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11 Abstract

12 In a multi-host system, understanding host-species contribution to transmission is key 

13 to appropriately targeting control and preventive measures. Outbreak reconstruction methods 

14 aiming to identify who-infected-whom by combining epidemiological and genetic data could 

15 contribute to achieving this goal. However, the majority of these methods remain untested on 

16 realistic simulated multi-host data. Mycobacterium bovis is a slowly evolving multi-host 

17 pathogen and previous studies on outbreaks involving both cattle and wildlife have identified 

18 observation biases. Indeed, contrary to cattle, sampling wildlife is difficult. The aim of our 

19 study was to evaluate and compare the performances of three existing outbreak reconstruction 

20 methods (seqTrack, outbreaker2 and TransPhylo) on M. bovis multi-host data simulated with 

21 and without biases. 

22 Extending an existing transmission model, we simulated 30 bTB outbreaks involving 

23 cattle, badgers and wild boars and defined six sampling schemes mimicking observation biases. 

24 We estimated general and specific to multi-host systems epidemiological indicators. We tested 

25 four alternative transmission scenarios changing the mutation rate or the composition of the 

26 epidemiological system. The reconstruction of who-infected-whom was sensitive to the 

27 mutation rate and seqTrack reconstructed prolific super-spreaders. TransPhylo and outbreaker2 

28 poorly estimated the contribution of each host-species and could not reconstruct the presence 

29 of a dead-end epidemiological host. However, the host-species of cattle (but not badger) index 

30 cases was correctly reconstructed by seqTrack and outbreaker2. These two specific indicators 

31 improved when considering an observation bias.

32 We found an overall poor performance for the three methods on simulated biased and 

33 unbiased bTB data. This seemed partly attributable to the low evolutionary rate characteristic 

34 of M. bovis leading to insufficient genetic information, but also to the complexity of the 
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35 simulated multi-host system. This study highlights the importance of an integrated approach 

36 and the need to develop new outbreak reconstruction methods adapted to complex 

37 epidemiological systems and tested on realistic multi-host data.

38 Author summary

39 Some pathogens like the one responsible for bovine tuberculosis can infect multiple 

40 species. Identifying which species transmitted and to which other species in such an outbreak 

41 presents a unique challenge, especially when difficult to observe wildlife species are concerned. 

42 One way to tackle this issue would be to reconstruct who-infected-whom in an outbreak and 

43 then identify the role each species played. However, methods that enable this type of 

44 reconstruction have not been tested in the context of transmission between unevenly observed 

45 species. Moreover, the pathogen responsible for bovine tuberculosis evolves slowly, which 

46 further complicates the reconstruction of who-infected-whom. We thus simulated realistic and 

47 complex bovine tuberculosis outbreaks on which we tested three widely used methods. We 

48 found poor performances for all three tested methods, which highlights the need to develop new 

49 methods adapted to outbreaks involving multiple species. Our results also underline the need to 

50 combine multiple types of methods and data sources in addition to the reconstruction of who-

51 infected-whom, such as the reconstruction of phylogenetic trees or identifying possible 

52 infectious contacts through investigations, when studying an outbreak.

53 Introduction

54 Over 60% of pathogens can infect more than one host-species [1,2]. This possible 

55 contribution of multiple host-species to transmission dynamics complicates disease control and 

56 surveillance for these multi-host pathogens, especially when one of the host-species to consider 

57 is a free-ranging wildlife species. Indeed, quantifying contribution to transmission in order to 

58 select appropriate control measures as well as the implementation of said measures can be 
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59 challenged by the lack of accurate estimations of wildlife population size, the impossibility to 

60 restrain the entire wildlife population and the difficulty to prevent interactions between host-

61 species [3]. Multi-host pathogens can have important consequences on human health (e.g. 

62 zoonotic diseases endemic in wildlife [4]), biodiversity (e.g. canine distemper in lions, Panthera 

63 leo, in the Serengeti national park [5]) and animal trade economy (e.g. foot-and-mouth disease 

64 and avian influenza [6]).

