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Derivation of Einstein's spontaneous emission coefficient with Schrödinger equation and classical electromagnetism

The light-matter interactions are actually explained using the formalism of quantum electrodynamics. R. Boudet shown that there is no need to use series in quantum electrodynamics to explain the light-matter interactions but a more classical concept as a current inside the atomic shell that generates an electromagnetic field (a single photon). However this current has no classical analog and it is called in Boudet's theory the transition current, which has a relativistic and non-relativistic form, and it takes its origin in the probability current that we find in both Schrödinger and Dirac theory. In this paper, we will present the non-relativistic form of transition current theory using complex number algebra instead of real number like in Boudet's paper. This paper serves also as an easy introduction to the complex and consequent work of Roger Boudet and an opening to a much deeper concept of the reality of electron cloud dynamics for multi-electronic system.

Introduction

A non-stationary current circulating in a antenna produces an electromagnetic field. What if the photon from spontaneous emission are created by electron currents flowing inside the atoms ? That was the main idea that Boudet's developed in his work [START_REF] Boudet | On the relativistic calculation of spontaneous emission[END_REF]. He introduced however a difficult real number notation and that makes the understanding a bit hard. Here we will present a simple derivation of the Einstein's spontaneous coefficient starting from pure electromagnetism using a 0 vacuum permittivity µ 0 vacuum permeability reduced Planck constant q electron charge c speed of light a * conjugate of complex number a |a| module of complex number a b.c = j b j c j dot product of vectors b and c b 2 = b.b * squared norm of complex vector b Table 1: Used physical constants and mathematical notation generic transition current leading to the Poynting vector of the single photon electromagnetic field. Readers may then consult Boudet's textbooks to go even further [START_REF] Boudet | Relativistic transitions in the hydrogenic atoms[END_REF][START_REF] Boudet | Quantum mechanics in the geometry of space-time[END_REF].

The theoretical problem of spontaneous emission

In actual theory the spontaneous emission is the fact that an electron (or an atom) transit from an excited state |b (for some reason it has been excited to this level) to a lower energy state |a leading to an electromagnetic wave of energy E b -E a (eigenvalue energy of states |a and |b ).

The transition rate (in s -1 ) from state |a to |b is given by the Einstein spontaneous coefficient:

A b,a = q 2 ω 3 b,a r b,a 2 
3π 0 c 3 (1) 
An unclear derivation of this coefficient has been found with quantum electrodynamics (with Weisskopf-Wigner theory), with the divergence problem that we know. Moreover the theory does not provide the electromagnetic field produced by the transition. Here we will provide a clear and straightforward formalism, Schrödinger transition current and electromagnetism, to compute magnetic and electric field then to derive the Einstein's coefficient. This limits to the one-electron wave function but we will discuss the expansion of the concept for many-electrons system at the end of the paper.

Total charge conservation law

We take two scalar (Schrödinger) wave functions corresponding to two different single electron states Ψ a and Ψ b . We define the total "cross charge density" n(r, t) by (units C/m 3 ):

n(r, t) = q|Ψ a (r, t) + Ψ b (r, t)| 2 (2) 
Let us derive with respect to time:

∂ t n = q∂ t (Ψ a Ψ * a + Ψ b Ψ * b + 2Re(Ψ * a Ψ b )) (3) 
and using the product rule we have:

∂ t n = q (Ψ a ∂ t Ψ * a + Ψ * a ∂ t Ψ a + Ψ b ∂ t Ψ * b + Ψ * b ∂ t Ψ b + 2Re(Ψ * a ∂ t Ψ b + Ψ b ∂ t Ψ * a )) (4) 
The one-electron Schrödinger equation reads for each wave function:

i ∂ t Ψ a = - 2 2m ∆ + V (r) Ψ a (5) 
and the same for Ψ b . So we have for Ψ a (we must replace a by b to get it for Ψ b ):

∂ t Ψ a = i + 2m ∆ - V (r) Ψ a (6) ∂ t Ψ * a = -i + 2m ∆ - V (r) Ψ * a (7) (8) 
We compute:

Ψ a ∂ t Ψ * a + Ψ * a ∂ t Ψ a = i 2m (Ψ * a ∆Ψ a -Ψ a ∆Ψ * a ) = i 2m ∇. (Ψ * a ∇Ψ a -Ψ a ∇Ψ * a ) (9) 
with the same for Ψ b . Then the cross-term reads:

Ψ a ∂ t Ψ * b + Ψ * b ∂ t Ψ a = -iΨ a 2m ∆ - V (r) Ψ * b + iΨ * b 2m ∆ - V (r) Ψ a (10) 
and we obtain:

