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Highlights

Evaluation of a headphones-fitted EEG system for the recording of

auditory evoked potentials and mental workload assessment

Simon Ladouce, Max Pietzker, Dietrich Manzey, Frederic Dehais

• The present findings demonstrate the feasibility of recording P300 ERP
using a headphone-mounted mobile EEG system with sponge-based
EEG sensors.

• The signal-to-noise ratio obtained at midline electrodes (placed over
the connecting frame) was su�cient to extract average ERP features
allowing to statistically discriminate workload conditions.

• In contrast, P300 ERP were not captured by sensors placed around-
the-ear.

• The classification of mental workload based on the ERP response to
target stimuli between condition pairs attained an accuracy ranging
between 80 and 87%.
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Abstract

Advancements in portable neuroimaging technologies open up new opportunities
to gain insight into the neural dynamics and cognitive processes underlying
day-to-day behaviors. In this study, we evaluated the relevance of a headphone-
mounted electroencephalogram (EEG) system for monitoring mental workload.
The participants (N=12) were instructed to pay attention to auditory alarms
presented sporadically while performing the Multi-Attribute Task Battery
(MATB) whose di�culty was staged across three conditions to manipulate
mental workload. The P300 Event-Related Potentials (ERP) elicited by the
presentation of auditory alarms were used as probes of attentional resources
available. The amplitude and latency of P300 ERPs were compared across
experimental conditions. Our findings indicate that the P300 ERP component
can be captured using a headphone-mounted EEG system. Moreover, neural
responses to alarm could be used to classify mental workload with high
accuracy (over 80%) at a single-trial level. Our analyses indicated that the
signal-to-noise ratio acquired by the sponge-based sensors remained stable
throughout the recordings. These results highlight the potential of portable
neuroimaging technology for the development of neuroassistive applications
while underscoring the current limitations and challenges associated with the
integration of EEG sensors in everyday-life wearable technologies. Overall,
our study contributes to the growing body of research exploring the feasibility
and validity of wearable neuroimaging technologies for the study of human
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cognition and behavior in real-world settings.
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1. Introduction

In recent years, a growing interest in studying human cognition and its neural
correlates in unrestricted, real-life contexts has pushed neuroimaging research
methods beyond laboratory walls [1, 2, 3]. The development of mobile
brain and body imaging research methods (MoBI) [4, 5] aims to address
longstanding critiques made toward exceedingly controlled experimental setups
limiting the ecological validity of cognitive neuroscience research [6]. Indeed,
it has been argued that the artificial nature of traditional lab-based experimental
settings (presentation of abstract stimuli to which participants are instructed
to respond by performing prototypical behaviors) places individuals in decontextualized
situations and restricts their agency [7]. Over the span of the last decade, the
operationalization of this paradigm shift toward increasingly more ecologically
valid research has prompted innovations in hardware (e.g., miniaturization
of sensors) and software (i.e., data processing and analysis) solutions [8, 9]
as well as conceptual adjustments (scalable research design [10]) o↵ering
new opportunities for both basic and applied research [5, 11]. Following
the emergence of MoBI research methods, studies have shed light on brain
dynamics underlying walking [12, 13], navigation [14] and allocation of attention
[15, 16, 17] during real-world behavior. As of today, laboratories have shrunk
to smartphone size [18, 19] and innovative MoBI appliances are being developed
to further extend research horizons.

The development of MoBI methods is directly in line with the field
of Neuroergonomics research (or the ”study of the brain at work”, [20])
which aims to understand the brain during unrestricted real-world tasks and
in everyday life contexts” [21]. As an interdisciplinary field, it combines
knowledge and methodologies from neuroscience, psychology, human factors,
and computer sciences into one collective stream of research whose results
hold the potential to benefit a wide range of domains such as safety [22],
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workplace safety [23] and health [24, 25]. A major topic in Neuroergonomics
pertains to the characterization of neural correlates of mental e↵ort during
the execution of complex tasks and actions in natural environments [26, 27,
28, 29]. Building such understanding of brain activity related to mental
workload could be leveraged to inform monitoring systems that can dynamically
adapt human-machine teaming to overcome cognitive limitations of the user.
This ongoing research has been addressing the conceptual and theoretical
aspects through an accumulation of empirical evidence using state-of-the-art
laboratory methods. As aforementioned, the translation of these findings
into real-world applications necessarily involves the adoption of minimally
invasive MoBI systems. The capacity of such systems for recording high-
quality neurophysiological data without interfering with human operators’
behaviors is a critical and challenging feature to attain. The meaning of non-
invasiveness quality implies the optimization of di↵erent dimensions of user
experience such as comfort and discreetness to ensure initial engagement with
the technology but also long-term retention. An elegant solution has been
proposed under the form of concealed electrodes placed inside the outer ear
and on the concha [30, 31] and in-ear-recordings [32, 33, 34, 35]. Rather than
inside the ear, some authors achieved success in developing small, soft, curved
electrode systems that can be integrated into the auricle [36]. Others [37, 38]
proposed a semi-circular electrode array placed around the ear and obtained
viable signals for EEG analysis in both time and frequency domain [39]
even under realistic settings [40, 41]. This approach allows comfortable and
unobtrusive acquisition of high-quality EEG signals over prolonged periods.
Although the grids can be used over several recording sessions, their setup
requires the contribution of an external expert to a�x the electrodes around
the ear appropriately which is a time-consuming procedure [42]. Another
approach to acquiring brain activity during real-world behaviour inconspicuously
can be found in fitting generic wearables (such as eyeglasses, caps, and
headphones) with EEG sensors [43].

