store the selected instances in the testing dataset;

14 end

Boosting based Regression

Designed to have specific properties such as efficiency, flexibility and portability.The XGBoost (eXtreme Gradient Boosting) Regressor is an optimized distributed gradient boosting library. By implenting ML algorthms under the Gradient Boosting framework, it provides a parallel tree boosting (commonly known GBDT or GBM) allowing to solve many data science problems quickly and precisely [START_REF] Patel | Encoding and tuning of thz metasurface-based refractive index sensor with behavior prediction using xgboost regressor[END_REF]. The core XGBoost model is an ensemble of decision trees, where new trees are added to correct the errors made by existing trees. The trees are added sequentially until no further improvements can be made. Given a set of n instances (x 1 , y 1 ), ..., (x n , y n ) where x i ∈ R m is a feature vector and y i ∈ R is the corresponding label, XGBoost learns a function f : R m → R that maps a feature vector to a label. The function f is a series of K decision trees.

f (x) = K k=1 f k (x) (4) 
where f k is a decision tree.

The objective of XGBoost is to minimize the following loss function:

L(y, f (x)) = n i=1 l(y i , f (x i )) + K k=1 Ω(f k ) (5) 
where l is a differentiable convex loss function that measures the difference between the prediction f (x i ) and the correct label y i , and Ω is a regularization term that penalizes the model complexity.

XGBoost offers several advantages as a fast and accurate method, but it also includes several regularizations which help to reduce overfitting. Moreover, it supports missing values, allows for parallelizable processing and provides several flexible features for user customization. Finally, several applications are considered: regression solving, ranking, classification, user-defined prediction problems, etc. Following the RUL generation and data normalization, the next stage is to proceed to ten iterations. During each iteration, a random sampling-based class balancing operation is performed. Subsequently, the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE) are calculated to evaluate the performance of the model. These two error metrics are then stored and accumulated throughout the 10 iterations. At the end of the 10 iterations, the algorithm computes the average of the 10 MAE and RMSE values. These averages represent the global error rates of our model. In simpler terms, the algorithm performs 10 learning and evaluation experiments, and it utilizes the outcomes to deliver an overall performance evaluation of the model.

Evaluation Measures (RMSE and MAE):

In the domain of ML, a metric refers to a function employed to quantify the performance of a model or algorithm. In essence, metrics are utilized to measure how accurately a model's predictions align with the actual data [START_REF] Berghout | A systematic guide for predicting remaining useful life with machine learning[END_REF]. There are several metrics divided into two categories based on the type of problem: classification problems and regression problems. In the context of regression, two of the most commonly used metrics are the MAE (Mean Absolute Error) and the RMSE (Root Mean Squared Error). Both MAE and RMSE express average model prediction error in units of the variable of interestn these two scores are said to be negatively-oriented, meaning that lower values are better.

1. Mean Absolute Error (MAE): measures the average magnitude of the errors in a set of predictions, regardless of their direction. It is can be considered as the average over the test sample of the absolute differences between prediction and actual observation where all individual differences have equal weight as shown in Formula [START_REF] Cardoso | Application of predictive maintenance concepts using artificial intelligence tools[END_REF]. MAE is less sensitive to outliers compared to RMSE [START_REF] Hodson | Root-mean-square error (rmse) or mean absolute error (mae): when to use them or not[END_REF]. 2. Root Mean Squared Error (RMSE): is a quadratic scoring rule that also measures the average magnitude of the error. It is based on the square root of the average of squared differences between prediction and actual observation. The RMSE gives a relatively high weight to large errors because the squared large difference of prediction and the actual observation leads to even larger contributions to the mean as shown in Formula ( 7). The effect is to pay more attention to large errors [START_REF] Hodson | Root-mean-square error (rmse) or mean absolute error (mae): when to use them or not[END_REF]. The methods include a range of techniques based on different types of neural networks (CNN, LSTM, BiLSTM), hybrid models, and other advanced ML techniques. Each method is accompanied by specific preprocessing steps such as normalization, feature selection, RUL target function, and others. The best RMSE from prior state-of-the-art methods is 16.96% using Bi-LSTM + Attention [START_REF] Liu | Prediction of remaining useful life of turbofan engine based on optimized model[END_REF], while the worst RMSE is 29.15% from CNN [START_REF] Sateesh Babu | Deep convolutional neural network based regression approach for estimation of remaining useful life[END_REF]. Our proposed method achieves an RMSE of 12.88%, which is 4.08% lower than the best previous method and 16.27% lower than the worst previous method. This underlines the meaningful advancements in RUL prediction accuracy gained by the proposed method over current techniques. The results validate the efficacy of the proposed innovations in improving model performance.

