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Abstract. We describe a new general method for segmentation in MRI scans using Topological Data Analysis
(TDA), offering several advantages over traditional machine learning approaches. It works in three steps, first iden-
tifying the whole object to segment via automatic thresholding, then detecting a distinctive subset whose topology
is known in advance, and finally deducing the various components of the segmentation. Although convoking clas-
sical ideas of TDA, such an algorithm has never been proposed separately from deep learning methods. To achieve
this, our approach takes into account, in addition to the homology of the image, the localization of representa-
tive cycles, a piece of information that seems never to have been exploited in this context. In particular, it offers
the ability to perform segmentation without the need for large annotated data sets. TDA also provides a more
interpretable and stable framework for segmentation by explicitly mapping topological features to segmentation
components. By adapting the geometric object to be detected, the algorithm can be adjusted to a wide range of
data segmentation challenges. We carefully study the examples of glioblastoma segmentation in brain MRI, where
a sphere is to be detected, as well as myocardium in cardiac MRI, involving a cylinder, and cortical plate detection
in fetal brain MRI, whose 2D slices are circles. We compare our method to state-of-the-art algorithms.

Keywords. Topological Data Analysis · Segmentation · Computational methods in biology · Image processing
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Fig. 1: TDA segmentation overview: We demonstrate a simple concept for segmentation using Topological Data Analysis (TDA)
on three data sets. Each row focuses on a particular organ to segment, from top to bottom: the myocardium in ACDC, glioblastoma
in BraTS 2021 and cortical plates in STA. In each case, we are provided with a 3D MRI and aim at detecting a connected component
of a given topology. We automatically select components, as illustrated by the persistence diagram into the TDA column. Eventually,
through the strategies detailed in this article, we deduce a segmentation.
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1 Introduction
Motivation. Anatomical segmentation in Magnetic Resonance
Imaging (MRI) refers to the process of identifying and separating
different structures within an MRI scan of the body. It can be
performed by a computer algorithm, or a human operator using
specialised software. The algorithm or operator segments the scan
into different regions of interest, based on differences in image
intensity, shape and size.

A particularly well-studied case is that of glioblastoma, the
most common brain tumour, whose segmentation is commonly
divided into three classes: the primary tumour mass, its necrotic
contour, and the infected tissues. Other important examples in-
clude cardiac segmentation, where the myocardium is to be sepa-
rated from the ventricles, as well as cortical plate segmentation,
the embryonic precursor of the cortex. Having access to such seg-
mentations is essential for patient management, disease diagnosis,
risk evaluation, as well as treatment decisions [1–3].

To this end, several methods have been proposed, including
the U-Net architectures, that recently achieved excellent scores,
quantified by the Sørensen-Dice coefficient [4–6]. These meth-
ods, however, come with known limitations: their training re-
quires large annotated datasets, expansive to build, is prone to
over-fitting, and is oblivious to certain geometric properties of the
tissues, sometimes yielding anatomically impossible results.

Our contributions. In this paper, we convoke tools from Topo-
logical Data Analysis (TDA), namely persistent homology (PH),
to devise a novel algorithm for segmentation in MRI. It is divided
into three simple modules: (1) identification of the whole object
to segment, (2) detection of a particular subset via TDA, and (3)
deduction of the other classes of the segmentation. The second
step involves prior morphological knowledge, presenting a topol-
ogy that TDA can detect. We demonstrate our algorithm on three
segmentation problems: glioblastoma from brain MRI, for which
we take advantage of the spherical shape of the Enhancing Tu-
mor; cardiac segmentation from Cardiovascular Magnetic Reso-
nance Imaging (CMR), based on the cylindrical shape of the my-
ocardium; and cortical plate from fetal brain MRI, using the fact
that slices of cortical plate are composed of one or two circles.

Our algorithm addresses the common pitfalls of previously
reported methods. First of all, state-of-the-art deep learn-
ing algorithms—namely CNNs and U-Nets—, sometimes yield
anatomically unrealistic segmentations. This has been observed
in glioblastoma [7] or cardiac segmentation [5, 8]. By leveraging
tools from TDA, our algorithm is backed by theoretical guaran-
tees, ensuring the topological quality of the output segmentations.
Namely, the whole object is provably connected, and geometric
regions exhibit the correct topology (spherical, circular).

We note that incorporating topological constraints into neural
networks has already been considered, for instance in TopoNet
and TopoCP [9, 10]. These methods, however, share the second
issue faced by deep learning models: their training involves an
annotated dataset, requiring a highly trained specialist and hours
of process. Our method, on the other hand, needs no training set.
It merely consists in fitting an explicit morphological model.

We draw the reader’s attention to the fact that, differently from
other geometric methods, our algorithm is intrinsically topolog-
ical. As a consequence, it adapts to many different morpholo-
gies and is less sensitive to certain data acquisition errors. To
our knowledge, this is the first purely PH-based technique of seg-
mentation, i.e., not involving deep learning. Moreover, since the
algorithm consists of three simple steps, its outputs are highly un-
derstandable. This addresses the issue of interpretability, a crucial
property of data-driven healthcare, allowing clinicians to make in-
formed judgements [11].

In addition, our method has the potential to be generalized to
different datasets and segmentation needs. It can be adapted as
long as one of the regions of the segmentation presents a non-
trivial homology, that this region appears hyper-intense or hypo-
intense in the image, and that the other components are located
either inside or outside the region.

In summary, our main contributions are:

(i) The description of a novel TDA-based algorithm for seg-
mentation from MRI scans, that does not require any train-
ing data and produces directly interpretable results.

(ii) A study of the three modules composing the algorithm, and
their generalization to different biomedical contexts.

(iii) Its validation on three datasets: BraTS 2021 (glioblastoma),
ACDC (cardiac) and STA (fetal), along with a comparison
to state-of-the-art methods.

We stress that our method is not exempt from limitations. In
particular, its accuracy relies on the assumption that the input
MRI satisfies a topological model. For images that do not fall
under the hypotheses of the given model, our method is bound to
fail, and our results are significantly worse than other techniques.
By formulating a precise definition of the model, we identified
that a third of the BraTS database satisfies the hypotheses, with
scores approaching state-of-the-art. Besides, the images of car-
diac and fetal datasets consistently exhibit common characteristic
features, allowing us to seamlessly identify an appropriate topo-
logical model. This results in good segmentation scores as is.

Outline. The remainder of this paper is organized as follows.
Related works are described Section 2, both in the fields of AI and
TDA. We give in Section 3 a concise introduction to persistent ho-
mology for images, allowing to describe our methods in Section 4.
Experimental results are given in Section 5, where glioblastoma,
cardiac and fetal segmentations are respectively studied in Sec-
tions 5.1, 5.2 and 5.3. We gather additional comments in Section 6
and conclude in Section 7.

Code and data availability. The code for this project is fully
available on GitHub at https://github.com/antonfrancois
/gliomaSegmentation_TDA for anyone to use and contribute to.
We experiment on the dataset BraTS 2021, available under request
from http://braintumorsegmentation.org/, as well as
ACDC, available from https://www.creatis.insa-lyon.fr
/Challenge/acdc/, and STA from https://dataverse.ha
rvard.edu/dataset.xhtml?persistentId=doi:10.7910/
DVN/WE9JVR. In addition, some video animations, illustrating PH
on MRI, are gathered at https://www.youtube.com/playli
st?list=PL_FkltNTtklAxtaMrQB5UCbobxRsiw8sE.

2 Related works

Glioblastomas. In the domain of biomedical segmentation, a
significant effort has been made regarding glioblastomas. It is the
most common brain tumour, diffuse, of variable degree of aggres-
siveness, and whose medical prognosis is difficult to establish. Its
segmentation involves three regions: the peritumoral Edema (ED),
composed of invaded tissue; the Tumorous Core (TC), represent-
ing the primary tumour mass; and the Enhancing Tumor (ET),
usually the surgical target, along with the necrotic portions of the
tumour (see Fig. 2). The union of these classes is referred to as
Whole Tumour (WT), the entirety of the disease.

Accurate segmentation of glioblastomas is important for sev-
eral reasons. Firstly, it enables medical professionals to make in-
formed treatment decisions, such as the choice of surgical inter-
vention or radiation therapy, by providing a clear understanding
of the size and location of the tumour. Secondly, it is a valuable
tool for monitoring disease progression and evaluating the effec-
tiveness of treatment over time. Finally, glioblastoma segmenta-
tion is essential for the development of computer-aided diagnosis
systems, which have the potential to significantly improve the ac-
curacy and efficiency of many medical imaging algorithms [1].

In this context, the Center for Biomedical Image Computing
& Analytics of the Perelman School of Medicine run the Brain
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Tumour Segmentation (BraTS) challenge for ten years. In this ar-
ticle, we exploit data from BraTS 2021 [12–14]. The dataset con-
sists of 1251 MRIs, coming in four modalities: Native (T1), con-
trasted and enhanced (T1ce), T2-weighted (T2) and T2-fluid At-
tenuated Inversion Recovery (FLAIR), along with a “groundtruth”
segmentation for each patient. All imaging volumes were seg-
mented using the STAPLE fusion [15] of top-ranked BraTS 2020
algorithms [16–18], then refined manually by neuroradiology ex-
perts and approved by experienced neuroradiologists.

