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Abstract—This article introduces a novel Remaining Use-
ful Life (RUL) estimation method using Machine Learning
techniques, guided by domain knowledge, and applied to a
dataset of aircraft engines (C-MAPSS). Predictive maintenance,
or prognostics, offers the opportunity to predict the lifespan of
aircraft engines, thereby reducing costs, minimizing breakdowns,
and ensuring their reliability. While existing solutions in the
literature primarily rely on either physical modeling or data-
driven methods, they have achieved promising results, but they
often face limitations, such as the interpretability of models, their
reusability, and scalability. Knowledge-based methods have the
potential to overcome these limitations, but they introduce their
own set of challenges during implementation. In this article,
we address a new hybrid method for predictive maintenance
of aircraft engines. A case study combining a data-driven
approach and knowledge will be presented as a proof of concept
to demonstrate the feasibility of this hybrid solution and the
possibilities it can offer.

Keywords—Predictive maintenance, Prognostic, Remaining
useful life (RUL), Machine Learning, Ontology, C-MAPSS.

I. INTRODUCTION

In the context of Industry 4.0, predictive maintenance (PdM)
enables the identification of anomalies and the foresight of po-
tential system or component failures. Through the continuous
collection of multi-sensor data and system monitoring, this
maintenance strategy relies on machine learning (ML) algo-
rithms capable of building models ables to detect early signs
of impending failures. Early detection of anomalies allows
for prevention, anticipation of corrective actions, and reduced
downtime by estimating the remaining useful life (RUL),
which corresponds to the operating time before a system
failure. Several approaches are used: model-based, data-driven,
knowledge-based, or hybrid. Aircraft engines, regarded as a
safety-critical asset, demand substantial attention owing to the
constant and rigorous monitoring they entail [14]. Undoubt-
edly, unanticipated issues with an aircraft can lead to logistical
disruptions such delays or cancellations, substantial repair
expenses and the potential risk to passengers. To prevent these
unforeseen failures and increase the reliability of such systems,
it is important to predict the RUL of the essential aircraft
components, like reactors or engines, allowing airlines to make
appropriate maintenance before the inevitable engine failure
or breakdown happens, thereby reducing maintenance costs
while ensuring high reliability [2]. Diagnostic and Prognostics

in aeronotics have become a focal point of interest, especially
since the release of the Commercial Modular Aero-Propulsion
System Simulation (C-MAPSS) dataset by NASA in 2010 [8].
Many works have been carried out to test various methods
for RUL estimation. While some methods rely on physical
principles, the majority are data-driven. These approaches
yield promising and increasingly efficient results but they face
several limitations such as model explainability, the black-box
effect of some algorithms, limitations in solution scalability,
adaptability issues, and more. Despite their potential, it is
challenging to find knowledge or hybrid techniques integrating
domain expertise when estimating the lifespan of engines.

Therefore, the main objective of this work is to investigate a
novel hybrid approaches that combine data-driven techniques
with domain expertise and present a comprehensive end-to-
end prototype proof of concept for aircraft engines PdM,
integrating domain knowledge with large datasets. Following
a comprehensive review of the current state-of-the-art, our
focus will shift to the C-MAPSS dataset, a well-referenced
resource in the domain’s literature, to construct an initial data-
driven model. Afterwards, we propose to develop an ontology
describing the concepts of the aeronotics domain considering
aircraft engines, their components, and the environment sur-
rounding them. Reasoning rules and axioms will be defined to
create new knowledge to guide data-based method steps.