65 A prime example of a multi-host pathogen, for which the contribution of wildlife species 

66 needs to be considered, is Mycobacterium bovis, the most frequent etiological agent of bovine 

67 tuberculosis (bTB). Indeed, while M. bovis mainly affects cattle, which have been the target of 

68 bTB control programs in the European Union since 1964 (EU directive 64/432/EEC), other 

69 domestic and wildlife host-species can also be infected [7]. Furthermore, wildlife species have 

70 even been implicated around the world as bTB reservoirs, e.g. badgers (Meles meles) in the 

71 United Kingdom [8], wild boars (Sus scrofa) in Spain [9] and brush-tailed possums 

72 (Trichosurus vulpecula) in New Zealand (10). In France, infected wildlife presenting the same 

73 genotypes as nearby infected cattle have been reported by the wildlife surveillance program 

74 since its implementation in 2012 [11], which suggests bTB transmission between wildlife and 

75 cattle and therefore, the presence of bTB multi-host systems. 

76 Studies have aimed to reconstruct phylogenetic trees from M. bovis whole genome 

77 sequences, present in cattle and wildlife, in order to better understand transmission within these 

78 multi-host systems [12–15]. In a phylogenetic tree, internal nodes correspond to hypothetical 

79 common ancestors and, using Bayesian methods, the ancestral state (e.g. host-species [16,17] 

80 or geographical location [18,19]) of these internal nodes can be estimated. These Bayesian 

81 methods can therefore reconstruct the host-species of the most recent common ancestor of all 

82 sampled sequences [20] as well as transitions between species or groups of individuals over 

83 time [15,17], but not transmission events at an individual level. Phylogenetic trees thus differ 
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84 from transmission trees, in which each node represents an infected host and these infected hosts 

85 are linked by directed edges representing transmission events [21]. Such a reconstruction of 

86 who-infected-whom in the outbreak makes it possible to estimate transmission parameters 

87 specific to each host-species (such as the number of transmission events due to an individual of 

88 a particular host-species), and thus sheds more light on the transmission dynamics within the 

89 studied multi-host system.

90 In principle, outbreak (here meaning transmission tree) reconstruction could be based 

91 solely on epidemiological data obtained via contact tracing methods (e.g. [22]); however data 

92 collected are not always reliable nor detailed enough to enable accurate reconstruction [23]. 

93 Therefore, some outbreak reconstruction methods have combined both genomic and 

94 epidemiological data in transmission tree inference [24–29]. These outbreak reconstruction 

95 methods can be divided into two categories according to how genomic data is treated [30], those 

96 that consider a link between phylogenetic and transmission trees (generally by annotating 

97 branches or internal nodes with infected hosts) [26,28,31,32] and those that solely consider 

98 genetic distances [21,25,33]. While some outbreak reconstruction methods were developed to 

99 study pathogen transmission within a specific multi-host system (e.g. foot-and-mouth disease 

100 [34]), most were developed using the example of a single-host system, e.g. slowly evolving M. 

101 tuberculosis [26,31], and more rapidly evolving pathogens like methicillin-resistant 

102 Staphylococcus aureus [26,33] or SARS-CoV-1 [25] in a human population. However, the 

103 development of outbreak reconstruction methods on single-host systems does not preclude them 

104 from yielding insightful results in multi-host systems; for instance Willgert et al. recently 

105 reconstructed the transmission history of SARS-CoV-2 in a human-deer system in Iowa (USA) 

106 [35]. In a multi-host system, other than correctly reconstructing transmission events between 

107 individuals and estimating outbreak size (general epidemiological indicators), we expect 

108 outbreak reconstruction methods to allow accurate estimation of host-species contribution to 
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109 the outbreak and to identify the host-species of the index case (specific multi-host 

110 epidemiological indicators).

111 While some outbreak reconstruction methods assume that all cases are known and 

112 sampled [21,28,36], others account for the presence of unsampled cases by either allowing the 

113 annotation of unsampled hosts in the phylogenetic tree [31] or the presence of intermediary 

114 unsampled hosts between two sampled hosts [24,25]. When not all cases are sampled in the 

115 outbreak, there exists a difference between the actual outbreak and the transmission tree these 

116 methods can aim to reconstruct from sampled sequences. Indeed, even if the outbreak 

117 reconstruction method accounts for the presence of unsampled hosts [25,31], these hosts can 

118 only be inferred if they have descendant sampled hosts [35] and the transmission tree that can 

119 be reconstructed is therefore a subtree induced by the sampling process.