However, the use of these mobile devices poses new challenges in terms
of handling the additional noise that inevitably contaminates EEG signals
recorded during naturalistic behaviours (implying an increased proportion of
motion-related artefacts) taking place in realistic settings (additional environmental
sources of noise). Previous benchmarking studies have provided useful insight
into the tradeo↵s related to various technical characteristics of mobile EEG
systems such as the electrode type used (e.g., wet versus dry) [44], minimal
spatial coverage required to capture EEG features [45], or even head cap
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design [46]. The sensitivity of such devices to cognitive e↵ects must be
assessed under realistic conditions [39]. Empirical testing, benchmarking,
and evaluation of new mobile EEG devices represent an important step from
conventional and cumbersome systems to a fully portable and diverse toolbox
of neuroimaging solutions [47]. As part of an iterative development process,
it is therefore critical to identify and report limitations and shortcomings
of such miniaturized EEG systems to inform the future designs of e↵ective
mobile neuroimaging methods [48].

The present study aims to evaluate the validity of a headphone-mounted
EEG system for the recording of neural signatures of auditory attention
during complex tasks. This system allows for simultaneous EEG signal
acquisition and auditory stimulus presentation. Although not limited to it,
the design of the assessed system appears particularly suited for consumer,
clinical, and research applications aiming to record and interpret neural
signatures of auditory processing. Indeed, the location of the electrodes
around the ear (temporal recording sites) makes this device a particularly
promising solution to record brain responses to auditory stimuli (referred
to as auditory evoked potentials). Auditory evoked potentials comprise a
complex of successive Event-Related Potential (ERP) components. Amongst
these components, the well-documented P300 ERP is a positive deflection in
the EEG around 300ms following the onset of visual and auditory stimuli.
While earlier components may be evoked by both task-related and distracting
sounds alike (reflecting early sensory processing), the P300 ERP is observed
in response to surprising and or task-relevant stimuli. The P300 ERP component
has consequently been linked to cognitive processes involved in higher-order
functions such as attention and memory [49, 50, 51]. A common paradigm
used to evoke P300 ERPs is the auditory oddball paradigm, where participants
are instructed to discriminate rare target sounds (oddballs) within a series
of repeated and irrelevant frequent sounds. Time-locked EEG activity to the
presentation of auditory stimuli reveals distinct and reliable P300-characteristics
for target vs non-target stimuli [52, 53, 54], with strongest amplitudes typically
observed over parietal and central areas [55]. Recent studies have demonstrated
that the P300 ERP could be e↵ectively recorded using in-ear and around-
the-ear EEG [38, 30, 56, 57]. The P300 ERP component has been extensively
used as a proxy measure of cognitive workload in research protocols incorporating
the P300 ERP elicitation paradigm [58, 59, 60, 61, 62]. The amplitude of
P300 ERP reflects the proportion of cognitive resources allocated to the
processing of auditory stimuli from a limited pool of resources [58, 28, 62].
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Based on the limited pool of attentional resources theory [63, 64, 65], an
increase in primary-task demands will require additional resources at the
expense of resources allocated to a secondary task. This reallocation of
attentional resources is reflected by a decrease of P300 ERP amplitude in
response to stimuli related to the secondary task [66, 67, 68, 69].

The present study aims to assess the feasibility of recording the event-
related potentials (ERPs) to auditory stimuli to measure cognitive workload
using a headphones-fitted EEG device. Using a repeated measures experimental
design, task di�culty will be staged across three conditions to manipulate
mental workload. For this purpose, a classic single-task oddball counting
condition will be contrasted with a dual-tasking and a multitasking condition.
The tracking and two other perceptual-cognitive subtasks (system monitoring
and resources management) from the multi-attribute task battery (MATB)
[70] were selected to increase task demands. Based on previous findings,
the P300 amplitude observed in the single-task condition is expected to
be attenuated when participants are performing a secondary tracking task
simultaneously (dual task) [66]. Furthermore, it is hypothesized that further
increasing task di�culty by adding two additional subtasks (the multi tasking
condition) would lead to further decrements in P300 ERP amplitude [71].

2. Material and Method

2.1. Participants

Twelve participants (three female; nine male) aged between 21 to 42 years old
(M = 24.8, SD = 5.8) took part in the experiment. The call for participants
was performed by advertising the study on the university’s website and
by placing posters around the campus. All participants had normal or
corrected-to-normal vision, were free of sensory and motor impairments,
were not following a psychoactive pharmacological treatment, and declared
no history of neurological or psychiatric conditions. EEG data from one
participant had to be dismissed due to large portions of missing data. The
study was approved by the ethics committee of the University of Toulouse
(CER approval number 2020-334) and conducted according to the principles
expressed in the Declaration of Helsinki. Participation was voluntary and
neither compensated by money nor participation hours. All participants
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gave their written informed consent prior to the study.

2.2. Experimental Design

The study followed a within-subject design with task di�culty as an independent
variable manipulated across three conditions (single, dual, and multitask
conditions). The P300 ERPs elicited by the presentation of auditory oddball
stimuli were recorded across all three conditions. The order of experimental
conditions was counterbalanced across participants using a Latin square
design to control for potential training and fatigue e↵ects. The datasets of
one participant had to be excluded from further analyses due to substantial
portions of missing data throughout the recording.

2.3. Task and stimuli

In single-task experiments, manipulation of mental workload is commonly
achieved through variations of working memory load (e.g., using N-back tasks
[72]), task complexity (e.g., increasing sensory input by adding distracting
information [73]) or overall task di�culty (e.g., altering simulated flight
conditions [74]). An alternative approach lies in varying the number of
simultaneous tasks to be performed at once [71]. This latter solution was
preferred for the present study as it would allow assessing the validity of
the Smartfones system for the recording of EEG signals as the number of
simultaneous tasks increase, providing better insight into the capabilities of
such a system for ecologically valid research.