A. Problem Overview

C-MAPSS dataset is the result of a simulation model of
a specific turbofan engine 1 provided the Nasa’s simulation
system where run-to-failure measurements are recorded under
different conditions. It is widely recognized in the literature
as the benchmark dataset and as an excellent example for
studying current methodologies for RUL prediction and for
addressing associated challenges [3]. It encompasses several
turbofan engines commonly used in commercial aircraft (Fig-
ure 1) and using gas combustion to generate power for a fan,
which in turn, propels air to produce forward thrust [21]. This
dataset is derived from simulations and comprises 21 distinct
sensor measurements (Figure 2) represented as multivariate
time series data, distributed into four labeled subsets labeled
FD001 to FD004, along with an additional competition subset.
Within each of these subsets, there is a 24-dimensional vector



Fig. 1. C-MAPSS aircraf engine architecture in C-MAPSS dataset [20].

encompassing three operational parameters, in addition to the
21 sensor signals. The primary objective is to predict the RUL
of the turbofan engines [21]. Each dataset contains multivariate
time series data under different kinds of operational conditions
and fault modes separated into a training and a testing set.
One of the main characteristics of C-MAPSS is the lack
of anomaly faults and failure mode which are not covered
and note explicitly provided. Further analysis is required to
obtain the original cause and the fault detection system. Thus,
further research can explore this opportunity to create a more
comprehensive approach. Although the literature works can

Fig. 2. C-MAPSS aircraf engine components and their interconnections [20].

identify the engine’s degradation, the failure mode of the failed
component is not considered and literature papers focuses on
the engine as the whole system rather than individual sub-
system failure [14].

II. RELATED WORKS

A. Predictive Maintenance in Industry 4.0

PdM has emerged as a highly significant and widely dis-
cussed topic, especially in the context of Industry 4.0, the
rise of the Internet of Things, and advancements in Artifi-
cial Intelligence [16]. Indeed, the substantial data collected
from sensors and system metadata hold valuable insights
that can enhance our understanding of degradation processes,
potentially leading to longer component lifespans and reduced
downtime. However, hinges on effective data processing and
the extraction and utilization of relevant and valuable informa-
tion, made possible by the continuously improving computing
capacities and advancements in Machine Learning (ML) and
Deep Learning (DL) techniques. With the increasing focus on
research and investigations in this field, various methods are
under exploration and development in the literature, resulting
in increasingly intriguing and promising outcomes.

B. Predictive maintenance approaches

Research on PdM has highlighted three primary approaches
that can be implemented either separately or in combination
as a hybrid approach [15] as summarized in Figure 3.

Fig. 3. Categorizing PdM approaches regarding of the literature review.

The physics-based approach entails creating mathematical
models to represent the degradation processes of the system,
offering greater precision and adaptability to various opera-
tional scenarios. Although it is well-suited for contexts with
limited data availability, it is an expensive approach requiring
expertise in failure mechanisms and lack of scalability [14].
The data-driven approach relies on leveraging monitoring data,
which is processed to extract features reflecting the system’s
evolution or degradation. Statistical models or ML-based mod-
els can be employed [14]. This approach is cost-effective and
can be flexible and adaptable to large and comprehensive
datasets, but it requires a sufficient amount of data with failures
[1]. Knowledge-based approach integrates human expertise to
anticipate potential issues, it relies on a deep understanding
of systems, processes, and operating conditions, as well as the
expertise of operators and technicians. Various models such
as case-based, rule-based, incorporating knowledge graphs, or
ontologies have been proposed. The advantage of this approach
lies in the explicative results they offer [15]. However, there
are often obstacles encountered, such as the challenge of
acquiring precise knowledge for predictability from experience
or limited access to experts or knowledge sources to builds
system.