120 The sampling process in a multi-host system that implicates a free-ranging wildlife 

121 species can also result in incomplete or even biased data, when observation efforts differ 

122 between host-species. For instance, M. bovis wildlife surveillance in France was implemented 

123 later than cattle surveillance (2012 vs. 1954) and only investigates bTB infection in badgers, 

124 boars, red deer (Cervus elaphus) and roe deer (Capreolus capreolus) [11]. However, 

125 estimations of bTB infection rates in red foxes (Vulpes vulpes) have recently been investigated 

126 in France and yielded similar results to those found in badgers and wild boars [37]. These 

127 sampling biases between host-species could have an important impact on outbreak 

128 reconstruction. 

129 Our aim was to evaluate and compare performances of existing outbreak reconstruction 

130 methods on bTB outbreaks in a multi-host system and study whether these performances were 

131 affected by sampling biases. Therefore, we simulated bTB transmission within a multi-host 

132 system situated in a previously studied area in the South-West of France. In this area, bTB 

133 surveillance has reported M. bovis circulation in cattle, badgers and wild boars [38]. Multiple 
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134 sampling schemes were implemented to reflect the late implementation of wildlife surveillance 

135 (temporal bias) and the fact that not all host-species are surveilled (species bias). In order to 

136 evaluate the quality of reconstructed transmission trees, we calculated general as well as 

137 specific multi-host epidemiological indicators.

138 Materials and methods

139 1. Reference transmission trees

140 1.1 Transmission model

141 We extended an existing model that simulated bTB transmission trees, for the 11 

142 genotypes identified, in a badger-cattle system present in a study area in the South-West of 

143 France, from January 2007 to January 2020 [39]. We narrowed our study to one of the two 

144 genotypes of M. bovis, which were isolated in both wildlife and cattle within our study region. 

145 Since infected wild boars have also been detected in this study area [40,41] and our aim was to 

146 study a complex multi-host system, we added a wild boar meta-population to the modeled 

147 epidemiological system (see details in S1 Appendix). Similarly to the badger population, wild 

148 boars could either be susceptible (S) or infected (I) while cattle had an additional latent state 

149 (E), when animals could be detected infected but could not transmit the pathogen [39].

150 Moreover, transmission trees simulated with the original model considered cattle farms 

151 and badger social groups as epidemiological units whereas we aimed to reconstruct individual 

152 transmission links. Therefore, we extended the model to randomly select infected animals 

153 within these groups according to the SEI/SI system dynamics and thus, simulated animal-to-

154 animal transmission. The resulting transmission trees are termed below reference transmission 

155 trees (terms written in italic are defined in Table 1).
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156 1.2 Reference set of cases

157 We chose cattle as index cases and bTB spread in the multi-host system was simulated 

158 during 13 years. We generated 30 reference transmission trees, in order to investigate various 

159 simulated outbreaks while limiting the computational time. These 30 trees had to include less 

160 than 500 infected hosts in total, for computational reasons, and at least 15 infected hosts from 

161 each host-species, in order to be able to implement sampling schemes. A reference transmission 

162 tree corresponded to a list of six variables: identification (id) of infector, id of infected, host-

163 species of infector, host-species of infected, date of infection and date of death.

164 We simulated genetic sequences along the reference trees according to a Hasegawa-

165 Kishino-Yano (HKY) substitution model (with transition/transversion ratio parameter, κ) [42], 

166 since this substitution model was previously used to study M. bovis phylogenies [12–14], as 

167 well as a fixed mutation rate (µ). We chose µ equal to 0.0024 substitutions per site per year and 

168 κ equal to 5.9. Indeed, these values had been previously estimated on 167 M. bovis sequences 

169 (171 SNPs in length) isolated in cattle and wildlife from this study area [12]. 

170 At t = 0, we considered that the index case was infected by a single sequence randomly 

171 selected from the 167 sequences isolated in our study area [12]. Our substitution algorithm was 

172 based on the Gillespie approach [43] implemented in the phastSim package [44] (Fig 1). Taking 

173 into account the low genetic diversity observed in M. bovis sequences from the same region, 

174 we assumed no within-host diversity by considering a single lineage per host but we allowed 

175 within-host mutation. 