2.3.1. MATB Task

The Multi-Attribute Task Battery (MATB) was used as a primary task.
The MATB provides a highly modular framework in which subtasks can be
presented independently or simultaneously. Each subtask has been designed
to target a range of sensory processes and to involve di↵erent cognitive
functions [70]. The source code is open-access and provides the experimenter
with full control over task parameters [75]. In its classic configuration, the
MATB comprises a monitoring task, resource management, target tracking,
and radio communication subtasks which are analogous to tasks performed by
the cockpit crew during real flights. Its e↵ective implementation alongside a
secondary auditory oddball task has been demonstrated in previous research
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on mental workload [73, 59, 76]. Following the implementation described in
[76], the radio communication subtask was removed from the environment
to avoid auditive cluttering and contamination of the electrophysiological
responses to auditory oddball stimuli. The task environment, as presented
in the experiment, is shown in 1.

2.3.2. Auditory Oddball Task

The auditory oddball paradigm in which infrequent target tones are presented
amongst frequent non-target tones was used as a secondary task. The auditory
oddball paradigm had already been used as a secondary task to provide
proxy measures of mental workload in previous studies within the context of
air tra�c control [77], driving [78], and real-flight operations [22, 79]. In all
conditions, a randomized sequence of high (2000 Hz) and low (1000 Hz) pitch
tones, sampled at 44100 Hz, was presented using Psychtoolbox [80] functions
running on MATLAB (The MathWorks, Natick, USA) programming framework.
The probability of occurrence was set to a ratio of 1:4 for target and non-
target tones, respectively. The stimulus duration was set to 100 milliseconds
with an inter-trial interval of one second plus a random jitter (ranging from
0 to 1000ms) to counter habituation e↵ects [81]. A total of 300 tones (60
targets and 240 non-target stimuli) were played in each condition to ensure
a su�cient number of trials for ERP analyses and classification performed at
single-trial level [82, 83]. The participants were instructed to silently count
the number of auditory oddball tones presented and report their count at
the end of each condition.

Figure 1: Screenshot of the three experimental conditions: single-task (auditory oddball

only), dual-task (oddball + tracking task), and multi-task (auditory oddball + MATB).
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2.4. EEG recording

The Smartfones EEG system (mBrainTrain, Belgrade, Serbia) is equipped
with a total of 11 sponge-based electrodes along with a reference and a
ground electrode concealed within the earcups and the connecting frame
of the device (see 2). All electrodes (L1, L2, L3, L4, R1, R2, R3, R4, C3,
C4, Cz) were used for EEG signal acquisition and were online referenced to
the integrated reference electrode located at the bottom of the left earcup at
the left mastoid recording site 2. The signal was amplified (Smarting PRO
amplifier, mBrainTrain) and recorded at a sampling rate of 500Hz. Prior to
the experiment, the small sponges that connect the lowered electrodes with
the scalp (referred to as sponge-based electrodes) were soaked in a saline
solution for an hour. and were then inserted into the electrode shafts. The
headphones were carefully placed to ensure participants’ comfort and that
the Cz-electrode was positioned in accordance with the international 10-20
layout [84]. The height of the earcups was then adjusted to make sure that
both ears were covered by the speakers.

Figure 2: (A) Smarting Smartfones EEG device by mBrainTrain (Belgrade, Serbia).

The headset is fitted with sponge-based electrodes. (B) Schematic representation of the

Smartfones montage that includes 11 EEG recording sensors (green circles), a reference

electrode positioned on the left mastoid recording site (blue circle), and the ground

electrode placed on the right mastoid (black circle).
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For each condition, event markers associated with the auditory stimuli
presented were synchronized to the continuous EEG recordings using the
LabStreamingLayer (LSL [85]) framework and stored under an xdf-file format.

2.5. Procedure

Upon arrival, participants were briefed about the procedure, tasks, and
equipment used for the experiment. The participants then gave their written
informed consent by filling out a terms and conditions agreement form. Prior
to undertaking the EEG setup procedure, subjects were first introduced to
the auditory oddball task and the MATB controls through a tutorial lasting
for about 15 minutes. The experimenter ensured that the participants could
clearly hear both types of tones by adjusting the headphone’s volume based
on participant feedback. All the individual subtasks were trained individually
before performing them simultaneously in the final stage of the training
phase. At the end of the training, performance measures were displayed
and reviewed by the experimenter to check if the instructions and controls
had been understood and answer any questions the participants may have.
The participants were then prepared for EEG data acquisition following a
preparation protocol specific to the use of sponge-based electrodes. The
skin around the participants’ ears was cleaned using an alcohol wipe to
remove dirt and sebum that would occlude skin conductance. Measurement
of scalp midlines, from nasion to inion and left to right pre-auricular points,
were carried out to identify the anchor point for the central electrode (Cz).
Following the headphones setup, EEG signal quality and impedance were
checked using the Smarting Streamer software (mBrainTrain, Belgrade, Serbia).
Subjects were instructed to abstain from large or rapid movements during
task performance and were given the opportunity to take short breaks in
between conditions.