C. Estimating Remaining Useful Life for Aircraft Engines

Various studies has been done on turbofan engine prog-
nostics and RUL prediction offering methods based on both
physics and data. Several ML methods are commonly applied
to C-MAPSS: SVM (Support Vector Machine) in [7], MLP
(Multilayer perceptron) in [11], ELM [4], DL methods such as



Convolutional Neural Network (CNN) [12], Long Short-Term
Memory Network (LSTM) [2], GRU [13]. Some combinations
and variations of physics and data are mentioned: CNN with
LSTM in [21], EMD and ESN [18], SVM and ARIMA in [17].
According to [8], when evaluated solely on predictive accuracy
measured with root mean square error (RMSE), CNNs and
LSTMs outperformed other models. In summary, the state-
of-the-art prognostic techniques applied to C-MAPSS dataset
are mainly purely data-driven. These techniques mainly deal
with a black box process which does not include uncertainty
quantification. These two factors are barriers to prognostic
applications. To tackle these issues, eXplainable Artificial
Intelligence (XAI) is introduced in some works [14], [21].
Morever, although the work is based on the exploitation of
the explicit information contained in the time-series data,
the implicit characteristics are not explored with data-driven
methods. The correlation between each parameter can display
useful information or valuable insights which can enhance
anomaly and failure prediction. Additionally, subsystem con-
tribution and failure modes are not considered, whereas further
study of each subsystem’s contribution to the motor system
could provide a more comprehensive framework [14].

D. Knowledge Representation

Ontology or graph knowledge are a powerful technologies
for organizing and structuring extensive heterogeneous knowl-
edge with logical relationships. It achieves this by offering
a unified set of formal vocabularies, explicitly representing
heterogeneous knowledge. This proactive approach mitigates
divergence and misunderstandings among engineers from var-
ious domains. Moreover, ontology ensures a robust reasoning
ability through in-depth analyses of knowledge relations [6].

III. METHODOLOGY

A. Data-based approach

Within this project, a data-driven method is implemented,
which encompasses the training of multiple ML and DL algo-
rithms. Following the preprocessing of the data, these models
undergo training and evaluation, and the model demonstrating
the most robust RUL prediction performance is ultimately
chosen. In parallel, the knowledge-based model undergoes its
reasoning process, generating fresh insights that are subse-
quently employed to retrain all the ML and DL algorithms.
These retrained models are then subjected to evaluation in
order to determine the best-performing model, as depicted in
figure 6. This process is repeated continuously with the goal
of achieving increasingly accurate RUL estimations.

B. Ontology-based approach

To integrate expert knowledge, we propose to develop a
domain ontology associated with the C-MAPSS dataset ac-
cording to the methodology suggested by Noy & McGuinness,
the development process encompassed the following stages:

• Ontology domain and Scope: describing the aircraft
engines domain, their components and interactions with
the environment and its variations.

Fig. 4. Proposed Data-Driven Architecture System.

• Reutilizing existing ontologies: ontologies describing
Air Traffic Management concepts [19] and failure modes
with effects of the aircraft lubrication system [9] were
released but the covered scope does not concern the
concepts of the studied domain, therefore we have not
reused them. It would be interesting to connect the
concepts to a high-level ontology in future work.

• Key Terms: Conceptualize the system and its compo-
nents, their interactions and behaviors depending on op-
erational conditions. Supporting C-MAPSS and defining
expertise rules allows to extract insights from data (table
I) and generate new knowledge to better understand the
causes of malfunctions and their propagation within the
engine, leading to engine failure.

• Ontology Classes: define the main domain concepts and
their classification with assumption relationship.

• Object properties: formalize various types of relation-
ships, such ”part-of,” ”has-property,” or custom/semantic
relations specific to C-MAPSS.

• Creating, Asserting, and Inferring Instances: to pop-
ulate the ontology with instances or individuals that
represent specific real-world objects or entities extracted
from C-MAPSS. These instances should adhere to the
defined concepts and relationships. Additionnaly, axioms
and rules are defined for reasonning and create new
knowledge.

• Integration and application: implementing the collabo-
ration with the data-driven method for RUL estimation.