Although not systematically, the sub-regions of the segmenta-
tions present distinctive characteristics. ET exhibits increased sig-
nal intensity in T1ce modality, compared to healthy white matter;
TC typically appears hypo-intense in T1ce relative to T1; and WT
is typically distinguished by a hyper-intense signal in FLAIR. We
note the rare exception of the astrocytomas (IDH-mutant, 1p19q
non-codeleted) that present a T2/FLAIR mismatch [19]. As we
will present in Section 3, a hyper-intense region (resp. hypo-
intense) appears early in the sublevel sets of the image (resp. su-
perlevel sets), hence WT and TC can be identified via threshold
selection. This observation is at the basis of our method.

Fig. 2: Glioblastoma segmentations from BraTS 2021. Each row
contains horizontal MRI slices of the same patient, in modalities
T1, T1ce, T2 and FLAIR. TC in red, ET in orange and ED in blue.

Myocardium. In clinical cardiology, is it essential to measure
cardiac functions, such as strokes volumes, mass of the ventricles,
or thickness of the myocardium [2, 20]. These measurements are
commonly obtained from segmentated Cardiac Magnetic Reso-
nance Images (CMR), which are multi-slice 2D MRIs. The seg-
mentation task consists in three classes—myocardium (Myo), left
ventricular cavity (LV) and right ventricle (RV) (see Fig. 3).

In this paper, we will use the Automated Cardiac Diagno-
sis Challenge (ACDC) dataset [5], part of 2017 MICCAI-ACDC
challenge.1 It gathered 150 patients with diverse cardiac profiles
(normal subjects, systolic heart failure, dilated or hypertrophic
cardiomyopathy). The dataset contains, for each patient, two
CMR scans: one at end diastolic and one at end systolic phase.
The ground truth segmentations, encompassing myodardium, LV
and RV, were drawn and double-checked by two experts.

Fig. 3: Examples of coronal segmentation in the ACDC dataset.
The first image is a slice of a CMR at end diastolic phase, and
the second one the corresponding segmentation. Myocardium in
represented in orange, LV in red and RV in blue.

1ACDC data https://www.creatis.insa-lyon.fr/Challenge
/acdc/.

It must be noted that CMR segmentation involves specific chal-
lenges. The images are inherently noisy, due to the motion of the
heart, and present large variability from one patient to another.
Moreover, the myocardium is surrounded by tissues of similar in-
tensity, making its automatic segmentation delicate. This is visu-
alized on Fig. 3. On the good side, the left and right ventricu-
lar cavities, through which blood flows, appear significantly lumi-
nous, allowing for a relatively direct detection in superlevel sets.

Cortical plate. Several neurological deficits—such as ventricu-
lomegaly, responsible for schizophrenia, autism and epilepsy—
can be detected during fetal development [3]. In particular, the
correct maturation of the fetal brain can be observed through the
gyrification of the Cortical Plate (CP), the embryonic precursor of
cerebral cortex. From the tenth to the thirty-fifth gestational week,
the CP changes from a smooth surface to a highly convoluted one,
making its segmentation a difficult task (see Fig. 4).

Among the publicly available data, the Fetal Tissue Annotation
and Segmentation Dataset (FeTA) [6], led by the University Chil-
dren’s Hospital Zürich and the University of Zürich, gathered 50
manually segmented pathological and non-pathological fetal mag-
netic resonance brain volume reconstructions2, across a range of
gestational ages (20 to 33 weeks) into 7 diferent tissue categories
(external cerebrospinal fuid, grey matter, white matter, ventricles,
cerebellum, deep grey matter, and brainstem/spinal cord). A ver-
sion of this dataset is part of MICCAI 2021 challenge.3

Another dataset is the Spatiotemporal Atlas (STA) of [21].4 It
contains representations of the average fetal brain, at one-week
intervals between 21 and 38 weeks gestational age. These images
are obtained via diffeomorphic deformable registration of 81 T2-
weighted MRI scans of healthy fetuses. As opposed to the clinical
dataset FeTA, atlas data and segmentations are smoother and eas-
ier to work with, and will be employed in this paper.

Fig. 4: Examples of cortical plate segmentations in the STA
dataset. The rows contain sagittal slices of the same MRI, for
gestational week 21 (top), 30 (middle) and 38 (bottom).

AI-methods for segmentation. Early efforts in automatic seg-
mentation employed hand-crafted features engineering, along
with traditional machine learning methods. Among these, one
can find atlas-based segmentations, which utilize a representative
brain to propagate a segmentation on an unknown one [22]. Be-
sides, decision forests allow to classifying each pixel in an image
as belonging to one of the tissue types. It is employed by Zikic
et al. [23] for the segmentation of high-grade gliomas from multi-
channel MR images, by extracting tissue characteristic features in
the different channels. In addition, Conditional Random Fields
(CRFs) are a type of probabilistic graphical model that can be

2FeTA data https://www.synapse.org/#!Synapse:syn23747

212/wiki/608434
3FeTA MICCAI data https://www.synapse.org/#!Synapse:

syn25649159/files/
4STA data https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/WE9JVR
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used to model inter-pixel spatial relationships. It has been applied
to brain tumours by Wu et al. [24].

The rise of GPU processing capabilities has led to a shift in
focus towards deep learning for brain tumour segmentation. In
practice, to address such challenges, a multi-level segmentation
approach is often used. This involves first using a simpler method
to segment the image and then using a deep learning method to
refine the segmentation. For example, Islam et al. [25] propose
a four-step multilevel segmentation method. First, they perform
a common preprocessing/filtering phase. Then, they cluster the
MRIs using k-means clustering. Next, they use an optimal thresh-
old and watershed segmentation technique to segment the tumour.
Finally, they use a morphological operation to refine the segmen-
tation. Another approach consists in using a fusion of different
modalities. For example, Zhang et al. [26] propose to fuse FLAIR
and T2 images to improve the segmentation of the tumour bound-
aries. They then train a dense 2D-CNN using novel architectures
and loss functions. Finally, the Liu et al. [27] introduce a method
to solve the inter-class ambiguity problem in segmentation. This
problem occurs when the tumor and the surrounding tissue have
similar intensities. The authors propose to use a convolutional at-
tention network (CANet) to address this problem.

Driven by the BraTS competition, a growing number of deep
learning algorithms for tumour segmentation have been developed
since 2014. The winners of the most recent competition have all
employed such networks, which demonstrates the superior per-
formance of this approach when more data is available. In fact,
the eight selected teams of the BraTS 2021 challenge used deep-
learning techniques for segmentation, the most efficient ones be-
ing the ones using nnU-Nets architectures. The winning team had
Dice coefficients of 0.8835, 0.8878 and 0.9319 for the enhancing
tumour (ET), the tumour core (TC), and the whole tumour (WT)
respectively. The other teams got very similar scores (inter-study
variance being of order 10−2) [28–35].

Coronal and fetal segmentations are no exception: in the ACDC
challenge, nine out of ten participants implemented a CNN, most
of which U-Nets. At end diastolic phase, the best reported Dice
scores for myocardium, LV and RV are respectively 0.902, 0.946
and 0.968, obtained with an ensemble of 2D and 3D U-Nets [36].
The results for end systole are comparable. Similarly, most of the
twenty participants of the FeTA 2021 challenge proposed variants
of the U-Net architecture [37]. The best average Dice score re-
ported, over the seven classes, is 0.786. It is worth mentioning
another dataset, presented in Dou et al. [38], consisting of MRI of
57 fetuses, scanned in the 16–39 weeks gestational week range,
along with the manual segmentation of their cortical plate. The
authors attain, via a CNN-based architecture, a score of 0.87.

If deep learning is becoming the norm, they still need big an-
notated data sets, computationally costly to train, and produce
non-interpretable results—which is a problem in case of failure.
Among the attempts to solve the latter problem, Topological Data
Analysis (TDA) has been invested recently, as a mean to constrain
the topology of the outputs, as reviewed below. However, such
methods still rely on annotated data. The aim of this paper is
to propose a purely TDA-based algorithm, free from neural net-
works, opening the door to solving both problems.

TDA for MRI analysis. Topological Data Analysis (TDA) is
a field at the intersection of computational geometry, algebraic
topology and data analysis. It aims at capturing relevant geomet-
ric and topological information from datasets. Since its emergence
in the 2000s, it has been applied to a wide range of problems, from
medicine, physics, computer vision and machine learning, among
others [39–41]. We provide a short introduction to Persistent Ho-
mology (PH), TDA’s most popular tool, in Section 3, and refer
the reader to [42, 43] for an extended presentation. As far as this
section is concerned, it is enough to know that PH yields per-
sistence diagrams, which are summaries of the homology of the
image at different scales. They contain information relative to the
topological features present in the image: connected components,
1-dimensional cycles, or sphere-shaped objects.