2.6. EEG Processing and P300 ERP Feature Extraction

Data processing was performed with the EEGLAB toolbox [86] written in
MATLAB (The MathWorks, Natick, USA). In the first step, the continuous
data was downsampled to 250 Hz and subjected to a Finite Impulse Response
(FIR) band-pass between 1 and 30 Hz with a filter order of 16500 and
a -6dB cut-o↵. The filtered data was then epoched with a time window
ranging from -200 ms to 1000 ms around experimental event markers. The
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epoched data was baseline corrected (subtractive method) using the mean
activity recorded over the prestimulus interval (200ms preceding stimulus
onset). The ERP waveforms were computed by averaging single trials for
each condition and stimulus type. The P300 ERP amplitude was extracted
by averaging activity recorded between the 250 to 450 ms post-stimulus
time window [87, 88]. For the ERP analyses, epoched data containing
aberrant activity (threshold of five standard deviations around the median
voltage activity recorded across all epochs) were discarded. The following
classification pipeline was applied to all single trials (without applying any
trial rejection method) in order to have conditions similar to ERP online
classification. The statistical analyses employed repeated measures ANOVA
and paired-sample t-tests as appropriate to the factorial repeated-measures
experimental design. To ensure that parametric analysis was appropriate
we first confirmed that all data followed a normal Gaussian distribution. In
addition, for all post-hoc t-tests, the Holm-Bonferroni correction for multiple
comparisons was applied.

2.7. Classification

The classification pipeline was implemented using scikit-learn Python libraries
for the general implementation of training and testing of classifiers. The
Pyriemann library was used to perform the transformation of multivariate
time series EEG data into covariance matrices, which allows the classification
of the Riemannian geometry of symmetric positive definite matrices. First,
the number of trials per class was balanced through the random selection of
undersampled ensembles of trials. Then, the dimensionality of the multichannel
EEG data was reduced using the unsupervised Xdawn method with a set
of four spatial filters [89]. By doing so, the Xdawn algorithm maximizes
the di↵erence between the ERP responses of a pair of classes (e.g., target
versus non-target ERPs; single task target versus dual task target ERPs).
Afterward, the spatially filtered signals were projected into the estimated
signal subspace, yielding feature vectors that are subsequently input into a
logistic regression model [90]. For this purpose, we adopted the Riemannian
geometry approaches [91, 92]) that demonstrated unmatched performances
within the frame of both single-trial ERP and passive BCI classification
problems, as highlighted by a recent retrospective study [93]. The classification
pipeline used in this study can be formally described as follows:
A classifier was trained for each subject. For each class, a prototype response
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P was obtained by averaging signals across trials. For each trial Xi, a
template trial T i was built using the concatenation of P and the trial Xi.
The template trials T i were converted into covariance matrices to capture
the spatial structure of the signal [94]. The covariance matrices were then
projected into their tangent space using the geometric mean of all covariance
matrices as a reference point [90]. After this projection, each covariance
matrix was represented by a vector upon which a logistic regression (without
any regularization) was applied for classification. The performance was
evaluated in terms of accuracy using 5-fold cross-validation. The folds were
stratified to ensure that each of them contained the same number of trials
for each class. The results for each class accuracy were computed and are
reported under the form of confusion matrices in Figure 5 while the overall
balanced accuracy of the classifier (averaged over folds) and the area under
the ROC curve (ROC AUC) are reported under Table 1 and Table 2.

The assumption that chance level accuracy for a binary classification problem
equals 50% only stands in theory for datasets with infinite number of samples
[95]. In the case of limited datasets with low number of samples per classes,
which is a common scenario in neurophysiological recordings and applies
to the present study, chance level needs to be adjusted to account for the
variance in classification accuracies in small datasets. For this purpose, the
statistical significance threshold of classification performance above chance
level was determined with respect to a null distribution of classification
accuracies computed through random permutations of class labels [95]. For
each single dataset, the original (unpermuted) classification accuracy was
interpreted with respect to the distribution of classification performances
obtained from the permutation of class labels of the exact same exact dataset
repeated 99 times. The tails of the permutation distribution provide statistical
significance boundaries for a given rate of false positive. As such, if the
original classification accuracy is above the 95 or 99 percentiles of the empirical
distribution then the classification performance is significant with ↵ = .05
and ↵ = .01, respectively. The classification performances reaching statistical
significance are flagged with asterisks in Tables 1 and 2.

2.8. Signal quality over time

The root-mean-square (RMS) amplitude of the EEG signal is a general
measure of the magnitude of the signal throughout the window, irrespective
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of frequency [88]. Windows containing high-amplitude artifacts are typically
characterized by a substantially larger RMS amplitude than those with amplitudes
in the normal EEG range. The relationship between the RMS amplitude
of chronologically ordered epochs and time-on-task was then investigated
through the computation of correlation coe�cients.

3. Results

3.1. Task performance

The oddball task performance was analyzed to investigate the e↵ect of the
primary task load. For each condition, subjects were asked to report the
number of oddball sounds presented over the last experimental condition.
Reported values were subtracted from the correct number of oddballs within
each condition. The performance measure was computed from absolute
di↵erences between the participant’s reported count and the actual number of
oddball stimuli presented. Auditory oddball task performance deteriorated
as a function of task load as reflected by the increase in the absolute number
as a function of task di�culty. While the number of errors was lowest in the
single task condition (M = 1.1, SD = 2.4), the addition of the tracking task
significantly increased the number of errors committed (M = 3.3, SD = 2.8).
Task performance further decreased when participants performed the three
MATB subtasks and the oddball task concurrently, resulting in the highest
deviation from the correct oddball count (M = 5.8, SD = 3.2). A repeated
measures ANOVA was conducted on task performance measures revealing
a main e↵ect of task di�culty on the oddball counting performance [F (2,
20) = 17.87, p < .001, ⌘2p = .39]. All pairwise comparisons between conditions
reached statistical significance (p<.05) with Bonferroni-Holm corrections applied
for multiple comparisons.