Conclusion

In this paper, a novel data-driven predictive maintenance model is presented in the context of industry 4.0. The proposed method is based on a new fusion of XGBoost regressor, Min-Max normalization, Random-Sampling based class balancing, and Remaining Useful Life (RUL) generation. The performance of the intended regressors is assessed using the ground truth, computed by the rules-based RUL generation. The Min-Max normalization adjusts the data from several subjects in a common range by performing the linear transformation. An unbalanced presentation of the intended classes may result in biased findings. The uniformly distributed random sub-sampling is used to intelligently handle this problem. It not only diminishes the biasness in findings but also relaxes the requirements of computational resources. The performance of considered robust machine learning and ensemble learning algorithms is compared for predicting the RUL of the considered aircraft engine by processing the balanced dataset. The results have shown that the XGBoost regressor outperforms other considered models. The devised method secures the Root Mean Squared Error (RMSE) value of 12.88%. It is shown that the proposed approach secured a similar or better performance compared to the state-of-the-art counterparts. In this study, the performance of devised approach is evaluated only for the subset FD004. In future, a detailed analysis will be presented while considering all available subsets in the C-MAPSS dataset. Moreover, the incorporation of feature selection and deep learning approaches can enhance the performance of suggested solution. The feasibility of this concept will be investigated in future.
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 1 Fig.1System degradation over time and RUL estimation which represents the duration a system can continue operating before it needs to undergo repair or replacement due to failure.

Fig. 2

 2 Fig. 2 Proposed framework for RUL prediction based on Random Sampling Based Class Balancing Method.
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Table 1

 1 Comparison of PdM Approaches

	Approach	Advantages	Disadvantages
	Physics-based	Without historical data, reliable	Complexity of systems
	Data-driven	High accuracy	Requires a large amount of data, interpretation
	Knowledge-based Effective for simplified cases, explainability	Low accuracy, limited in complex systems
	Hybrid	High Accuracy, explainability	Hard to buid, fusion and incertainty management

Table 2

 2 Description of the properties and different batches of the C-MAPPS dataset.

		FD001 Unit	FD002 Unit	FD003 Unit FD004 Unit
	N°Engines available in train set	100	260	100	249
	N°Engines available in test set	100	259	100	248
	Operating conditions applied	1	6	1	6
	Fault modes	1	1	2	2
	Training set size	20,632	53,760	24,721	61,250
	Testing set size	13,097	33,992	16,597	41,215

Table 4

 4 Performance comparison with state-of-the-art counterparts and preprocessing steps detailed.

	N°Methods	Author	Year	Normalization	Feature Selection	RUL Target Function	Piece-wise function	Variance threshold	Health indicator	Correlation analysis	Median move filter	STW Proc.	RUL Generation	RSBCB	RMSE
	1	CNN	Sateesh Babu et al.[13]	2016	x		x									29.15
	2	LSTM	Zheng et al.[14]	2017	x		x									28.17
	3	BiLSTM	Wang et al.[15]	2018	x	x	x									24.86
	4	DAG	Li et al.[16]	2019	x	x		x								22.43
	5	CNN+LSTM	Kong et al.[17]	2019	x				x	x						23.25
	6	Multi-head CNN+LSTM	Mo et al.[18]	2020		x	x									22.89
	7	AGCNN	Liu et al.[19]	2020	x	x	x									21.15
	8	Hybrid model	Kumar[20]	2021	x	x		x								22.32
	9	BLS+TCN	Yu et al.[21]	2022												18.12
	10	BiLSTM+Attention meth	Liu et al.[22]	2022			x									16.96
	11	LSTM+Auto piecewise	Asif et al.[23]	2022	x		x	x			x	x				17.63
	12	DRLRULe	Hu et al.[24]	2023	x	x							x			18.87
	13	Proposed approach	Barry et al.	2023	x									x	x	12.88
	Legend:													
	STW Proc.: Sliding Time Window Processing												
	RSBCB: Random Sampling Based Class Balancing												