One can distinguish three types of application of TDA to MRI

analysis. A first application consists in designing segmentation
by constraining their topology. This idea has been proposed first
in the context of CMR data by Clough et al. [44, 45]. In addi-
tion to the usual loss used to train a U-Net, the authors add a
topological loss, calculated using TDA. Based on a prior topo-
logical knowledge, the segmentation is constrained to be close to
a pre-defined shape. For instance, in the problem of segmenting
the myocardium and the left ventricle, the authors use the knowl-
edge that the myocardium is ring-shaped, achieving a mean Dice
scores of 0.899 and 0.906 in the ACDC dataset for myocardium at
end-diastole and end-systole respectively. The same idea has been
applied to the problem of placenta segmentation, knowing that it
forms one connected component with no holes [7, 46].

Another sort of topological loss has been proposed by Hu et
al. [9], under the name of TopoNet: instead of constraining the
persistence diagram to an explicit prior knowledge, the neural
network is trained to ensure that the persistence diagrams of the
images and their groundtruths are close. In the task of neuronal
membrane segmentation, where the first homology group H1 (1-
dimensional cycles) is relevant, they attain Dice scores compara-
ble to those achieved by U-Net, while exhibiting significantly su-
perior topological quality. This loss has been generalized to arbi-
trary homology dimension, and applied to cortical plate segmenta-
tion by de Dumast et al. [10, 47]. Their algorithm, called TopoCP,
is trained on the FeTA dataset. Applied on the atlas images of
STA, it yields a mean Dice score of 0.79± 0.05, while a simple
U-Net shows 0.77±0.05. Recent developments of this method in-
clude the use of Wasserstein distance to compare the persistence
diagrams [48], yielding a score of 0.7383, 0.8005, 0.8793 for ET,
TC and WT on BraTS 2019; the construction of a dictionary of
typical persistence diagrams in the latent space [49]; the addition
of topology-based weighting schemes [50]; and the joint regular-
ization of the neural network through anatomical priors [51].

As a second application, TDA can be used to identify the topol-
ogy of the components of the image. An example is given by
Qaiser et al. [52, 53] in the context of colorectal cancer tumour
segmentation, based on Hematoxylin and Eosin stained images.
The authors determine which patches of the images exhibit a tu-
mour via their persistent homology: infected patches correspond
to those that contain more holes and connected components. This
can be attributed to the fact that, in infected tissues, nuclei tend to
have atypical characteristics, irregular shape and size.

It is interesting to observe that in all the articles cited so far,
TDA is always used in conjunction with deep learning. This is
easily understood: the persistence diagrams are only used as ma-
chine learning features, compared between each others, or used as
is. This overlooks the fact that other information can be extracted:
points in persistence diagrams can be matched with subsets of the
image, through the notion of representative cycles. As already
exploited in image analysis, mapping pixels with elements of the
persistence diagram allows for purely TDA-based segmentation
methods [54,55], also applicable to point cloud data [56,57]. Our
algorithm leverages this idea, with the novelty that we do not only
consider PH in degree 0, as it is the case in these works, but also
the homology groups H1 and H2 (1- and 2-dimensional cycles).

As a last application of TDA, it can be a feature for other re-
gression of classification tasks. In this context, no topological
prior is known, and TDA is seen as an exploratory tool. When
provided as an input to statistical models, topological features
of brain MRI (such as Smooth Euler Characteristic Transform,
persistent entropy, or Betti Curves) enable personalized diagno-
sis and prediction of clinical outcomes in glioblastoma [58–60]
or Alzheimer’s disease [61]. In this context, the most common
features are the Persistence Images, used in hepatic tumor classi-
fication [62–64] and lung cancer survival prediction [65, 66].

For completeness, we stress that TDA is not only applicable
to images, but also to different structures, such as graphs, point
clouds, or real-valued functions. For instance, in [67] is built
a graph from FDG-PET brain scans, whose PH allows to iden-
tify patients with attention-deficit hyperactivity or autism disor-
der. Similar constructions have been used in the context of elec-
troencephalography brains signals [68, 69] or brain arteries net-
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work [70]. Last, it must be mentioned that TDA is a growing field,
with new methods still under development. The Decorated Merge
Trees, for instance, have been proposed recently in [71], including
a preliminary experiment with glioblastoma segmentations.

3 Background on TDA
This section serves as a self-contained introduction to persistent
homology (PH), the most popular technique of TDA. It is a the-
oretical framework that allows inferring the homology groups of
a dataset [72–74]. We will focus on cubical persistent homology,
the incarnation of PH for image data, and use brain MRIs as illus-
trations. We refer the reader to [75] for a thorough presentation of
homology, and [42, 43] for an extended introduction to TDA.

Homology. Many theories of homology exist, and we will con-
sider here a particular one: the singular homology with coef-
ficients in Z/2Z, the finite field with two elements (0 and 1).
It associates to any topological space X a sequence of Z/2Z-
vector spaces H0(X), H1(X), H2(X), . . . , called singular homol-
ogy groups. Instead of presenting their construction, which is
based on a combination of topology and algebra, we will explain
roughly what they represent. Given i ∈ N, and if the ith homology
group Hi(X) is finitely generated, which we will suppose, then it
admits a finite dimension, denoted dimHi(X), called the ith Betti
number of X . It carries topological information about X :

• dimH0(X) is the number of connected components of X .

• dimH1(X) is the number of “independent loops” in X .
It is equal to 1 for the circle, and 0 for the sphere.

• dimH2(X) is the number of “independent voids” in X .
It is equal to 0 for the circle, and 1 for the sphere.

Except for dimension 0, this list should not be treated as a formal
mathematical result, but only as heuristic interpretations.

In order to use homology in the context of images, one has
to transform them into topological spaces. This is easily done
when the image is binary, that is when it only has black and white
pixels. Let I : Ω → {0,1} be a binary image with domain Ω, and
consider the collection I−1({1}) ⊂ Ω of its black pixels. Seen as
a subset of Ω, this collection can be seen as a topological space,
hence its homology is well-defined. As an example, we represent
in Fig. 5 a 2-dimensional image, whose homology groups satisfy
dimH0(X) = 3 and dimH1(X) = 2.

Fig. 5: A 2d binary image, con-
sisting of three connected com-
ponents and two “holes”.

Filtrations. The aim of this work is to analyse MRIs. These
are 3-dimensional greyscale images, not binary, and there is no
obvious way to convert them canonically into topological spaces.
Therefore, homology theory cannot be used directly. In order to
circumvent this issue, we can follow the pipeline of persistent ho-
mology. The idea consists in building not one but a collection of
topological spaces, called a filtration. It is an increasing family
of binary images, denoted {It | t ∈ [0,1]}, indexed by a parameter
t ∈ [0,1]. Given a greyscale image I : Ω → [0,1], various popular
filtrations can be defined, such as the height, radial and density
filtrations, implemented in giotto-tda, or the sublevel and su-
perlevel sets filtrations, in cubical ripser and gudhi [76–78].
Our work is concerned with the last two filtrations.

For any t ∈ [0,1], let us define It as the set of pixels with inten-
sity at most t. It is a topological space—a union of cubes—, and
we have the relation Is ⊂ It for any s, t ∈ [0,1] such that s ≤ t. The
family {It | t ∈ [0,1]} is called the sublevel sets filtration. Note
that, since the image has values in [0,1], the parameter t parses
all the possible values a pixel can take, and the last image, I1, is

equal to the whole domain Ω. Similarly, if we define It as the set
of pixels with intensity at least 1− t, then we obtain the superlevel
sets filtration. Both filtrations are illustrated in Fig. 6, where I is
the T2 modality of a MRI of a healthy brain.

(a) Sublevel sets filtration

(b) Superlevel sets filtration

Fig. 6: Examples of filtrations on a heathly brain MRI.

Within a filtration, one can understand the parameter t as a tem-
poral value. The more t increases, the more pixels are added to
the image. In the case of the sublevel sets filtration, pixels of
low intensity are added first. In Fig. 6a, these are the pixels of
the background (filtration value t = 0). On the contrary, in a su-
perlevel sets filtration, pixels of high intensity are added first. In
Fig. 6b, we see that this corresponds to the ventricles and the grey
matter. In other words, the most luminous parts of the image ap-
pear the earliest in filtration. This idea will be used in Section 4
when devising a segmentation method for glioblastoma. Indeed,
on a FLAIR modality MRI, glioblastoma tends to be represented
by the pixels of the highest intensity, hence we expect the tumour
to be the first element to appear in the filtration. An illustration of
this phenomenon is given in Fig. 7 for a brain presenting a tumour.

Fig. 7: Superlevel sets filtration on a FLAIR MRI with tumour.
One observes that, at the value t = 0.3, only the tumour is present.

Persistent homology. The main objects of TDA, the persistence
modules, are obtained by applying the ith homology functor to
a filtration {It | t ∈ [0,1]}. This yields family of vector spaces
{Hi(It) | t ∈ [0,1]}. It is a purely algebraic object, which gathers
the homology groups of I at various scales. Actually, in a per-
sistence module, we can extract more information than just the
homology groups. Using the inclusion maps Is ↪→ It for s ≤ t, we
can “track” the evolution of the homological features. That is, we
are able to tell whether a cycle of Hi(Is) is still alive in Hi(It). The
interval on which a feature exists is called its persistence. In prac-
tice, one interprets cycles of large persistence as relevant features
of the dataset, and cycles of low persistence as noise.