3.2. Event-Related Potentials (ERP) analysis

3.2.1. Establishing the presence of P300 ERP across recording sites

An initial analysis was dedicated to comparing signals recorded at earcup
electrodes with the midline central electrodes to assess the benefits of integrated
ear electrodes compared to standardized central locations. Although it is
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well established in the EEG literature that auditory-evoked potentials are
most prominent over central and parietal areas [53, 54, 71], several studies
have demonstrated the feasibility of recording far-field ERP using electrodes
placed over temporal recording locations [96, 97]. Electrodes were clustered
into three subgroups based on their location to provide a low-level factor for
statistical analysis. As such the electrodes were spatially clustered into the
following subgroups: left (L1, L2, L3, L4), central (C3, C4, Cz), and right
(R1, R2, R3, R4).

Figure 3: Grand average (N=11) di↵erence ERP waveforms for each condition (blue:

single task, green: dual task, red: multi task) at each electrode location. The shaded area

represents one standard error from the mean.

The grand average P300 ERP amplitude recorded across all conditions
was subjected to a repeated measures ANOVA with stimulus type (target,
non-target) and electrode site (left, central, right) as factors. The analysis
revealed a main e↵ect of stimulus type [F(1, 10) = 5.55, p < .05, ⌘2p =
.38]and an interaction e↵ect with electrode site [F(2, 20) = 7.74, p < .01, ⌘2p
= .46]. Post-hoc paired-sample comparisons of stimulus type revealed that
target sounds elicited higher amplitudes than non-target sounds with a mean
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di↵erence of [t(10) = 2.36, p < .05]. Paired-sample t-tests were performed
between P300 ERP amplitude elicited by target and non-target stimuli at
left [t(10) = 1.58, p > .05)], right [t(10) = .65, p > .05], and central [t(10) =
3.1, p < .05, d = .98] recording sites clusters, revealing that the P300 e↵ect
was only captured at midline central recording locations. The spatialization
of the P300 ERP is clearly illustrated in Figure 3 where the largest P300
e↵ects are observed over central electrodes in all conditions. These results
indicate that only the central electrodes of the headphone-mounted EEG
system could reliably capture the P300 e↵ect.

Further inspection of ERPs recorded at the central electrode (Cz) for
target and non-target trials revealed conventional waveform features like an
early negative polarisation around 100 ms post-stimulus onset (N1 component)
followed by a later positive change in voltage, representing the P300 response
in target trials which diminishes almost fully for non-target trials 4. Across
conditions, a continuous decrease in amplitude can be seen for target trials.
This is also reflected in the di↵erence waves, indicating an e↵ect of additional
task demands in dual and multitask conditions. Analogous dynamics are
visible in the time-frequency domain 4, showing an event-related activation in
slower frequency bands for target trials which correspond to expected e↵ects
[98, 99]. Compared along conditions, the activation is inversely a↵ected by
increasing task load from single to dual and multitask recordings. Separate
di↵erence waves for conditions at all electrodes are shown in 3. Compared to
the central electrodes, the loss in signal strength at ear electrodes is apparent
but corresponds to reported findings in ear-EEG studies [100, 56]. However,
components are not as pronounced, waves fringe out, and condition e↵ects
seem arbitrary by visual inspection. The lack of strength also becomes visible
in the spatial distribution of grand average P300 amplitude where a decrease
in amplitude is only trackable in C3, C4, and Cz electrodes.

3.2.2. E↵ect of task di�culty on P300 e↵ect amplitude

As aforementioned, the performance of the secondary auditory oddball counting
task deteriorated in dual and multitasking conditions, reflecting the increasing
demands of the primary tasks. Likewise, the P300 response to secondary
task sounds is expected to decrease with increasing task demands. Another
repeated measure ANOVA was used to seek out the e↵ects of task load on
the P300 component among conditions. To reduce the number of factors and
interaction terms, di↵erence waves were used to extract the mean voltage
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within the predefined P300 time window (250 ms – 450 ms), releasing the
factor for stimulus type. Two contrasts were defined a priori, testing for
di↵erences between single vs. dual, as well as dual vs. multitask conditions.
Figure 3 shows the means of P300 amplitudes extracted from di↵erence waves
whereas only the central group of electrodes seems to capture the expected
decrease in voltage across conditions. Only here, bars reflect the distinct
gradation from single to multitask condition, although variation in the data
is high.

Figure 4: (A) Grand average (N=11) Event-Related Potentials waveforms recorded at

central electrode Cz in response to target (top) and non-target (bottom) auditory stimuli

grouped by task di�culty (single, dual, and multi task conditions). The shaded area

represents one standard error of the mean. The dotted square marks the time window (250

to 450ms) used for P300 ERP features extraction. (B) The di↵erence waveform between

target and non-target ERP extends to the event-related spectral perturbation (ERSP)

plots highlighting a prototypical increase in low frequency (delta and theta) activity over

the P300 ERP time period. (C) The spatial distribution of grand average P300 ERP

component amplitude recorded over sponge-based electrodes for each condition.
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The two-way repeated measures ANOVA, with task type (single, dual,
multi) and recording site (left, central, right) as factors, revealed a significant
main e↵ect of recording sites [F(2, 20) = 7.18, p = .001, ⌘2p = .52)]. The
P300 amplitude was found to be highest at central electrodes (M = 3.31,
SD = 4.2), surpassing both left-side (M = 1.2, SD = 2.1, t(10) = 3.42, p <
.01, d = .79), and right-side (M = 0.7, SD = 2.5, t(10) = 4.193, p < .01,
d = .97) sensors clusters. There was also an interaction e↵ect between the
task type and recording site (F(4,40) = 4.19, p < .01, ⌘2p = .32). Further
repeated measures of one-way ANOVA with task as a factor were carried out
separately for each recording cluster. Only the central recording sites showed
a main e↵ect of task on P300 amplitude (F(2,18) = 7.05, p < .01, ⌘2p = .44),
whereas left (F(2,20) = .58, p > .56, ⌘2p = .06) and right (F(2,20) = .01, p >
.05, ⌘2p < .01) electrodes were not sensitive to the task type e↵ect. Further
post hoc paired-samples t-tests revealed that P300 ERP amplitude recorded
over central electrode sites was higher for the single task (M = 5.5, SD = 4)
than for the multi (M = 1.98, SD = 4.3, t(10) = 3.69, p < .01, d = .92) task
but only marginally higher than for the dual task (M = 3.5, SD = 2.9, t(10)
= 2.42, p > .05, d = .60).