IV. CASE-STUDY & RESULTS

A. Development of a Knowledge-Based System for Case Study
Response

Structuring domain concepts (engines, sensors, failure types
and operating conditions) in an ontology provides a holistic
view of the environment. It allows sensor data to be interpreted
in the context of the structure and operation of the engine.
For example, if a sensor value exceeds a certain threshold, the
data-driven method could detect this as an anomaly. However,
by using the ontology, we can understand why this value
is abnormal, which engine component could be affected and
identify the potential failure. Below is an excerpt of the main



TABLE I
COMPONENTS, SENSORS AND BEHAVIOUS ANALYSIS FOR RULES EXTRACTION AND GUIDING DATA PROCESSING.

Sensor ID Symbol Measurement and component concerned Unit trend and behaviour extracted Component Potential failure
SensorMes1 T2 Fan inlet temperature ◦R ˜ Fan Overheating
SensorMes2 T24 LPC outlet temperature ◦R up LPC Overheating
SensorMes3 T30 HPC outlet temperature ◦R up HPC Overheating
SensorMes4 T50 LPT outlet temperature ◦R up LPT Overheating
SensorMes5 P2 Fan inlet Pressure psia ˜ Fan Blockage
SensorMes6 P15 bypass-duct pressure psia ˜ Bypass Leakage
SensorMes7 P30 HPC outlet pressure psia down HPC Blockage
SensorMes8 Nf Physical fan speed rpm up Fan Imbalance
SensorMes9 Nc Physical core speed rpm up Core Misalignment

SensorMes10 epr Engine pressure ratio - ˜ Engine Corrosion
SensorMes11 Ps30 HPC outlet Static pressure psia up HPC Blockage
SensorMes12 Phi Ratio of fuel flow to Ps30 pps/psi down HPC Incomplete Combustion
SensorMes13 NRf Corrected fan speed rpm up Fan Imbalance
SensorMes14 NRc Corrected core speed rpm down Core Misalignment
SensorMes15 BPR Bypass Ratio - up Bypass Leakage
SensorMes17 htBleed Bleed Enthalpy - up Burner Overheating
SensorMes18 Nf dmd Demanded fan speed rpm ˜ Fan Misfire
SensorMes19 PCNfR dmd Demanded fan conversion speed rpm ˜ Fan Oil Leak
SensorMes20 W31 HPT Coolant air flow lbm/s down HPT Overheating
SensorMes21 W32 LPT Coolant air flow lbm/s down LPT Corrosion

entities and concepts described in our ontology, components
(Fig. 1) and interconnection (Fig. 2).

• Engine
• Sub-Entities of EngineComponent: Fan, LPC, HPC,

LPT, HPT, Burner, Exhaust, Bypass, Core
• Sub-Entities of Sensor: SensorMes1-21.
• Sub-Entities of Sub-Entities of Failure: Overheating,

Blockage, Leakage, Imbalance, Misalignment, Corrosion,
Incomplete Combustion, Misfire, Oil Leak.

• Sub-Entities of OperatingConditionParameter : Alti-
tude, MachNumber, SeaLevelTemperature

• Object Properties(Relations): isCloseTo, hasMultiple,
monitoredBy, canHave, flowGoesFrom.

These informations and knowledge are captured from the C-
MAPSS engine metadata, his components (Fig. 1) and their
interconnections (Fig. 2).

1) Data integration: involves converting each row into a
unique instance in facts base. Each column is mapped to its
corresponding element in the ontology, whether it’s an entity,
sub-entity, or attribute. This approach ensures that all data
points from C-MAPSS have a representation in the ontology,
allowing for a combination of knowledge-based reasoning
and data insights. The process effectively bridges theoretical
knowledge representation with actual data, enhancing the
ontology’s real-world applicability.

2) Rules definition (Critical threshold computing): In the
realm of advanced health monitoring, real-time insights into
engine health are obtained by determining critical sensor
thresholds based on recent sensor data. We introduce the
following formula for calculating the threshold for each sensor
associated with each engine (1). By computing the average
of specific recent readings, typically the most recent 5%,
this metric supports PdM and anomaly detection, ultimately
enhancing the performance and reliability of aircraft engines

θs,u =
1

n

m∑
i=(1−f)×m

xs,u,i (1)

Where:
• θs,u : critical threshold for each sensor s of unit u.
• xs,u,i : value of each sensor s for each unit u at cycle i.
• m : total number of cycles for unit u.