The persistence of all the cycles is recorded in the persistence
diagram of the persistence module. It is a set of points of the form
p = (tb, td), with tb ≤ td , interpreted as a “homological feature”
born at time tb and dead at time td (see Fig. 8). To each point
of the persistence diagram corresponds a birth pixel pb, which
gives birth to a cycle (a new connected component, a new H1 cy-
cle, etc.), and a death pixel pd , which kills the cycle (merge the
component to another one, fill the H1 cycle, etc.). In particular,
in the H0 persistence diagram, there always is a point that “dies at
infinity”: it represents the connected component of all pixels.

There exists a duality between the persistence diagrams of the
sublevel and superlevel sets filtration of an image, allowing to
transform one into the other, via an explicit process [79]. Hence
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both contain the same information. In what follows, we choose to
work with the superlevel sets filtration, which is easier to interpret.

Representative cycles. Each point p = (tb, td) of the diagram
represents a cycle, born at tb and killed at td . In all the images It ,
with tb ≤ t < td , one is able to define a representative cycle, that is,
a subset that “identifies” the cycle. Formally, it is a singular chain
whose image in Hi(It) is the cycle. In the case of H0, the repre-
sentative cycle is unique, and simply is the connected component
of the pixel xb that gave birth to p. We will denote it CCtb(xb).

However, in higher degrees Hi, i ≥ 1, a particular difficulty
arises: the cycles are not uniquely localised. That is, several sets
of pixels may represent the same cycle. Moreover, their identi-
fication is a challenging computational task [80]. In this paper,
instead of computing a representative cycle, we will consider, as
a proxy, the connected component CCtb(xb) of the birth pixel. We
defer to Section 6 a discussion regarding potential extensions of
this strategy.

As an illustration, we provide in Fig. 8 the persistence diagram
of the superlevel sets filtrations of a 2D slice of a healthy brain.
We employ the SRI24 Altas as a normal human brain anatomy
standard reference [81]. The H0-cycles are represented as red
dots, and H1-cycles as blue dots. We stress that, in the follow-
ing section, we will consider the persistent homology of the full
3D image, and not only of its slices. We choose here to analyse a
2-dimensional slice for visualisation ease.

0

0

0.8

0.8

∞

Fig. 8: Persistence diagram of the superlevel sets filtration of a
2D slice of the SRI template (middle), identification of the top
H0-cycles (left) and representatives of the top H1-cycles (right).

One identifies on the figure three red dots significantly distant
from the diagonal. They correspond to connected components,
that evolve independently, without merging into each other. For
each of these persistent cycles, we consider the corresponding
point p = (tb, td) of the diagram, extract the pixel of birth, and
plot its connected component at time td . It represents the com-
ponent just before it merges with another one. We see that these
components are part of the grey matter, disconnected in this slice.

Similarly, four blue dots stand away from the diagonal, with
one point particularly off. In order to represent the correspond-
ing holes, we circled them on the figure, choosing arbitrary rep-
resentatives. We see that they correspond to the lateral and third
ventricles (again, disconnected in this slice).

4 Methods

We now describe our algorithm for segmentation in MRI. We start
with a brief overview, showing its ability to adapt to different seg-
mentation challenges. The following sections present the three
modules that make up the algorithm in greater detail. For the sake
of simplicity, we detail them on the glioblastoma problem only.

4.1 Overview
Model. Since our algorithm is based on TDA, it is worth giv-
ing the topological insights which support the method. It makes
use of two sorts of information: the intensity of the components
to segment, and their shape. The first piece of information is ex-
ploited through the fact that hyper-intense (resp. hypo-intense) re-
gions can be found in the superlevel sets (resp. sublevel sets) of
the image. As for the shape, it is used to detect the object on the
persistence diagram, via its homology.

Our method can be applied as long as there exists one com-
ponent of the segmentation, referred to as a geometric object,
whose homology is non-trivial, and which separates the compo-
nents from each other. Additionally, the union of all the compo-
nents called whole object, must appear hypo- or hyper-intense in
the image. More precisely, we assume that the ground truth seg-
mentation satisfies the following hypotheses:

(H1) The whole object is connected, has no holes, and appears
luminous in (a certain modality of) the image.

(H2) The geometric object has non-trivial homology, and appears
significantly luminous in (a certain modality of) the image.

(H3) Other components lie inside or outside the geometric object.

We deliberately formulate the model in a rather non-rigorous way,
since it only serves, for the moment, to guide intuition. The hy-
potheses will be made more precise in Section 5 for each dataset.
In the case of glioblastoma, we will quantify how many images
fall under them. As far as cardiac segmentation is concerned, we
will see that (H1) is not satisfied by the whole object but only some
of its components. We will adjust the algorithm accordingly. Last,
for the cortical plate, only (H2) will be used.

The three datasets considered in this paper have been presented
in Section 2. The glioblastoma (collection BraTS 2021), cardiac
(collection ACDC) and fetal segmentations (atlas SAT) respec-
tively consist of 3, 3 and 1 components. We stress that BraTS 2021
is the only dataset for which more than one modality is provided
(we make use of FLAIR and T1ce). Although not systematically
satisfied, we found that the components regularly exhibit common
characteristics, gathered in Table 1. We therefore choose, for the
role of the geometric object, the component TC in glioblastoma,
Myo in cardiac, and CP in fetal brains segmentation.

B
ra

T
S

TC ET ED

hyper (FLAIR)
hypo (T1ce)

hyper (FLAIR)
hyper (T1ce)
sphere-shaped

hyper (FLAIR)
hypo (T1ce)

A
C

D
C Myo LV RV

hypo-intense
tubular-shaped hyper-intense hyper-intense

SA
T

CP
hypo-intense
sphere-shaped in 3D
circular in slices

Table 1: Characteristics shared by most of the images, for each
dataset and each component of the segmentation. Columns in-
dicate the component label, its typical intensity (hypo- or hyper-
intense), and its expected topology (in blue), if any.
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Structure of the algorithm. It is naturally split into three steps,
which will be further explained in the next sections. Let Ω be the
domain of the MRI, I : Ω → [0,1] the image, and denote by Xwhole
and Xgeometric ⊂ Ω the whole object and the geometric object.

Module 1: Identification of the whole object (Section 4.2) According
to (H1), the image shows a hyper-intense area, correspond-
ing to the union of the segmentation components. Conse-
quently, Xwhole can be found in a superlevel set It of the im-
age. The parameter is identified through an analysis of the
curve t 7→ #It of the number of active voxels at time t.

Module 2: Detection of the geometric object (Section 4.3) Following
(H2), the component Xgeometric of the segmentation has a
distinctive homology (that of a sphere, cylinder or circle),
hence corresponds to a persistent H2-cycle in the persistence
diagram. Thus, we compute the persistent homology of the
superlevel sets filtration of I restricted to the whole object
Xwhole obtained above and select the most persistent cycle
(in H2 or H1). By denoting pb and tb as the voxel and time
of birth of this cycle, we define Xgeometric as its connected
component CCtb(pb). Illustrations are given in Fig. 1.

Module 3: Deduction of the other components (Section 4.4) To ob-
tain final segmentation, we consider the whole object Xwhole,
from which we remove Xgeometric. This binary image can
be partitioned into connected components. We identify the
other components according to whether they belong inside
or outside Xgeometric, as suggested by the hypothesis (H3).

Notations. In order to detail precisely these modules, we
choose, in the next sections, to focus on the glioblastomas only.
We remind the reader that, in this case, two modalities of MRI are
employed, and the corresponding images will be denoted IFLAIR
and IT1ce : Ω → [0,1]. As suggested in Table 1, IFLAIR will be
used in Module 1, and IT1ce in Module 2. The geometric object is,
in this case, the component ET. The three components of the seg-
mentation are denoted XET, XTC and XED. They are subsets of Ω.
By whole tumour or global segmentation, we refer to the subset
XWT = XET ∪XTC ∪XED. Throughout these sections, we will use
as running examples a few MRIs from the collection BraTS 2021.

4.2 Module 1: Identification of whole object
Selection of the superlevel set. In this first step, we wish to se-
lect the largest hyper-intense region present in the FLAIR image,
supposedly corresponding to XWT. To achieve this, we analyse the
number of voxels in the filtration over time, starting from t = 1 and
moving to t = 0. While the number of voxels increases steadily,
we anticipate a sharp increase, precisely when the voxels corre-
sponding to the white and grey matter get included. By selecting
a t just before this event, we obtain a reliable estimation of XWT.

More precisely, let t 7→ #It
FLAIR be the map that indicates the

number of voxels of intensity not lower than t, and t 7→ d#It
FLAIR

is its derivative, computed by finite difference. Moreover, we
fix a positive real number dt threshold, treated as a parame-
ter. We then identify t as the first value, starting from 1, for which
d#It

FLAIR exceeds dt threshold. Once the optimal value of t
has been selected, we define XWT as the largest connected compo-
nent of It

FLAIR (i.e., that containing the most voxels). We draw the
reader’s attention to the fact that this procedure is reminiscent of
classical binarization algorithms, such as Otsu’s method.