3.3. Classification of auditory processing

A first analysis aimed to assess whether single-trial responses to task-related
(target) and distractor stimuli could be e↵ectively identified across di↵erent
workload conditions using the headphones-fitted EEG system. For this purpose,
the classifier was trained on single-trial ERP responses to target and non-
target stimuli for each workload condition (single-dual,single-multi, dual-
multi task). Table 1 presents the balanced accuracy and ROC AUC achieved
by the Xdawn classifier to distinguish between ERP responses elicited by
target and non-target stimuli across each condition. Statistical significance
thresholds of classification accuracy beyond chance level were computed following
a permutation-based approach [95] (detailed in the classification methods
section). Across subjects and conditions, the classification performance significance
boundaries were 67.8% and 71.2% for ↵ = .05 and .01, respectively. The
reported classification accuracies above statistical significance boundaries are
flagged (*p < .05, **p < .01). The top row of Figure 5 present the confusion
matrices for the classification of target versus non-target ERP responses for
each of the three workload conditions.
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Table 1: Subject-level classification performance of the classifier evaluated through

balanced accuracy (in %) and ROC AUC score to distinguish EEG responses to

target and non-target stimuli across single, dual, and multi-task conditions. The

feature extraction was based on the Riemannian geometry of spatial covariance matrices

whose discriminability across pairs of classes was enhanced by the Xdawn algorithm.

Classification performances above statistical significance boundaries for chance level

decoding are flagged (*↵ = .05, **↵ = .01).

Single Dual Multi
Accuracy ROC AUC Accuracy ROC AUC Accuracy ROC AUC

P1 80.7** .90 65.7 .82 50.7 .65
P2 73.4** .79 67.8 .63 71.3** .64
P3 73.8** .77 67.4 .82 66.4 .78
P4 73.6** .75 62.1 .79 52.7 .58
P5 66.3 .70 68.1* .71 51.7 .65
P6 79.3** .80 46.2 .56 57.9 .76
P7 70* .69 65.9 .80 57.9 .64
P8 59.3 .46 60.7 .62 53.8 .58
P9 65.5 .73 57.2 .59 49.3 .45
P10 60 .46 50.3 .51 53.8 .55
P11 54.3 .54 47.6 .50 52.1 .60

Mean 68.7 .69 59.9 .67 56.2 .62
SD 8.5 .14 8.4 .12 6.9 .09

3.4. Classification of workload

The classifier was trained on single-trial ERP responses to target stimuli
pooled from the three couple combinations of workload conditions (single-
dual,single-multi, dual-multi task). Table 2 presents the balanced accuracy
and ROC AUC achieved by the classifier to distinguish between ERP responses
of the contrasted conditions across participants. Statistical significance thresholds
of classification accuracy beyond chance level were computed following a
permutation-based approach [95] as described in the classification methods
section. Across subjects and conditions, the classification performance significance
boundaries were 63.5% and 68.3% for ↵ = .05 and .01, respectively. The
reported classification accuracies above statistical significance boundaries are
flagged (*p < .05, **p < .01). The bottom row of Figure 5 present the
confusion matrices for the binary classification of workload for each of the
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three conditions couples.

Table 2: Subject-level classification performance of the classifier evaluated through

balanced accuracy (in %) and ROC AUC score to distinguish the level of mental workload

across paired conditions. The feature extraction was based on the Riemannian geometry of

spatial covariance matrices whose discriminability across pairs of classes was enhanced by

the Xdawn algorithm. Classification performances above statistical significance boundaries

for chance level decoding are flagged (*↵ = .05, **↵ = .01).

Single-Dual Single-Multi Dual-Multi
Accuracy ROC AUC Accuracy ROC AUC Accuracy ROC AUC

P1 69.3** .82 83.6** .94 85** .88
P2 74.1** .79 86.8** .88 64.3* .77
P3 85.2** .93 75** .86 74** .79
P4 88.6** .98 86.4** .90 69.7** .81
P5 76.6** .74 84.4** .91 69.6** .81
P6 67* .75 87.1** .86 81.4** .89
P7 93.3** .98 91.4** .95 93.5** .98
P8 94.8** .99 86.9** .96 90** .96
P9 69.7** .80 93.2** .89 90** .98
P10 95.2** .99 98.6** .98 89.7** .95
P11 90** .97 91.4** .97 80** .89

Mean 82.1 .89 87.7 .92 80.6 .88
SD 11.0 .1 6.1 .04 10 .08
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Figure 5: Confusion matrices for the Tangent Space Classifiers trained with Riemannian

geometry spatial covariance matrices of ERP data enhanced with the Xdawn spatial filter.

Top row: classification of target versus non-target single-trials ERP for each workload

condition (single, dual, and multi task). Bottom row: Classification of mental workload

based on single-trial ERP responses to target stimuli.

.