Ψ a ∂ t Ψ * b + Ψ * b ∂ t Ψ a = i 2m (Ψ * b ∆Ψ a -Ψ a ∆Ψ * b ) = i 2m ∇. (Ψ * b ∇Ψ a -Ψ a ∇Ψ * b ) (11) 
So we can rewrite equation (3) as:

∂ t n + ∇. (j a + j b + j a,b ) = 0 (12)
in a charge conservation law form with:

j a = i q 2m (Ψ a ∇Ψ * a -Ψ * a ∇Ψ a ) (13) 
j b = i q 2m (Ψ b ∇Ψ * b -Ψ * b ∇Ψ b ) (14) j a,b = q m Re [i (Ψ a ∇Ψ * b -Ψ * b ∇Ψ a )] (15) 
with j a , j b the probability current for state |a and |b and j a,b the probability transition current between states |a and |b [START_REF] Boudet | Relativistic transitions in the hydrogenic atoms[END_REF]. This current will serve as a source term to create the electromagnetic field (single photon) from the spontaneous emission due to the single electronic transition from |b to |a (with E b > E a ).

Classical electromagnetism

Introduction

Here we define the magnetic vector potential A b,a due to the electronic transition from |b to |a using the Maxwell equations (Coulomb's gauge for the potential):

1 c 2 ∂ 2 t -∆ A b,a = µ 0 j a,b (16) 
with ∆ vector Laplacian and j a,b the transition current from |b to |a . Using this expression we theoretically have access to the electric field E b,a , magnetic field B b,a and time average Poynting vector Π b,a of the single photon emission:

E b,a = -∂ t A b,a (17) 
B b,a = ∇ ∧ A b,a (18) 
Π b,a = 1 2µ 0 Re (E b,a * ∧ B b,a ) (19) 

Vector potential A b,a

We define each wave function as:

Ψ a (r, t) = Φ a (r)e -iEat/ (20) Ψ b (r, t) = Φ b (r)e -iE b t/ (21) 
And we choose for mathematical simplicity the complex notation of the transition current defined as (we do the same in classical electromagnetism like for an Hertzian antenna for instance):

j a,b = i q m (Ψ a ∇Ψ * b -Ψ * b ∇Ψ a ) (22) 
Replacing the wave functions by their values we obtain:

j a,b = i q m (Φ a ∇Φ * b -Φ * b ∇Φ a ) e iω b,a t (23) 
with ω b,a = (E b -E a )/ the single photon angular frequency corresponding to the energy difference. We can naturally choose the form of the vector potential as:

A b,a = α(r)e iω b,a t (24) 
because ω b,a is the photon frequency. Replacing into equation ( 16) we obtain:

∆ + k 2 b,a α(r) = i qµ 0 m (Φ * b ∇Φ a -Φ a ∇Φ * b ) (25) 
which is a vector Helmholtz equation with k b,a = ω b,a /c. We can solve it in free space using the appropriate Green's function:

α(r) = -iβ e -ik b,a r-r 4π r -r (Φ * b (r )∇ Φ a (r ) -Φ a (r )∇ Φ * b (r )) d 3 r (26) 
with β = qµ 0 /m and ∇ is the gradient for the variable r . Because r << r (atomic size infinitely small compared to observation distance from the atom) we can apply directly the far field approximation to get:

α(r) -iβ e -ik b,a r 4πr e ik b,a r .r/r (Φ * b (r )∇ Φ a (r ) -Φ a (r )∇ Φ * b (r )) d 3 r (27) 
Now we apply the dipole approximation because k a,b r << 1 for low energy radiation (otherwise we need to push further the expansion) we have: e ik b,a r .r/r 1 (28) so we get:

α(r) -iβ e -ik b,a r 4πr (Φ * b (r )∇ Φ a (r ) -Φ a (r )∇ Φ * b (r )) d 3 r (29)
and in an other notation:

α(r) = -iβ e -ik b,a r 4πr ( Φ b | ∇ |Φ a -Φ a | ∇ |Φ b ) (30) 
with:

f | ∇ |g = f * (r )∇ g(r )d 3 r (31)
Now we use the following property [START_REF] Cohen-Tannoudji | Mécanique quantique tome ii[END_REF]:

Φ b | ∇ |Φ a = - mω b,a Φ b | r |Φ a ( 32 
)
and we get:

α(r) = i mω b,a β e -ik b,a r 4πr ( Φ b | r |Φ a + Φ * a | r |Φ * b ) (33) 
We can check that

Φ * a | r |Φ * b = Φ b | r |Φ a
and we obtain:

α(r) = i mω b,a β 2π r e -ik b,a r Φ b | r |Φ a ( 34 
)
Replacing β by its value provides the vector potential:

A b,a = i qµ 0 ω b,a 2πr e ik b,a (ct-r) r b,a (35) 
with r b,a = Φ b | r |Φ a .