The procedure is illustrated in Fig. 9, where are represented
the map t 7→ #It

FLAIR and its derivative, alongside the correspond-
ing brightest components. On the right, one sees that the se-
lected component is close to the ground truth, with a Dice score of
0.9523. In this experiment, we set the value of dt threshold to
be the area under the curve. This choice, although arbitrary, yields
good results, and will be used throughout the rest of this article.
Potential improvements will be discussed in Section 6.

Fig. 9: Identification of XWT via Module 1. Left: the map
t 7→ #It

FLAIR in blue and its derivative in orange, with axes located
respectively on the left and right side. Right: Superposition of
the estimated segmentation with the ground truth. Green areas
correspond to a correct match, red areas to false positives (voxels
identified but not in the ground truth segmentation), and blue to
false negatives (ground truth voxels not selected).

Refinement: filling the holes. We perform a post-processing
step on the segmentation XWT, which consists of filling its holes,
as suggested by (H1) of our model. More precisely, this is
achieved by computing the connected components of the binary
image Ω\XWT, discarding the background, and adding them to X .
In practice, we use the function ndimage.binary fill holes
of scipy [82]. From a biomedical point of view, we observed
that the presence of holes in XWT is often caused by the necrosis,
which occasionally appears darker on FLAIR images.

4.3 Module 2: Detection of geometric object
For the second step, we will use the image IT1ce, as well as XWT
computed previously, to obtain the enhancing tumour XET. Ac-
cording to (H2), this component is the boundary of the tumourous
core and is highly intense in IT1ce. Hence, using a superlevel sets
filtration, we expect to see a sphere, formed by the boundary of the
tumour, and represented by a cycle in the H2-persistence diagram.

More precisely, this procedure is automatized as follows. First,
we compute the persistent homology of the superlevel sets filtra-
tion of the image IT1ce restricted to XWT. Then, we select the
H2-feature of highest persistence, that is, the point (tb, td) of the
diagram that maximizes |td − tb|. Let xb ∈ Ω be the voxel that
gave birth to it. Following our strategy outlined in Section 3, we
identify XET by taking the connected component of xb in the bi-
nary image Itb

T1ce. We draw the reader’s attention to the fact that
this component may not be a representative cycle of the homol-
ogy class—it only contains one. We have found that this strategy,
which is particularly easy to compute, gives correct results.

An example is given in Fig. 10, still using the same data as in
Fig. 2. On the diagram, one green point appears particularly far
away from the diagonal: it is the persistent cycle we are looking
for. The resulting segmentation can be seen on the left, presenting
a Dice score of 0.9047. In practice, we compute persistent homol-
ogy with cubical ripser [77], for it appeared to run the fastest
among TDA libraries for 3D images.

Fig. 10: Persistence diagram of IT1ce restricted to XWT, with top
H2-cycle circled (right), and the resulting segmentation XET (left).

7



4.4 Module 3: Deduction of components
We now aim to identify the components XTC and XED. This last
step does not depend on the initial MRI, but only on the subsets
XWT and XET estimated previously.

Following the hypothesis (H3), TC corresponds to the part of
the tumour that lies inside ET, and ED to the part that lies out-
side ET (and still within XWT). In order to identify these parts, we
consider the subset XWT \XET—the complementary of ET in the
whole segmentation—, and compute its connected components.
Note that we may have more than two connected components. The
outer component is identified as that containing the background,
and its restriction to XWT is saved in XTC. The others are consid-
ered inner and are added to XED.

The resulting segmentation of our running example is visual-
ized in Fig. 11. This is a successful case, presenting the Dice
scores of 0.94, 0.90 and 0.89 for EC, ET and ED respectively.

Fig. 11: BraTS2021 full segmentation. On the middle image,
green means that the segmentation is correct, orange means that
the tissue was mislabeled but is part of the tumour, and in red the
tissues that should not have been segmented.

5 Results
This section is concerned with the application of our algorithm,
described in Section 4, to three segmentation challenges. We start
with glioblastoma from the BraTS 2021 database (Section 5.1),
for which the algorithm can be used as is. We then turn to cardiac
segmentation in the ACDC dataset (Section 5.2), which calls for
a slight adaptation of Module 1. Two versions are proposed: ei-
ther segmenting the myocardium based on the whole 3D CMR, or
working slice by slice. Last, we segment the fetal plate in the STA
atlas (Section 5.3), considering only a 2D approach.

5.1 Glioblastoma segmentation
Dataset. For our first segmentation task, we focus on glioblas-
tomas, employing the BraTS 2021 dataset presented in Section 2.
The segmentation is made of three classes (TC, ED and ET),
whose union is referred to as WT. To perform the segmentation,
we use our algorithm described in Section 4.

As a pre-processing step, we applied to all the images a 0-1 nor-
malization. In addition, we found that best results were obtained
with a Gaussian blur of standard deviation σ = 1, and a binary
dilation with a 3D ball of radius 3. We used the implementations
gaussian filter and grey erosion of scipy.ndimage.

The state-of-the-art methods and the winners of BraTS2021
segmentation challenges, are all U-Net [28–35]. We trained a
conventional U-Net model on all four modalities available in the
BraTS2021 dataset and achieved consistent scores compared to
those reported in the literature when restricted to the test set. We
recognize that evaluating a neural network on the same dataset
it was trained on may not provide an accurate representation of
its true performance. Nevertheless, we consider this a suitable
benchmark for its peak performance. While this approach may
not fully favour our Persistence Homology solution, we consider
the U-Net scores as an upper bound on the accuracy achievable
by these types of methods. Moreover, it’s crucial to note that we
will be comparing our traditional algorithm, which utilizes only
two modalities (FLAIR and T1ce), against the U-Net, which lever-
ages four. The aforementioned U-net consists of four Encoder and
Decoder layers, inputting and outputting data from a bottleneck
layer. Each encoder layer consists of two 3D convolution layers,
followed by instance normalization. A Leaky ReLU activation is
applied, and 3D max-pooling is utilized to decrease spatial resolu-
tion. Each decoder layer begins with upsampling, followed by two
3D convolution layers, instance normalization, and Leaky ReLU
activation. If a residual connection is feasible, features from the
corresponding encoder are concatenated before convolution.

Scores. We applied our algorithm to the whole collection of
MRIs of BraTS 2021, consisting of 1251 images. For each im-
age, we computed the Dice coefficient for each segmentation class
(TW, TC, ED and ET), between our result and the segmentation
provided by the specialists. The results are gathered in Fig. 12.
We recall that the Dice coefficient between two binary images
X ,Y : Ω →{0,1} is defined as

Dice(X ,Y ) =
2#(X ∩Y )
#X +#Y

.

By inspecting the boxplots, we observe that the results seem
correct for the whole segmentation (mean value approximately
0.711±0.283) but relatively poor for TC, ED and ET (respectively
0.369±0.358, 0.477±0.306 and 0.457±0.305). In comparison,
the scores of U-Net are respectively 0.868±0.123, 0.73±0.282,
0.821±0.154 and 0.815±0.202.

One can take a closer look at the images where the algorithm
performs poorly in Fig. 13b, which reveals low scores are mainly
attained by images that do not satisfy the model we introduced
in Section 4. We observed that either the enhancing tumour does
not surround the necrosis, or only partially, forming a perforated
sphere. In both cases, the algorithm cannot partition the domain
into the interior and exterior of ET, leading subsequently to an
incorrect estimation of the other components of the segmentation.
We examine this question further below.

Validation of the model. In order to evaluate the importance
of the morphological model, we restricted the analysis to only a
subset of images, those that satisfy the Hypotheses (H1) to (H3)
described in Section 4. Formally, we consider images such that:

(H1’) XTW consists of one connected component, or potentially
more, the other ones being 10 times smaller. Moreover, XTW
is at most 50 times larger than XTC. Also, the most intense
voxel of the whole tumour in FLAIR belongs to XTC or XET.

(H2’) After 3 binary dilations, XET divides the space into two con-
nected components. Moreover, the most intense voxel of the
whole tumour in T1ce belongs to XET.

(H3’) Applying a binary dilatation to XTC (resp. XED) yields new
pixels of which at least (resp. at most) half belongs to XET.
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Fig. 12: Boxplots of the Dice coefficients on segmentations of the BraTS 2021 dataset, for the four regions WT, TC, ET and ED, in
four scenarios: respectively for the whole dataset (1251 MRIs) and segmentations of our method (PH) and U-net, and on the restricted
dataset satisfying the model (390 MRIs, 31% of the dataset) with our method and U-net.

(a) Cases where the model is valid (b) Cases where the model is not valid

Fig. 13: Results of our algorithm, in cases where the model is valid or not. On each row, from left to right: an image of modality
FLAIR, of modality T1ce, the segmentation provided by the specialists and the segmentation we obtained with both U-Net and the PH
method along with a comparison (green indicating well segmented, orange for mislabeled and red otherwise).

We point out that the values of 10 and 50 in (H1’) are arbitrary,
chosen to represent a non-significant component. Besides, the 3
binary dilations in (H2’) have been chosen so as to avoid the ef-
fects of “thin-edged” tumors, that form an open sphere. This point
will be discussed further in Section 6 (see Fig. 19). Last, the hy-
pothesis (H3’) is to be understood as weakening of the properties
of being “inside” or “outside” of XET. Indeed, a connected com-
ponent within ET is expected to have all its boundary voxels in
contact with ET, while a connected component outside of ET is
expected to have at least half its boundary voxels out of it.