176 We simulated sequences until February 2020. Then, the last simulated sequence was 

177 recorded for each host, which corresponded to either the sequence present at the time of removal 

178 or in February 2020, for infected hosts not yet removed at the end of the simulation. For each 

179 reference transmission tree, we thus obtained a reference set of cases (Table 1), meaning a list 
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180 of four variables: id of infected, host-species of infected, date of death (or February 2020 if host 

181 still alive) and sampled sequence.

182 Fig 1. Sequence simulation procedure in two infected hosts A and B. Host A, represented by the 
183 grey rectangle on the left (infected at Tinfection_A), transmitted the pathogen to host B at Tinfection_B. This 
184 transmission event is represented by the thick black arrow. Hosts were removed (represented by the 
185 cross) respectively at Tremoval_A and Tremoval_B. If the mutation time was inferior to the host removal time 
186 (which was the case for Tmutation_A1 and Tmutation_A2 in host A), we then selected the nucleotide to mutate 
187 (the 3rd nucleotide for the first mutation and the 2nd nucleotide for the second mutation in host A, shown 
188 in white) and changed it according to a substitution model. If the mutation time was superior to the 
189 removal time of the host (see host B), the sequence did not change until host removal and this sequence 
190 was then the one sampled from the host. 

191 2. Sampling schemes and reconstructed transmission trees

192 2.1 Sampling schemes

193 We first considered the hypothetical situation where all infected hosts are observed 

194 (reference sampling scheme, Table 1), which corresponds to the reference set of cases. Then, 

195 we simulated five sampling schemes that mimicked observation biases in bTB epidemiological 

196 data, while also sampling all infected hosts unaffected by the scheme (even those not yet 

197 removed at the end of the simulation). In scheme T (for “temporal bias”), the late 

198 implementation of wildlife surveillance in the study region was simulated and we only 

199 considered wildlife cases after 2012. Moreover, the fact that not all host-species are surveilled 

200 was simulated in schemes S (for “species bias”): either wild boar cases were not considered, 

201 scheme SW, or badger cases, in scheme SB. Finally, in scheme T+SW (or T+SB), we disregarded 

202 cases before 2012 for the remaining wildlife species (respectively badgers and wild boars).

203 We thus simulated for each reference transmission tree one biased set of cases (Table 

204 1) for each sampling scheme (T, SB, SW, T+SB, T+SW), that contained the same variables as the 

205 reference set of cases. With 30 reference trees for each sampling scheme, we thus obtained a 

206 total of 30*6 = 180 sets of cases. For each of these sets of cases, we extracted from the reference 

207 transmission tree, the reconstructible outbreak (Table 1), which is the subtree containing only 

208 the cases that were sampled and their ancestors.
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209 2.2 Transmission tree reconstruction

210 From our review on outbreak reconstruction methods [30], we identified three methods 

211 (seqTrack, outbreaker2 and TransPhylo) that were available in an R package and that needed 

212 only sampling and/or removal times. In seqTrack and outbreaker2, transmission is estimated 

213 based on pairwise genetic distances, while in TransPhylo, a link is established between 

214 phylogenetic and transmission trees [30]. 

215 o seqTrack

216  Using Edmonds’ algorithm, seqTrack computes the transmission tree in which the total 

217 genetic distance between nodes is minimal, assuming that infectors are sampled before the host 

218 they infected [21]. In order to use this method, we estimated pairwise genetic distances by using 

219 the dist.dna function (ape R package v.5.4-1 [45]) with the F84 substitution model since it 

220 closely resembles the HKY model [42]. seqTrack [21] is a function available in the adegenet R 

221 package [46,47]. The format of the tree reconstructed by seqTrack was a table with five columns 

222 corresponding to the following variables: id (indices of infected hosts), ances (indices of 

223 infectors), weight (number of mutations separating infected hosts from their infectors), date 

224 (sampling date of the infected host), ances.date (sampling date of their infector).

225 o outbreaker2

226 outbreaker2 is a Bayesian method that considers four likelihoods: genetic, temporal, 

227 reporting and contact [25]. In this method, probability of transmission is inferred from known 

228 generation time (time between the infection of a case and the time of transmission from that 

229 case to secondary cases) and sampling interval (time from infection to sampling) distributions. 