• f : fraction of the last cycles computing the threshold.
• n : number of cycles in fraction, given by n = f ×m.

Fig. 5. Sensor thresholds and trends extraction using knowledge-based
approach.

Our focus lies in examining the fluctuations in sensor data
to establish reasoning rules derived from the patterns observed
in different sensors, as documented in Table I. Each sensor’s
trend can be categorized as either ”up”, ”down”, or ”˜” (stable).
These trends serve as the basis for determining the health
status of engine components linked to the respective sensors.

• Sensors with an upward trend (”up”): when the sensor
value remains below or equal to its critical threshold, the
corresponding engine component is deemed to be in a
good condition. If the sensor value exceeds this threshold,
it indicates a potential issue, triggering an alert about a
specific type of failure in the associated component.

• Sensors with a downward trend (”down”): the engine
component remains in good health as long as the sensor
value is greater than or equal to its critical threshold.
However, when the sensor reading drops below this
threshold, it signifies a potential problem, prompting an
alert about a failure in the associated component.

• Sensors with a stable value (”˜”): the sensor values are
expected to remain relatively stable. Any deviation from
the norm, especially if it crosses the critical threshold, is
a sign of a possible anomaly.

By adhering to these rules, real-time monitoring systems can
promptly detect potential issues in engine components. This
allows for timely interventions, maintenance, or replacements,
playing a crucial role in preventing unexpected breakdowns,
ensuring safe flights, and prolonging the life of the aircraft
engine components [5].



3) Reasoning: The reasoning process is a systematic way of
deducing new information from existing knowledge. It allows
for the extraction of implicit knowledge and the verification
of consistency within the ontology [5]. By applying reasoning
to the C-MAPSS ontology, we can achieve several objectives:
detect failures using the established rules and the data into
the ontology, enhance Data-Driven approaches, provide clear
and contextual explanations, iterative enhancement as more
data is integrated into the ontology and as the rules evolve
the reasoning process can continually refine its deductions, In
essence, reasoning is a crucial component of a knowledge-
based system, acting as the bridge between raw data and
actionable insights, and enhancing the capabilities of purely
data-driven.

B. Proposed Framework for PdM Hybrid approach

The fusion of knowledge and data methods can enhance
the accuracy of RUL prediction and the ontology can offer
insights into the relationships between various failures, their
propagation, and impact of engine lifespan. To create a PdM
hybrid model, three combination methods are needed: sequen-
tial method allows for data preprocessing with knowlegde
approach and then RUL prediction using the data approach;
the parallel method employs both approaches simultaneously
and then merges the predictions made by these approaches;
the integrated method involves directly incorporating the
knowledge-based into the data-driven system. In this context,
both the sequential and parallel methods were combined (Fig.
6) to yield even better predictions.

Fig. 6. Architectural Design of the Hybrid System for the Case Study.

Initially, the C-MAPSS dataset is provided to both systems,
the data-driven system handles data preprocessing, trains var-
ious ML and DL algorithms, and evaluates these algorithms
to select the one that best estimates the RUL. Simultaneously,
the knowledge-based approach, through reasoning, offers clear
explanations related to the detected upcoming failure. More-
over, new connections between variables, which might not be
discernible at first glance or by the data-driven method, are
provided by the knowledge-based approach. This subsequently
enables further data preprocessing, enriching the data, or
adding new columns to the dataset. The process then repeats,

aiming for increasingly accurate RUL predictions. In summary,
the integration of an ontology not only enhances prediction
accuracy but also offers contextual explanations for each
detection or prediction. This ensures better decision-making
and more efficient maintenance of aircraft engines.