We computed that 390 out of 1251 images satisfy the as-
sumptions (31.2%). The Dice coefficients of the segmentations
restricted to these images are presented in Fig. 12. One sees
that, in this case, segmentations are of higher quality: the mean
scores for the WT, TC, ED and ET are respectively 0.788±0.229,
0.591 ± 0.317, 0.612 ± 0.267 and 0.658 ± 0.241. In compari-
son, U-Net attains 0.9 ± 0.08, 0.874 ± 0.13, 0.842 ± 0.133 and
0.884±0.087. In conclusion, our method, while not reaching U-
net scores, comes close to a subset. Furthermore, the segmen-
tations obtained are, qualitatively, of good quality, as we study
below. It is worth noting a significant discrepancy between the
mean and median values, equal to 0.873, 0.717, 0.713 and 0.746
respectively.

Qualitative evaluation. Overall, most of the output produced
by our method yields biologically plausible segmentations, as ex-
emplified in Fig. 13a. Notably, in the second row, our method
accurately captured fine details of the tumour outline, and in all

four examples, all labels were correctly identified.
Several cases can cause our algorithm to fail, all falling outside

the scope of our hypotheses. Examples of these cases are shown
in Fig. 13b. In the first row, the tumour in the FLAIR image is
not hyper-intense. Therefore, the selection of the entire tumour
failed, resulting in a very poor final segmentation. In the three
other rows, the first step was successful, but the labelling was in-
correct. In the second row, the hyper-intense component is not a
sphere but a ball (with no hole), so Module 2 selected the wrong
component. In the third row, the ET was correctly selected, but
the produced segmentation was open, lacking a topological inte-
rior or exterior, causing Module 3 to fail. Finally, in the last row,
the T1ce image is hypo-intense at the tumour location, making it
difficult to select ET. As can be seen, our method and U-Net pro-
duced similar predictions for ET. This error, like in the third row,
caused Module 3 to fail.

While U-Net frequently attains higher Dice scores, our method
still delivers very comparable results. When comparing the mean
Dice scores of both approaches, we observe that our method out-
performs or matches U-Net in 47.56% (595 out of 1251 cases)
across the entire dataset, with the whole-tumour (WT) segmen-
tation performing better than individual labelling. (Our method
surpasses U-Net for WT 410 times, ET 147 times, TC 207 times,
and ED 96 times out of 1251 images. The mean of the mean Dice
score for these images is 0.83±0.14).

On the data subset where images satisfy our hypotheses, the
frequency at which our method outperforms or is equivalent to
U-Net on at least one label rises to 37.79% (147 out of 390). No-
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tably, our method outperforms or is equivalent to U-Net 100 times
for WT, 61 times for ET, 63 times for TC, and 38 times for ED.
These promising results suggest that our method is approaching
the precision level of a U-Net model.

We can also report a couple of occurrences where a part of the
brain was occulted for some reason. In these cases, while the
shape of the inferred segment was plausible, the outlines were
leaking, while our method gave a satisfactory response. More-
over, similarly to what was mentioned in [12, §2.1.5], both U-Net
and PH commit several common errors. For example, as the ves-
sels within the edematous area are hyperintense, they end up la-
belled ET or ED when they are close to the tumoural region. Also,
white matter hyperintensities are sometimes identified as tumours,
as can be seen in Fig. 13b(first row).

5.2 Cardiac segmentation
Dataset. We now turn to the task of segmentation of my-
ocardium (Myo) and left/right ventricles (LV and RV) from CMR
data, based on the ACDC dataset [5]. It is a collection of 300 CMR
scans, two for each of the 150 patients, at end-systolic (ES) and
end-diastolic (ED) phases. In the context of the MICCAI-ACDC
2017 challenge, 100 patients were reserved for training the mod-
els, and 50 for testing. We point out that U-net architectures show
very good scores in this context. The best team in the challenge
obtained 0.899 as the lowest Dice score, over all three classes and
the two end phases [36]. We aim to investigate whether our per-
sistent homology-based methodology also performs well. Since
our algorithm requires no training, we will only consider the 100
testing images (two for each patient).

As a pre-processing step, we applied to all the images a 0-1
normalization and a Gaussian blur (σ = 1.5 in 2D, and 2.5 in 3D).

Adaptation of the method in 2D. In order to adapt our algo-
rithm in Section 4 to cardiac segmentation, two specific issues
must be addressed. First, the whole object—union of the my-
ocardium and the two ventricles— presents heterogeneous inten-
sity and hence cannot be selected as a whole via Module 1. Be-
sides, the myocardium forms a cylinder, which is topologically
equivalent to a circle. Therefore, detecting the homology of a
cylinder in the persistence diagram will not yield global informa-
tion. In order to solve these issues, we will start by devising a 2-
dimensional version of our algorithm, i.e., working slice by slice.
In slices, the myocardium forms a circle, and only the first issue
remains. We shall study a 3D solution in the next paragraph.

Given a slice I : Ω → [0,1], and as already visualized in Fig. 3,
both ventricles appear hyper-intense, and the myocardium hypo-
intense. Moreover, the latter is surrounded by structures that are
equally weak in intensity, making it impossible to estimate the
union myocardium/ventricles by a simple selection of superlevel
sets. In order to circumvent this issue, we propose to first detect
LV, then RV, and eventually deduce the myocardium.

To start, the left ventricle is to be found as a connected compo-
nent of a superlevel set of the slice. However, a number of other
objects are hyper-intense, hence are also present in these level sets.
We thus propose a localized form of Module 1: given a pixel x∈Ω

with intensity I(x), we consider t ∈ [0, I(x)] 7→ #CCt(x), the map
that computes the number of pixels in the connected component
of x in the binary image It . Just as in Section 4.2, the deriva-
tive t 7→ d#CCt(x) is expected to present a peak precisely when
the whole object has been formed, and starts to connect to others.
Thus we define t as the last value in [0, I(x)] such that d#CCt(x)
is greater to the parameter dt threshold. Last, we associate to x
the binary image CCt(x).

In order to apply this localized variation of Module 1, we are
left with detecting a pixel x that belongs to LV. This is done by
computing the H0-persistence diagram of the superlevel sets of
I, and selecting the most persistent N points, where N is chosen
equal to 10 in our experiments. Next, for each of these N points
we consider the pixel that gives birth to the topological feature,
and compute the corresponding connected component CCt(x).

We eventually select the the component that is the most “disk-
shaped”. Indeed, as visualized in Fig. 14, slices of the left ven-
tricle tend to be spherical. In practice, we measure sphericity as
follows: we consider the minimal enclosing disk D of CCt(x), and
compute the Dice similarity between these binary images. Our
segmentation of LV is chosen as the component CCt(xLV) that
minimizes this quantity.

Fig. 14: Visualization of segmentation of LV. For each of the
ten most persistent H0-features of the slice, we estimate the corre-
sponding connected component via Localized Module 1, and se-
lect the one that is the most disk-shaped (label 0 here). The closest
component, labelled 7, is used as a segmentation of RV.

Once LV has been segmented, we find RV as the connected
component, obtained by the localized Module 1, generated by the
birth pixel xRV whose connected component CCt(xRV) is the clos-
est to that of LV. As a last step, and in order to also cover the
myocardium, we dilate the component of LV until it reaches RV.
We will use the union of these components as our segmentation of
the whole object.

Based on the segmentation of the union, one applies Module
2 as is, selecting the most persistent cycle in the H1-persistence
diagram, whose connected component is associated to the my-
ocardium. Module 3 is employed to conclude the segmentation,
defining the interior as LC and the exterior as RV. Before present-
ing the scores we obtained this way, we propose another strategy,
taking into account the 3-dimensional image directly.

Adaptation of the method in 3D. The first step of the method
described above directly translates in the 3-dimensional setting:
by defining I as the whole CRM, and not a slice, one considers the
H0-persistence diagram of its sublevel sets, select a few top points
of the diagram, compute the corresponding connected components
of their birth pixels, and identify LV as the component the most
“cylindrical”. For the sake of simplicity, we measure the cylindri-
cality of a binary image via the mean value of the sphericity of
its slices, where sphericity has been defined in the previous para-
graph. Just as it is the case in dimension 2, the most cylindrical
component corresponds, most of the time, to the grountruth loca-
tion of LV. As before, RV is segmented as the component whose
birth pixel is the closest to that of LV, and the whole object is ob-
tained by dilating LV until reaching RV.

Next, when we come to apply Module 2, we face an issue. The
myocardium, that we wish to extract through persistent homology,
has the homotopy type of an (open) cylinder. However, from a
homological point of view, a cylinder have trivial group H2. Cap-
turing the cycle in H1, which has dimension 1, would not help to
identify the cylinder, since a representative of this cycle could only
be a 1-dimensional subset of it. This issue is solved by artificially
adding a slice of pixels of value 1 at the top and the bottom of the
CMR, thus transforming the cylinder into a sphere. Module 2 is
applied to select the most persisting feature in the sublevel sets of
I, restricted to the union segmentation, whose representative con-
nected component is our segmentation of the myocardium. The
ventricles are then identified via Module 3.
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Fig. 15: Boxplots of the Dice coefficients on segmentations of the ACDC dataset, for the four regions: whole object, myocardium, left
ventricle (LV) and right ventricle (RV), using our 2- our 3-dimensional algorithm, and restricted to end diastolic (ED) or end systolic
(ES) phases. Furthermore, “oracle step 1” denotes the same methods, but fed as an input the exact segmentation of the whole object.