Electric field E b,a

By using definition of equation ( 17) we have:

E b,a = qµ 0 ω 2 b,a 2πr e ik b,a (ct-r) r b,a (36) 
and we notice that the polarization of the photon is given by r b,a .

Magnetic field B b,a

Using the definition (18) we have:

B b,a = ∇ ∧ A b,a = i qµ 0 ω b,a 2π ∇ ∧ e ik b,a (ct-r) r r b,a (37) 
Because k a,b >> 1/r, the derivatives can be approximated by:

∂ x e -ik b,a r r 1 r ∂ x e -ik b,a r = -ik b,a x r 2 (38) 
and is the same for y and z derivatives. So applying the curl (in Cartesian coordinates first) we obtain:

B b,a qµ 0 ω 2 b,a 2πcr 2 e ik b,a (ct-r) r ∧ r b,a (39) 

Poynting vector Π b,a

By definition of the Poynting vector we have:

Π b,a = E b,a * ∧ B b,a µ 0 = qω 2 b,a 2πr r b,a * ∧ qµ 0 ω 2 b,a 2πcr 2 r ∧ r b,a (40) 
and using µ 0 = 1/(c 2 0 ) we obtain:

Π b,a = q 2 ω 4 b,a 4π 2 0 c 3 r 3 r b,a * ∧ (r ∧ r b,a ) (41) 
Now we use the triple cross product to get:

Π b,a = q 2 ω 4 b,a 4π 2 0 c 3 r 3 r r b,a 2 -r b,a (r.r b,a * ) (42) 
The time-averaged Poynting vector is provided by equation ( 19):

Π b,a = 1 2µ 0 Re (Π b,a ) (43) 
that gives:

Π b,a = q 2 ω 4 b,a 8π 2 0 c 3 r 3 Re r r b,a 2 -r b,a (r.r b,a * ) (44) 

Radiated power and derivation of the Einstein A-coefficient

The radiated power P b,a of the electromagnetic wave is given by:

P b,a = 4π Π b,a .rrdΩ (45) 
with Ω the solid angle. Expressed in spherical coordinates that gives: and the cross terms vanish in the integration (i.e x b,a y * b,a terms) to obtain:

P b,a = q 2 ω 4 b,a 8π 
4π dΩ(r.r b,a )(r.r b,a * ) = 4π 3 r 2 |x b,a | 2 + |y b,a | 2 + |z b,a | 2 = 4π 3 r 2 r b,a 2 (50) 
We can now compute the radiated power:

P b,a = q 2 ω 4 b,a r b,a 2 3π 0 c 3 (51) 
We know that the Einstein coefficient A b,a is the spontaneous emission transition rate. So this should be linked to the energy of the photon ω b,a and its radiated power by:

P b,a = A b,a ω b,a (52) 
And we solve for A b,a to obtain:

A b,a = P b,a ω b,a = q 2 ω 3 b,a r b,a 2 
3π 0 c 3 (53) 
We find back the equation ( 1).

Conclusion

We can derive the expression of the Einstein spontaneous coefficient without referring to quantum electrodynamics divergent sums, just by using the Schrödinger equation and classical electromagnetism. The transition current, a conserved source with no classical analog (charge interference?), is an interesting quantity that allows us to derive the electromagnetic field from a single electronic transition. This gives more sens to the single electronic wave function, close to the Schrödinger's original idea: the reality of the electron cloud. Is it possible to reformulate quantum mechanics with real 3D space wave functions that will model electron cloud instead of multi-dimensional probabilistic-only wave function used in Hartree-Fock theory ? The density functional theory use fictitious mono-electronic wave function of 3D space to compute the ground state electronic charge density and has proven its efficiency for atomic, molecular and solid states computations. Could we consider quantum mechanical electronic state transitions as "real electron clouds dynamics", whether than probabilistic interpretation ?

2 0 c 3 r 2 2π 0 dϕ π 0 sin θdθ r 2 r b,a 2 -sin

 02 (r.r b,a )(r.r b,a * ) θdθ(r.r b,a )(r.r b,a * ) to expand the scalar product using spherical coordinates:r.r b,a * = r x * b,a cos φ sin θ + y * b,a sin φ sin θ + z * b,a cosθ(48)then we have: 4π dΩ(r.r b,a )(r.r b,a * ) θdθ|x b,a cos φ sin θ + y b,a sin φ sin θ + z b,a cosθ| 2 (49)
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