C-MAPSS NASA Dataset: https://data.nasa.gov/dataset/C-MAPSS-Aircraft-Engine-Simulator-Data/xaut-bemq

where:

• y i is the actual RUL value of the aircraft engine,

• ŷi is the predicted RUL value by the model,

• n is the total number of observations.

Results & Discussion

In this work, two regression models namely, the KNN and XGBoost are considered for processing the subset FD004 -The KNN Regressor algorithm is well detailed in the article [START_REF] Azadkia | Optimal choice of k for k-nearest neighbor regression[END_REF] -In our study, the work carried out with the KNN allowed us to find the most optimal parameters described as follows: best number of neighbors 46 and the distance metric as Manhattan distance in the 5th iteration out of a total of 10 tuning iterations with the class balancing. The performance of the considered regressors is evaluated for two different scenarios. In first case, the intended dataset is processed only after normalization. However, in the second case, the intended dataset is normalized and onward the class balancing is performed using the devised random-sampling based approach. The findings are outlined in Table 3.

In the first case the XGBoost regressor attains 19.22% RMSE and 14.48% MAE values respectively. KNN regressor performs better than the XGBoost regressor in this scenario by securing 15.71% RMSE and 11.58% MAE values respectively. In the second case the KNN regressor attains 13.10% RMSE and 09.55% MAE values respectively. XGBoost regressor outperforms by securing 12.88% RMSE value. However, the MAE value of the KNN regressor is 0.52% lesser than the MAE score achieved with the XGBoost regressor.

These results confirm the benefit of using random-sampling based class balancing on the normalized data before conveying it to the regression stage. For both considered regressors the accuracy is improved for the aforementioned second case. In the case of KNN regressor the respective error reduction in RMSE and MAE is 02.61% and 02.03%. In the case of XGBoost regressor the respective error reduction in RMSE and MAE is 06.34% and 04.41%. In order to evaluate and compare the results of our study with litterature works, we used the RMSE metric which is commonly used in the majority of studies conducted on the C-MAPSS dataset [START_REF] Sateesh Babu | Deep convolutional neural network based regression approach for estimation of remaining useful life[END_REF][START_REF] Zheng | Long short-term memory network for remaining useful life estimation[END_REF][START_REF] Wang | Remaining useful life estimation in prognostics using deep bidirectional lstm neural network[END_REF][START_REF] Li | A directed acyclic graph network combined with cnn and lstm for remaining useful life prediction[END_REF][START_REF] Kong | Convolution and long short-term memory hybrid deep neural networks for remaining useful life prognostics[END_REF][START_REF] Mo | Multi-head cnn-lstm with prediction error analysis for remaining useful life prediction[END_REF][START_REF] Liu | Remaining useful life prediction using a novel feature-attention-based end-to-end approach[END_REF][START_REF] Kumar | Remaining useful life prediction of aircraft engines using hybrid model based on artificial intelligence techniques[END_REF][START_REF] Yu | A prediction model for remaining useful life of turbofan engines by fusing broad learning system and temporal convolutional network[END_REF][START_REF] Liu | Prediction of remaining useful life of turbofan engine based on optimized model[END_REF][START_REF] Asif | A deep learning model for remaining useful life prediction of aircraft turbofan engine on c-mapss dataset[END_REF][START_REF] Hu | Remaining useful life estimation in prognostics using deep reinforcement learning[END_REF]. The results obtained with the tested methods are displayed in Table 3