230 Here, we assumed that generation time and sampling interval nonparametric distributions could 

231 be obtained without bias by estimating them from the reference trees, which contained every 

232 infected host, timed transmission event between hosts and host sampling time. We selected a 

233 chain length of 100,000 iterations, a sampling frequency of 1 in 50 and a burn-in period of 10% 
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234 (for details on priors used and other arguments see S1 Appendix). We graphically checked for 

235 convergence and independence of sampling (Effective Sample Size (ESS) above 200 for each 

236 parameter), after estimation using the coda R package v.0.19-4 [48]. When the ESS were lower 

237 than 200, we ran an additional 100,000 iterations and then checked the ESS again. This step 

238 was repeated until every ESS was above 200. 

239 Then, we built the consensus tree, as suggested by the authors, computing the most 

240 frequent infector for each infected host in the posterior trees as well as the support (posterior 

241 probability) for each transmission event. By construction, cycles can be present in this 

242 consensus tree (which then becomes a directed graph), meaning that infected hosts can be both 

243 the ancestors and the descendants of other infected hosts. Moreover, since this method considers 

244 a reporting likelihood, the probability of sampling an infected host is estimated and unsampled 

245 hosts are indirectly represented in the consensus tree, as a number of generations separating two 

246 sampled hosts.

247 The format of the consensus tree reconstructed by outbreaker2 was a table with five 

248 columns corresponding to the following variables: from (indices of infectors), to (indices of 

249 infected hosts), support (transmission probability), time (estimated time of transmission), date 

250 (sampling date of the infected host) and generations (number of intermediary hosts + 1).

251 o TransPhylo

252 TransPhylo, another Bayesian method, affects infected hosts along branches in a 

253 previously reconstructed phylogenetic tree [31] (for details on phylogenetic reconstruction see 

254 S1 Appendix). We assumed that the generation time and sampling interval followed a Gamma 

255 distribution and that the mean and standard deviation could be obtained without bias by 

256 estimating them from the reference trees using the epitrix R package v.0.2.2 [49]. We selected 

257 a number of iterations of 500,000, a sampling frequency of 1 in 50 and a burn-in period of 20% 

258 (for details on priors used and other arguments see S1 Appendix). We used the same method as 
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259 with outbreaker2 to check for convergence and independence of sampling, however we 

260 considered a lower threshold for the ESS, 100 for each parameter as suggested by the authors 

261 [50]. When the ESS were lower than 100, we ran an additional 500,000 iterations and then 

262 checked the ESS again. This step was repeated until convergence and independence of sampling 

263 parameters were satisfied or the number of iterations reached 2,500,000, we then discarded the 

264 reference trees for which convergence was not obtained in every sampling scheme. 

265 Then, as described by Didelot et al. [50], we computed the medoid transmission tree 

266 (the transmission tree that is the least different from all other posterior trees according to a 

267 distance metric defined by Kendall et al. [51]). This method accounts for the presence of 

268 unsampled hosts when affecting hosts to branches in the phylogenetic tree, and unsampled hosts 

269 are explicitly represented as nodes in the medoid transmission tree. This means that in the 

270 medoid tree, contrary to the consensus tree in outbreaker2, unknown infected hosts can be 

271 responsible for more than one transmission event. As in outbreaker2, TransPhylo estimates a 

272 sampling probability. 

273 The format of the medoid tree reconstructed by TransPhylo was a table with four 

274 columns corresponding to the following variables: tinfection (estimated time of infection), 

275 tremoved (estimated time of removal of the infected host), infector_id (id of infector), 

276 infected_id (id of infected). 

277 From the sampled posterior trees, we also computed the n-by-n matrix of transmission 

278 probability using the computeMatWIW function implemented in TransPhylo, where n is the 

279 number of sampled infected hosts. Then, we identified for each infected host, its most likely 

280 infector corresponding to the infector with the highest probability in the matrix of transmission 

281 probabilities. If this probability was zero, we considered the most likely infector of the infected 

282 host to be unknown. Note that this method of summarizing posterior trees can lead to the 
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283 presence of cycles, as in outbreaker2, and since time of infection is not estimated, no index case 

284 can be inferred.