Scores. As one sees from the Dice scores gathered in Fig. 15,
the 2D version of the algorithm performs better than 3D. For
instance, at end-diastolic phase, we obtain, with 2D, the scores
0.701± 0.156, 0.486± 0.156, 0.565± 0.221 and 0.752± 0.157
for the classes whole object, Myo, LV and RV respectively. In
contrast, the 3D version yields 0.484 ± 0.201, 0.332 ± 0.175,
0.324± 0.229 and 0.478± 0.235. This discrepancy could be ex-
plained by the fact that CMR images are not exactly imaging
methods favourable to 3D analysis. Indeed, resolution along the
vertical axis is low (10 axial slices). We will clarify this point in
the next paragraph.

We note that, for both methods, mean scores in ES are lower
that ED. For instance, with the 2D algorithm, the scores on end-
systolic images are 0.528±0.297, 0.29±0.221, 0.331±0.329 and
0.62±0.324. This phenomenon is also observed in the literature,
for U-Net methods. As a matter of fact, the most difficult class
to segment, RV at ES, is considered as a delicate task, even for
experimented observers [5].

In addition to the scores of our algorithm, Fig. 15 contains,
under the name “oracle step 1”, the result of our method when
the whole object is given as an input. In other words, these re-
sults are not representative of what we can achieve right now,
but the best results that can be expected, if we improved Mod-
ule 1, or use an other efficient method. With the 2D version, re-
markable scores are obtained. At ED, one reads 0.805± 0.069,
0.898±0.103 and 0.918±0.041 for Myo, LV and RV; at ES, it is
0.82±0.053, 0.852±0.127 and 0.832±0.095. These prospective
results, which, it should be remembered, were only obtained us-
ing topological ideas and without training, highlight the potential
of TDA for biomedical image segmentation.

Validation of the model. In the context of the ACDC dataset,
we propose to reformulate the Hypotheses (H1) to (H3) as follows:

(H1’) The whole object consists of one connected component.
(H2’) Xmyo divides the space into two connected components.
(H3’) The inner component of Xmyo contains XLV.

These hypotheses can be either understood axial slice by axial
slice for the 2D version of the algorithm, or globally, for the 3D
version. As it turns out, among the 300 CMR images of the whole
collection (both phases ED and ET considered), 81.33% verify the
hypotheses in 2D, and only 11% in 3D. As a matter of fact, most
of the images do not satisfy (H2’) in 3D. Fig. 16 illustrates the
issue: the vertical resolution is so low that “gaps” appear when
moving from one axial slice to another. As a correction, one can
apply a binary dilation to Xmyo. For instance, if chosen of radius
3, then the proportion of images satisfying (H2’) raises to 69%.
However, applying numerous dilations reduces segmentation pre-
cision. In our experiments, we chose not to apply dilations.

Fig. 16: Left: Superposition of the groundtruth segmentation of
the myocardium in two consecutive axial slices (red and pink) at
ES phase. Right: Several coronal slices, with myocardium in red.

5.3 Fetal cortical plate segmentation
Dataset. Our third segmentation challenge is that of cortical
plate in fetal brain MRI. As discussed in Section 2, popular
datasets include FeTA and STA [6, 21]. The latter does not con-
tain actual MRI but average images, obtained by diffeomorphic
deformable registration. They are consequently smoother than the
originals, and we choose to work with those for simplicity. The
STA collection consists of a 3D image for each gestational week
between 21 and 38. In this context, the task consists in identifying
the cortical plate only—it is a segmentation with a single class.

Up to our knowledge, two articles used STA as a test dataset for
segmentation of cortical plate: TopoCP [10], announcing a mean
Dice score of 0.70, followed by an improvement of 0.79 in [47].
In both cases, authors train a neural network on the FeTA dataset,
and use STA as a way of measuring its generalization on new data.
We will use the latter score as a reference.

In our experiments, we applied to each image a simple prepara-
tion, consisting of a 0-1 normalization, a Gaussian blur of standard
deviation σ = 0.5, as well as a dilation of radius 1.

Adaptation of the method in 2D. The cortical plate being the
only class to identify, we expect to only use Module 2 of our
method. However, as visualized on Fig. 1, it forms a perforated
sphere, opened at the level of the cerebellum. Consequently, the
homology groups of the cortical plate are all trivial, and it can-
not be detected with our method. In order to circumvent this
issue, one could modify the image to produce the apparition of
homology—for instance by “closing” the sphere, as we did with
the myocardium in 3D. Instead, we suggest a different strategy:
we study the image slice-by-slice, in the coronal plane.

As it can be observed on Fig. 4, slices are of three types: the
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cortical plate forms either (i) one circle, (ii) two disjoint circles or
(iii) an open circle. These cases are identified by inspection of the
persistence diagram, as follows.

• We consider the sublevel sets filtration of the slice, and com-
pute its H1-persistent homology.

• Next, we discard points of the diagram that correspond
to implausible segmentations. This is done by identify-
ing the corresponding connected component, and checking
that the hole it encloses has a number of pixels included in
[Nmin,Nmax]. In practice, we found that the values 25% and
75% of the slice are suitable.

• Last, we select the earliest born from the remaining points.
We identify that the slice belongs to type (ii) if there exists
another point of the diagram at distance at most ε , where
ε = 0.03 is a fixed threshold, and type (i) otherwise. Slices
of type (iii) are treated as if they were of first type.

The segmentation is eventually defined as the connected compo-
nent corresponding to the selected point(s) of the diagram: one
point for type (i) and (iii), and two points in type (ii). As described
in Module 2, the components are defined as that of the birth pixel
at birth time.

Scores. Over the whole STA collection of 18 images, and com-
pared with the ground-truth segmentation, we obtained a mean
Dice score of 0.69. Fig. 17 contains the scores as a function of
the gestational age (in weeks). One observes that scores decline
over time, corresponding to the fetal plate becoming increasingly
coiled. This phenomenon is observed in [47, Fig. 11]. Compared
with the score of 0.79 obtained in the aforementioned article, one
could consider our scores as correct.

21 23 25 27 29 31 33 35 37
Gestational week

0.4

0.6

0.8

Di
ce

Fig. 17: Evolution of the Dice scores for segmentation of cortical
plate on the STA dataset, as a function of the gestational week.

Validation of the model. Since our task of fetal brain segmen-
tation only involves one class, the cortical plate, only the second
hypothesis of our model in Section 4.1 is relevant. Remembering
that, in coronal slices, the cortical plate is expected to form one or
two circles, we propose the following reformulation:

(H2’) In a cortical slice, the fetal plate divides the plane into sev-
eral connected components. After removing the background
and the components of cardinal lower than a hundredth of
the slice, exactly one or two components remain.

We computed that, averaging over the whole collection of 18 im-
ages, 56.95% of the non-empty cortical slices verify the hypothe-
sis. As a matter of fact, the faulty slices can be divided into two
types, visualized in Fig. 18. Either the cortical plate consists of
several convex components, as it is the case in the top and bottom
slices, or it forms an open circle, as observed in the middle slices.
Although not studied further in our work, special attention could
be paid to these slices, in order to improve the scores.

6 Discussion and potential improve-
ments

Representative cycle identification. Let I : Ω → [0,1] be an
image, and X ⊂ Ω a geometric object. In our experiments on

Fig. 18: Cortical slices of a fetal brain from the STA atlas, with
segmentation of cortical plate indicated in orange. On sees that in
the first, middle and last slices, the CP has trivial H1-homology: it
forms convex components, or it is an open circle.

glioblastoma or myocardium 3D, X is a sphere, and in the case of
myocardium 2D or fetal plate 2D, it is a circle. At the core of our
approach, in Module 2, we suppose that X corresponds to a point
in the ith persistent diagram of I, where i = 1 or 2. Say p = (tb, td)
is the point of the persistence diagram, and pb is its birth pixel.
In order to go back from the diagram to the image, we identify
X as CCtb(pb), the connected component of pb in the superlevel
set Itb . However, this method does not guarantee that CCtb(pb)
has the correct homology, i.e., that it represents a singular chain
whose homology class in Hi(Itb) is the selected homology class.
In particular, it may not be a sphere or a circle. Indeed, CCtb(pb)
only contains the singular chain as a subset. In this article, we’ve
settled for this method, for the sake of simplicity, and because it
produced convincing results.

As a matter of fact, identifying a representative cycle is a cur-
rent problem in TDA, that faces two difficulties, as reviewed in
[80]. First, representative cycles are not uniquely defined. It is
thus common to add an extra condition, such as minimizing the
number of 1-simplices [83,84], the volume (number of “enclosed”
2-simplices) [85], the diameter of the chain [86], or minimal with
respect to a fixed lexicographic order on the simplices [87]. Sec-
ondly, finding optimal representative cycles is a computationally
expansive task. From a formal point of view, it has been shown
that certain formulations of the problem are NP-complete [86,88].
In practice, it is time-consuming, on the order of several hours
for reasonably large data [85, Table 1]. Up to our knowledge,
only two available libraries implement this task: OptiPersLP5 for
edge-minimal cycles [84], and homcloud6 for volume-minimal
cycles [89]. Including these computations will be the object of
future works.