3.5. Analysis of Signal-to-Noise Ratio (SNR) over time

The RMS of EEG signals recorded over all electrodes was computed for every
consecutive epoch in each condition. There was no e↵ect of experimental
condition on the average EEG signal RMS (F(2,20) = .078, p> .05). Moreover,
no correlation was found between signal RMS and time on task (r(265) =
.04, p > .05), suggesting neither improvement nor degradation of EEG signal
quality over time.
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Figure 6: Distribution of signal quality across participants throughout the study. The

signal quality was measured as the Root Mean Square (RMS) of single-trial EEG signals

averaged over all electrodes.

4. Discussion

The desire to observe truly enacted cognition under unrestricted conditions
motivates the development of innovative solutions for the recording of brain
and body dynamics that can be taken outside of the laboratory. Over the
last decade, a multiplicity of portable neuroimaging hardware has emerged
providing a range of tailored solutions for specific use cases. The necessary
trade-o↵ made during the design of such miniaturized systems between user
experience (comfort and discreetness) and signal quality is a crucial aspect
to consider. The design of the headphones-fitted EEG system evaluated
in the present study is promising for the quick and discreet recording of
auditory evoked potentials in ecologically valid settings. This design also
includes sponge-based electrodes which are quick to set up and don’t require
the application of sticky gel on participants’ scalp. The system comprises
a much lower number of sensors (11 channels) compared to research-grade
EEG systems (commonly ranging from 32 to 128 channels). This lower
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electrode density precludes the application of e↵ective processing methods
relying on a larger and more distributed head coverage. The present study
did not compare the signals captured by the headphones-fitted EEG system
to a research-grade EEG. Therefore it remains to be assessed whether such a
system could provide recordings on par with higher-density wet-EEG systems
in terms of signal quality. Nevertheless, the present study characterizes the
advantages and pitfalls of the evaluated system which is critical to inform
the development of novel mobile EEG solutions. These insights can then be
leveraged to inform the design of future devices but also provide researchers
with objective information upon which they can base their choice of research
methods [48]. This study aimed to determine if a headphones-fitted sponge-
based EEG device could be applied to mental workload assessment in multitasking
contexts. Moreover, we also wanted to evaluate if this minimalistic design
and its concealed ear electrodes would be suitable for the capture of auditory
evoked potentials. An auditory oddball task was implemented as a single
task and extended by two additional conditions of increased task load. Under
single-task performance, the type of sound (target and non-target) showed
a significant e↵ect on auditory evoked P300 amplitudes that was observed
only at central electrodes, replicating well-documented e↵ects of higher and
stronger amplitude in response to target sounds over central areas [52, 53, 54].
The amplitude of the P300 ERP recorded using the headphones-fitted EEG
system was comparable to those commonly reported in studies using research-
grade wet-EEG systems [101] and around-the-ear systems [39].

The oddball counting performance was found to be significantly a↵ected
by the complexity of the primary task. Indeed, counting errors increased as a
function of primary-task demands, with the least number of errors observed
in the single task condition and the most errors for the multi task condition.
The oddball task performance was a reliable behavioural marker reflecting the
scarcity of resources available for auditory processing during the simultaneous
performance of multiple cognitive-motor tasks. It could be argued that this
juxtaposition of the auditory oddball paradigm contaminates the behavior
and cognitive experiences investigated. Moreover, using such a paradigm
as a probe to extract measures of cognitive resources may be impractical
in applied field research that may span over hours [43, 15, 102]. Indeed,
continuous counting and reporting are simply impossible, again making the
case for wearable and discreet EEG devices that would allow capturing
cognitive markers of mental workload reliably during the performance of
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natural behaviors. In line with the behavioural results, the ERP analysis
revealed a modulation of the P300 amplitude as a function of task load. This
e↵ect was only observed over central recording sites which is consistent with
previous findings highlighting a spatial distribution of the P300 e↵ect most
prominent over midline central and parietal recording sites [22, 58, 59, 60,
61, 62, 103]. Further post hoc analyses revealed that this e↵ect was mainly
driven by di↵erences between the single and multi-task conditions in terms
of their averaged P300 ERP amplitude, whereas no significant di↵erence was
found between the dual condition and any of the other conditions. This
is a particularly underwhelming result as the characterization of gradual
changes in mental workload represents one of the main objectives of the
present research. One could argue that these P300 amplitude di↵erences
could be attributed to higher noise resulting from increased participants’
motion to handle the joystick and electrode displacement in higher load
conditions. However, the analysis of signal-to-noise ratio (SNR) over time
revealed neither improvement nor degradation of the EEG signal over time
nor any significant di↵erence between the di↵erent experimental conditions.
However, the P300 ERP e↵ect was captured neither by the left nor the right
sensor clusters. This absence of clear P300 ERP response is in contrast
to previous studies showcasing the feasibility of capturing ERP components
using around-the-ears EEG montages [38, 104, 32]. It is worth noting that
the aforementioned studies utilized a di↵erent electrode layout comprising
wet electrodes placed around-the-ear of the participants which were firmly
held in place with adhesive bands. The higher adherence of such apparatus
may explain the higher SNR as a direct consequence of an overall lower
and stable impedance [15]. It is also unclear whether the absence of the
P300 ERP response at left and right earcup recording locations should be
attributed to the sponge-based electrodes’ limitations to capture far-field
potentials, electrode displacements during the recordings, or if analogous
electrode sites in a conventional system would have also failed to record
the e↵ects. To address this uncertainty, it would be valuable to benchmark
the headphones-fitted EEG system against a reference research-grade EEG
system. Lastly, an inspection of ERP waveforms recorded over left earcup
sensors revealed modulations of late event-related potentials. While the
investigation of such responses is beyond the scope of the present study, their
modulation may e↵ectively be leveraged to better assess mental workload. It
is indeed possible that lateral electrodes, and in this case sensors fitted in the
left earcup, although not sensitive to P300 ERP modulations may however be
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more adequate to capture later and more distal signals such as components of
the Late Positive Complex (LPC, [105, 106]) reflecting higher-order cognitive
processes [107].