285 3. Genetic information and epidemiological indicators

286 3.1 Genetic information

287 To understand the impact of the sequence simulation model on outbreak reconstruction 

288 and facilitate comparison with other works, we first quantified the genetic diversity present in 

289 each simulated set of cases. We estimated the proportion of unique sequences in every set of 

290 cases obtained with the reference sampling scheme as well as the mean transmission 

291 divergence. Transmission divergence was defined in Campbell et al.’s work [52] as the number 

292 of SNPs separating known transmission pairs, we used reference transmission trees to identify 

293 transmission pairs and calculated the mean number of SNPs separating these transmission pairs 

294 for every reference tree. 

295 3.2 Epidemiological indicators

296 TransPhylo had two different outputs (the medoid tree and transmission probability 

297 matrix). We used the transmission probability matrix when evaluating the method’s accuracy 

298 and the medoid tree for all other indicators.

299 o Accuracy 

300 In order to evaluate the performance of all three reconstruction methods, we first 

301 determined the correct transmission events that could be reconstructed between individuals 

302 from each simulated set of cases. For the reference set of cases, the correct transmission events 

303 were those present in the reference trees. However, for each biased set of cases, we considered 

304 that the correct transmission events were those that connected observed cases to each other, 

305 bypassing intermediary unobserved cases. For instance, the chain of transmission Sampled 

306 subject #1 → Unobserved subject #2 → Sampled subject #3 would become Sampled subject 
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307 #1 → Sampled subject #3. For all three methods, we estimated whether reconstructed infector-

308 infected pairs (meaning every “id”-“ances” for seqTrack, “from”-“to” for outbreaker2 and 

309 “infector_id”-“infected_id” for the transmission matrix estimated from TransPhylo) were one 

310 of the correct transmission events or not.

311 o Presence of super-spreaders 

312 For all three methods, we considered super-spreaders to be present in a reconstructed 

313 tree when less than 10% of infected hosts were responsible for over 80% of transmission events. 

314 Moreover, when super-spreaders were present in a reconstructed tree, we identified the 

315 maximum number of transmission events a single super-spreader could be responsible for as 

316 well as the host-species of said super-spreader.

317 o Host-species of the index case

318 We evaluated the ability of all three methods to reconstruct the correct host-species of 

319 the index case (i.e. cattle). Contrary to the TransPhylo medoid trees, in which identifying the 

320 index case is straightforward (“infected_id” with the earliest “tinfection”), the presence of 

321 cycles in outbreaker2 and the multiples index cases possible in seqTrack complicated the 

322 identification of the index case. For seqTrack, we considered the most frequent host-species 

323 from the reconstructed index cases (“id” for whom the “ances” is unknown). For outbreaker2, 

324 we considered the host-species of the index case to be the most frequent host-species among 

325 cases infected at the earliest date (“to” with the earliest “time”). 

326 o Outbreak size 

327 We evaluated the ability of outbreaker2 and TransPhylo to estimate the size of the 

328 outbreak (seqTrack does not estimate outbreak size and was thus excluded for this indicator). 

329 The simulated outbreak size was the number of infected hosts present in each reference tree. 

330 We calculated the corresponding estimate by dividing the number of sampled hosts in each 
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331 reconstructed tree with the median of the sampling proportion provided by outbreaker2 and 

332 TransPhylo. In addition, we tested if the results for this indicator differed depending on whether 

333 we were considering the reconstructible outbreak or the reference tree. Therefore, we also 

334 calculated the number of infected hosts present in the reconstructible outbreak, and compared 

335 it with the number of hosts (sampled and unsampled) present in the trees reconstructed by 

336 outbreaker2 and TransPhylo.  

337 o Host-species contribution 

338 Considering the importance of identifying the host-species that contributed the most to 

339 transmission in a multi-host system, we evaluated the ability of outbreaker2 and TransPhylo to 

340 reconstruct the number of transmission events due to each host-species. Similarly to the 

341 outbreak size, seqTrack was also excluded. The number of transmission events due to each 

342 host-species was first calculated in the reference trees. As for the outbreak size, we calculated 

343 the corresponding estimate by dividing the number of transmission events between sampled 

344 hosts in each reconstructed tree with the median of the sampling proportion provided by 

345 outbreaker2 and TransPhylo. We then calculated the number of transmission events due to each 

346 host-species in the reconstructible outbreak. This number was compared to the number of all 

347 transmission events (to sampled and unsampled infected hosts) due to each host-species present 

348 in the reconstructed trees. 