Preprocessing. Presently, in our three experiments, we opted
for a simple pre-processing strategy, including: an affine 0-1 nor-
malization, a slight Gausian blur and a dilation of the image.
In our research efforts, however, a comprehensive exploration
and testing were conducted to identify the optimal preprocessing
pipeline. Various methods, including simple, local, and patch-
wise normalization, pixel-wise equalization and noise reduction
techniques (such as SUSAN and Non-Local Means), as well as in-
tensity enhancement approaches, were rigorously examined. Sur-
prisingly, these methods not only failed to enhance the results but,
in some cases, even worsened them. We believe that the issue is
twofold, the first reason lying in the significant variability of the
images. Indeed, these preprocessing steps enhanced segmentation
scores only for a certain number of images. Further research is
needed to identify an algorithmic criterion to decide on the rele-
vance of applying a specific preprocessing step. For example, in-
creasing the contrast of an image may help better select the edges
of a connected component corresponding to a tumour. However,
in some cases, the tumour exhibits an intensity gradient that re-
sults in the absence of well-defined edges, leading to the improper
selection of the threshold t in Module 1, and erroneous segmenta-
tion. The second problem, when it comes to pre-processing data,
is that TDA can react very differently to certain transformations,
as discussed below.

First, it is worth noting that monotone bijective transformations
of the pixels have little effect on TDA. Indeed, given such a map
f : [0,1]→ [0,1], and an image I : Ω → [0,1], then the persistence

5OptiPersLP https://bitbucket.org/remere/optiperslp/
6homcloud https://homcloud.dev/
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diagram Diag( f ◦ I) of the transformed image f ◦ I, for sublevel
or superlevel sets filtrations, is equal to the transformed diagram

f ◦Diag(I) =
{(

f (tb), f (td)
)
| (tb, td) ∈ Diag(I)

}
.

In particular, points of large persistence remain so, as long as f
does not disturb too much the values. Clearly, it is the case for 0-1
normalization. This remark also holds for our Module 1, since it
uses, as unique information, the number of pixels in level sets.

On the opposite, TDA is highly sensitive to local transforma-
tions, such as blurring or enhancement. This is because topo-
logical features—such as connected components, or higher di-
mensional cycles—can be formed or destroyed with the addi-
tion or deletion of a pixel only. This can be seen from the sta-
bility theorem of persistent homology [90]: given two images
I,J : Ω → [0,1], the bottleneck distance between their persistence
diagrams is upper bounded by the sup norm between the images:

dbottleneck
(
Diag(I),Diag(J)

)
≤ ∥I − J∥∞.

Unlike the Euclidean norm between images, the sup norm can be
significantly altered by a single pixel.

On the bright side, this also means that these local transforma-
tions can “help” TDA to identify geometric objects. We exem-
plify this idea in Fig. 19, using a slice of an MRI from the BraTS
2021 dataset. We consider the T1ce modality and restrict the im-
age to the segmentation of the whole tumour. As provided in the
dataset, the image is noisy, thus the corresponding persistence dia-
gram contains many points. Applying a light Gaussian blur (stan-
dard deviation σ = 0.5) allows for the number of features: a few
connected components (blue points), provoked by isolated bright
pixels, disappear, and H1-cycles (orange points) get filled earlier.
However, the circle drawn by the tumour’s contour (ET) is not
seen clearly on the diagram. This is because the tumour is open—
one sees dark pixels at the bottom left—, thus the whole circle
only forms late in the filtration. This is remedied via a dilatation
(of radius 3), allowing to “close” the tumour, and resulting in the
detachment of a point from the noise, in H1.

Raw image After blurring ( = 0.5) After dilation (r = 3)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

H0
H1

0 0.2 0.4 0.6 0.8 1

H0
H1

0 0.2 0.4 0.6 0.8 1

H0
H1

Fig. 19: Effect of local transformations on the superlevel sets per-
sistent homology of a MRI. Left: A slice of a T1ce-modality MRI
from BraTS 2021 is restricted to the whole tumour, and its persis-
tence is computed. Middle: Applying a Gaussian blur allows to
reduce the number of points in the diagram, that were artifacts of
the noise. Right: After dilation, the tumour contour is closed, and
a H1-persistent cycle appears far away from the diagonal.

Improvement of Module 1. Our first module really is a simple
automatic thresholding method, reminiscent of Otsu’s. The dif-
ference lies in the fact that Otsu’s method binarizes the image by
thresholding it at a single intensity value, and outputs the binary
image as is. This can result in many small-intensity islands, which
are not desirable in our applications. Our method, on the opposite,
selects in this binary image the largest connected component.

We point out that Module 1 has the disadvantage of setting the
threshold by using global information, while what we seek is a
precisely localized object. Indeed, as described in Section 4.2,
the threshold is defined as the first peak of the curve of number
of pixels in the level sets. In the case of glioblastoma, which
are consistently the brightest component in FLAIR modality MRI,
this approach was sufficient (see Fig. 9). Cardiac MRIs, however,
contain several components of similar brightness (see Fig. 14).
We circumvented this issue in Section 5.2 by defining a Localized
Module 1, fixing a pixel x∈Ω as an additional input, and counting
the number of pixels in the component of x only. In order to find
the correct input pixel, we chose the birth pixels of the most per-
sistent H0 cycles, and selected the one that yielded, via Localized
Module 1, the most “spherical” connected component.

Among the improvements that could be implemented in Mod-
ule 1, one thinks of using information other than just the num-
ber of pixels. In the BraTS collection in particular, for which
our method yields a Dice score of 0.711 (see Fig. 12), we have
observed that several tumours display a heterogeneous intensity,
with border blending with the surrounding tissue. In this context,
an improvement could consist in first estimating the boundary of
the tumour, via edge detection techniques, and secondly select-
ing a threshold consistent with the edges. Initial attempts have
shown, however, that tumour boundaries are not regular, and can
have large gradient differences from one side to the other.

Refining the models. Module 1, when applied on glioblastoma
or myocardium segmentation, is purely homological: it selects in
the persistence diagram the most persistent H2-feature, and returns
its connected component. However, in the context of fetal plate,
our experiments have shown that this procedure is insufficient; we
finally opted for the feature that encloses the most pixels. Ar-
guably, this sort of geometric information could be incorporated
in the first two problems.

On brain MRI, for instance, one could think of selecting H2-
features based on their adequacy with a geometric model of the
tumour, in the manner of a template registration. Such a regis-
trations techniques have been applied successfully to other struc-
tures of the brain [91]. However, one would soon come up against
the problem of variability of the tumors: they come in different
shapes and sizes. As a matter of fact, only 25% of the BraTS 2021
database satisfies the simple model we proposed in Section 5.1.
This calls for the creation of an atlas of tumour topologies, en-
abling homological profiling, and adaptation of the model for each
case.

Combination with U-Net. Although this paper argued for a
segmentation algorithm free of neural networks, both technolo-
gies may be combined. We have reviewed in Section 2 how TDA
has already been incorporated in neural networks, through “topo-
logical losses”. They either work by matching the obtained persis-
tence diagram with a reference diagram [9, 45], or by computing
statistics from the diagram [53]. We remind the reader that, in ad-
dition to the diagram itself, our approach employs the localization
of the topological features inside the image. We envision intro-
ducing this spatial information in a neural network in two ways.

First, we remind the reader that our algorithm relies, through
Module 2, on the selection of a persistent cycle, from which we
deduce the connected component of the geometric object. This
cycle is selected as that maximizing the persistence, in the case of
glioblastoma and cardiac, or that maximizing the inner volume in
fetal brains. However, and as it is visualized in Figs. 14 and 19,
the obtained persistence diagrams often consists of many points,
with several away from the diagonal, making the selection of a
point a delicate task.

For the second idea, one could think of introducing our esti-
mation of components in the architecture of a U-Net itself. This
would have the benefit of a warm-start for the training. In addi-
tion, it would as well constrain the segmentations to prescribed
topologies, an important feature, already attempted in the above-
mentioned works.
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7 Conclusion
This study explored further the potential of Topological Data
Analysis for medical image segmentation, by utilizing not only
persistence diagrams information but also the cycle localisations.
Capitalizing on its train-free nature and interpretable results,
our modular algorithm design facilitates integration into existing
pipelines and adapts to diverse applications.

Through detailed examples on different datasets, we used that
the segmentation problem can be decomposed into two subtasks:
organ localization and labelisation. We demonstrated that our
segmentations, with a relatively simple topological model, can in
some cases, achieve the precision of a U-Net.

For data with relatively low variability, such as myocardium
segmentation, a single TDA-based module can achieve compara-
ble performance to state-of-the-art methods. However, for more
complex and variable data, such as cancer segmentation, a hybrid
approach combining TDA with statistical analysis may be neces-
sary.

Overall, our work highlights the versatility and potential impact
of TDA in medical image segmentation, paving the way for further
development and clinical applications.
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