Another aspect of our analysis focused on performing single-trial classification
of event-related brain responses. To accomplish this, we implemented a signal
processing pipeline using state-of-the-art methods for ERP classification,
which achieved a mean accuracy of around 61% across all task load conditions.
Important di↵erences were observed across workload conditions in terms
of classification performance of ERP response to target versus non-target
stimuli. Furthermore, only the higher classification accuracy achieved in
the single task condition was found to be above chance level, and this only
for a subset of participants. These results highlight the inconsistency in
classification of ERP evoked by di↵erent types of auditory stimuli. It should
also be noted that this performance is substantially lower than the accuracy
of 70% in the distinction of target and non-target neural responses achieved
through the use of around-the-ear EEG arrays [43]. This low performance
is even more surprising considering the contribution of the additional three
central electrodes of the headphones-fitted EEG system. Indeed, the proximity
of these central electrodes to the midline parietal recording locations where
the P300 ERP e↵ect is most prominent should provide higher SNR than the
around-the-ear montage which only allows the capture of far-field P300 ERP
signals. It appears that these central electrodes do not compensate for an
overall lower SNR, which we can only speculatively attribute to the sponge-
based design of the sensors fitted in the headphones in the absence of a proper
comparison with a wet-EEG system. Furthermore, it is worth noting that
we were able to consistently classify the di↵erent workload conditions across
participants with mean accuracies ranging from 80% to 87% using P300 ERP
features. The accuracy scores are on par with previous studies that utilized
research-grade electrodes and reported accuracies ranging from 70 to 90%
[108, 76]. Such results hold promising implications for the implementation
of unobtrusive neurotechnology to monitor mental workload and auditory
attention performance in real-world settings [43, 103, 40].

However, it is important to consider further hardware developments to
enhance the practicality of such systems in everyday life scenarios. Mounting
the smartphones with external assistance is preferable as the rigid frame
hinders easy adjustment such as parting hair to ensure good adherence of
the electrodes with the scalp or the eventual rehydration of the sponges to
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maintain signal quality over time as the sensors dry. Moreover, it should be
noted that even a slight movement of the headphones of the system would
cause a shift and introduce noise across all electrode sites simultaneously.
Although the headphones could be tightened to adhere more closely to participants’
heads, such an adjustment came at the price of wearing comfort, as reported
verbally by the participants at the occasion of an informal debrief carried
out at the end of the experiment. This important trade-o↵ between user
comfort and signal quality is dependent on whether the headphones were
tightly or loosely fitted is a critical aspect to improve in future renditions
of headphones-fitted EEG devices. A potential solution to improve both
user experience and signal quality could be to adopt a hybrid hardware
design including quick-to-set-up sponge-based sensors in the frame of the
headphones along with around-the-ear wet EEG sensors. It is also important
to note that, although the headphones-fitted EEG system allows for recording
of brain activity during whole body movements thanks to the lightweight
hardware and untethered connection between the amplifier and recording
unit, the system was however used in stationary settings within the frame of
the present study. While portability represents an important advantage of
the system, the validity of measures under whole-body motion remains to be
investigated.

Another important aspect of the present work that requires further consideration
concerns the experimental oddball paradigm. In the present study, an active
auditory oddball paradigm was used during which participants were instructed
to silently count the number of target stimuli presented over the whole
duration of an experimental condition. While such an active oddball paradigm
evokes strong neural responses that can be leveraged to probe attentional
processes and be used as a proxy measure of cognitive resources available,
they however introduce additional workload. It can be argued that increasing
mental workload by the addition of the counting oddball task defeats the
purpose of monitoring mental workload as it places the agents in artificial
conditions. A potential solution to this issue could be found in using a passive
variant of the auditory oddball task instead of active counting. This task
would not involve the distributed network of brain regions involved in context
updating and maintenance of counting information in working memory. The
use of passive oddball has been demonstrated as an e↵ective approach to
distinguish di↵erent levels of mental workload [28]. Future studies should
investigate the use of such a passive oddball paradigm to capture neural
markers of mental workload. Indeed, opting for passive paradigms would
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only yield minimal contamination of the actual primary task (or ensemble of
tasks) on which an operator focuses within the frame of a natural working
environment.

5. Conclusion and perspectives

The present results indicate that a headphones-fitted EEG system with wet
sponge-based sensors can e↵ectively capture neural signatures of auditory
processing using electrodes spread over the connecting frame. However,
the electrodes fitted in both earcups did not capture the P300 ERP. The
temporal recording locations could therefore not be leveraged to assess mental
workload nor distinguish types of auditory stimuli based on the modulation of
P300 ERP. Although interesting in terms of its unobtrusive and inconspicuous
design, the device was reportedly described as uncomfortable to wear over
time by the participants of this study. This limitation renders the assessed
system unsuitable for long recordings. The signal quality recorded by the
sponge-based sensors fitted on the connecting frames allowed for the classification
of mental workload with high accuracy. The development of wearable and
inconspicuous EEG devices is instrumental in the diversification and extension
of the mobile-brain imaging toolbox. Provided that future iterations of
headphones-fitted EEG systems improve upon the aforementioned user experience
(wearing comfort) along with signal quality pitfalls reported at earcup sensors,
this type of wearable EEG device would o↵er an elegant and tailored solution
to the investigation of auditory processing in real-world settings.
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