349 o Statistical analysis

350 For the outbreak size and host-species contribution estimates, we obtained a credible 

351 interval using the bounds of the 95%HPD (High Posterior Density) interval. For each 

352 reconstructed tree, we evaluated whether the credible interval contained the simulated outbreak 

353 size or number of transmission events due to each host-species. For all epidemiological 

354 indicators except the presence of super-spreaders, we tested the effect on the indicator value of 
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355 the outbreak reconstruction method as well as its interaction with the effect of sampling scheme. 

356 In order to account for the non-independence of reconstructed trees (six sets of cases are 

357 constructed from the same reference tree), we fit mixed-effects models, using the id of the 

358 reference tree as a random effect. For accuracy and index case, we selected a binomial 

359 distribution and the probability of either reconstructing a correct transmission event or the 

360 correct host-species for the index case was set as the outcome. Due to the overdispersion present 

361 in the estimates of outbreak size and number of transmission events, we considered for both 

362 indicators a negative binomial distribution. Since, for outbreak size and host-species 

363 contribution, we aimed to compare estimates with the values in either the reference tree or the 

364 reconstructible outbreak, these values were set as an offset and the intercept was set to zero. 

365 The estimated incidence rates ratios (IRRs) could therefore be interpreted as multiplicative 

366 factors of the outbreak size (or host contribution) in the reference tree (or reconstructible 

367 outbreak). 

368 4. Alternative transmission scenarios

369 We tested the influence of the low evolutionary rate, which is characteristic of M. bovis, 

370 on our results. We simulated new sequences along the 30 reference trees having increased the 

371 mutation rate by a factor of 10 (µh = 0.024 substitutions per site per year) and implemented the 

372 three outbreak reconstruction methods on the reference set of cases only. 

373 To test whether the reconstruction of outbreak size and accuracy were influenced by the 

374 complexity of the epidemiological system, we then simulated 30 new reference trees of a single-

375 host system, by setting transmission parameters to, between and from wildlife to 0, in order to 

376 obtain cattle-only transmission trees. We simulated sequences along these 30 new trees with µ 

377 (0.0024 substitutions per site per year), then implemented the three methods on these sequences.
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378 We then analyzed whether asymmetrical roles within the multi-host system influenced 

379 the reconstruction of the host-species contributions. With the same protocol (30 reference trees 

380 and a low evolutionary rate), we tested a transmission scenario where one of the host-species 

381 could be infected but could not play any role in transmission (dead-end epidemiological host). 

382 We obtained a multi-host system where wild boars played no part in onward bTB transmission 

383 by setting transmission parameters between and from wild boars to 0. 

384 Finally, in order to evaluate the reconstruction of the host-species of the index case, we 

385 simulated 30 new reference trees with badgers as index cases, in the multi-host system where 

386 every host-species contributed to transmission.

387 Table 1. Definition of terms used in the study (in order of appearance in the material and method).

Reference (transmission) tree A list of six variables (id of infector, id of infected, host-species of 
infector, host-species of infected, date of infection and date of death) 
obtained with the modified simulation model (first developed by 
Bouchez-Zacria et al. [39]).

Reference set of cases A list of four variables (id of infected, host-species of infected, date 
of death and sampled sequence) obtained from the reference tree after 
sequence simulation.

Sampling scheme One of six selection processes applied to a reference set of cases, 
five of which mimicked biases encountered on bTB data.

Biased set of cases Set of cases obtained after applying a biased sampling scheme to a 
reference set of cases.

Reconstructible outbreak A subset of the reference tree that contained only the sampled 
infected hosts and their ancestors.

Transmission scenario Describes the combination of: the type of epidemiological system 
(multi- or single-host), whether all species contribute to 
transmission (presence or absence of dead-end hosts), the host-
species of the index case (badger or cattle) and the mutation rate 
(low or high).