C. Results

After going through all the steps of creating the ontology,
we obtained the model in the Fig. 7, which displays all the
elements found within the ontology and how these different
elements are interconnected.

Fig. 7. The C-MAPSS Ontology knowledge graph.

By zooming in on the Fan component in the C-MAPSS
Ontology, we can see how it is connected to other components.
For instance: Fan subClassOf EngineComponet. Fan isMoni-
toredBy SensorMes1, SensorMes5, SensorMes8, SensorMes13,
SensorMes18, and SensorMes19. SensorMes1 canHave Over-
Heating. Fan flowGoesFrom LCP. Fan isCloseTo LCP. Finally,
the bellow SPARQL query allow to determine which sensors
monitor the Fan component.

SELECT ?sensor ?failure
WHERE {
aero:Fan aero:isMonitoredBy ?sensor.
?sensor aero:canHave ?failure.

}

SPARQL query response:

http://www.aero.org/ontologies/CMAPSS#SensorMes1
http://www.aero.org/ontologies/CMAPSS#SensorMes5
http://www.aero.org/ontologies/CMAPSS#SensorMes8
http://www.aero.org/ontologies/CMAPSS#SensorMes13
http://www.aero.org/ontologies/CMAPSS#SensorMes18
http://www.aero.org/ontologies/CMAPSS#SensorMes19



Fig. 8. Detailed Exploration of the Fan in the C-MAPSS Ontology.

V. DISCUSSION

The main objective of this work was to explore the potential
of the knowledge to improve the PdM of aircraft engines with
a C-MAPSS application. unexplored until now, our goal was to
set up a hybrid process combining knowledge and data, and to
demonstrate the feasibility of this method. The implementation
of our solution was carried out with the Python language
and the RDFLib and OWLReady2 libraries [10], this made
it possible to overcome the limits often encountered in the
Java language and the lack of performance in the face of the
needs for population and reasoning. In addition, this makes it
possible to implement the data and ontology approaches in a
single homogeneous system, thus avoiding having two decom-
partmentalized systems whose interoperability is difficult. Our
solution proved that it was possible to populate an ontology
with a massive dataset provided that the knowledge was well
conceptualized, and that it was possible to generate new
knowledge with rules, which would be impossible to achieve
with a data-driven approach. We have demonstrated that it is
possible to recover this new knowledge and reintegrate it into
the initial dataset to complete and enrich it. The feasibility of
such a system opens the field to several possibilities in the
explainability of ML and in the structuring of massive data.

VI. CONCLUSION

The aerospace industry, characterized by its complexity
and strict safety standards, is consistently on the lookout for
cutting-edge methodologies for PdM of aircraft engines. In
this context, our work stands out not only for adopting a
hybrid approach that combines knowledge-based and data-
driven approaches but also by introducing the very first on-
tology on the C-MAPSS dataset. This innovation isn’t merely
a theoretical advancement but also demonstrates significant
practical relevance in addressing the contemporary challenges
of the industry. The efficiency of our implementation, made
possible through the use of Python and specialized libraries
like RDFLib and OWLReady2, transcends traditional limita-
tions, offering an optimized and swift solution. In essence,
our study doesn’t just propose a new PdM method, it lays
the groundwork for a transformation in how the aerospace
industry might approach diagnostics and maintenance in the

future, with potential major implications in terms of safety,
operational efficiency, and cost reduction.
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[15] Juan José Montero Jimenez, Sébastien Schwartz, Rob Vingerhoeds,
Bernard Grabot, and Michel Salaün. Towards multi-model approaches
to predictive maintenance: A systematic literature survey on diagnostics
and prognostics. Journal of Manufacturing Systems, 56:539–557, 2020.

[16] P. Nunes, J. Santos, and E. Rocha. Challenges in predictive maintenance
– a review. CIRP Journal of Manufacturing Science and Technology,
40:53–67, 2023.
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