388 Results

389 1. Transmission tree reconstruction

390 While convergence was not a limiting factor for outbreaker2, it could not be obtained for 

391 every set of cases in BEAST2 nor every consensus phylogenetic tree with TransPhylo. We were 

392 thus restrained to 21 out of 30 reference trees (126 reconstructed trees in total). The reference 
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393 trees from which we could not reconstruct trees in TransPhylo showed a higher median number 

394 of infected hosts compared to those whose set of sequences and trees converged (S1 Table). 

395 Computational time varied greatly between sets of cases (or consensus phylogenetic 

396 trees) and reconstruction methods: less than 10 min for all 126 trees reconstructed by seqTrack, 

397 from less than 20 min (when only 100,000 iterations were needed) to two hours per tree 

398 reconstructed by outbreaker2, and from less than an hour to over 12 hours (for 2,500,000 

399 iterations) per tree reconstructed by TransPhylo. Moreover, phylogenetic reconstruction with 

400 BEAST2 was needed to implement TransPhylo and computational time also varied between 

401 sets of cases: from five hours to two days. In total, the computational time for these 378 (126 

402 trees*3 methods) reconstructed trees was around three months.

403 The median proportion of unique sequences in the reference set of cases for which 

404 convergence was obtained was 6.1%. The median of the mean transmission divergence was 

405 0.19 (S1 Table) and the majority of transmission pairs shared the same sequence (S1 Fig).

406 All trees reconstructed by outbreaker2 as well as all transmission probability matrices 

407 estimated by TransPhylo, for which we kept the most probable infectors, presented cycles.

408 2. Epidemiological indicators

409 2.1 Accuracy

410 When all sequences were sampled, the median proportion of correctly reconstructed 

411 transmission events (Fig 2) was 3.4% (range: 1.3-12.1) for trees reconstructed by seqTrack, 

412 8.0% (2.2-11.3) for outbreaker2 and 8.9% (6.0-16.8) for TransPhylo (S2 Table). 

413 Fig 2. Proportion of transmission events reconstructed from all sequences present in reference 
414 trees according to method. 

415 Compared to outbreaker2, the probability of reconstructing a correct transmission event 

416 was significantly lower for seqTrack (OR=0.51, p-value<0.001) but significantly higher for 
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417 TransPhylo (OR=1.30, p-value<0.001) (Table 2). In trees reconstructed by seqTrack, sampling 

418 schemes where wild boars were not sampled increased significantly the probability of 

419 reconstructing a correct transmission event (OR=1.37 and 1.30, p-value=0.001 and 0.008 for 

420 SW and T+SW respectively). Results did not show a significant effect of the sampling scheme 

421 on accuracy for the other two methods (Table 2).

422 Table 2. Presence of reconstructed transmission events in reference trees tested with a Binomial 
423 GLMM using reconstruction method, interaction between method and sampling scheme as fixed 
424 effects. 

outbreaker2 seqTrack TransPhyloFixed effects OR p-value OR p-value OR p-value
Method - - 0.51 <0.001 1.30 <0.001
Method :T 0.99 0.89 0.94 0.54 0.91 0.17
Method :SB 0.91 0.21 0.95 0.60 1.08 0.30
Method :T+SB 0.92 0.32 0.94 0.57 1.11 0.14
Method :SW 1.08 0.33 1.37 0.001 1.03 0.64
Method :T+SW 1.07 0.41 1.30 0.008 1.01 0.88

425 OR stands for odds ratio. Results in bold mean that the p-value was <0.05. The outbreaker2 method, the 
426 reference sampling scheme was set as reference, hence the “-“ present on the method line and the 
427 absence of the reference sampling scheme. T stands for “temporal bias”, SB for “badger bias” and SW 
428 for “wild boar bias”. T+SB (T+SW) combined the temporal and the badger (wild boar) bias.

429 2.2 Super-spreaders 

430 While in the reference trees the maximum number of transmission events a single 

431 infected host could be responsible for ranged from 9 to 27 (median: 14) and no super-spreaders 

432 were identified, all trees reconstructed by seqTrack presented super-spreaders. The median of 

433 the maximum number of transmission events a single super-spreader could be responsible for 

434 ranged from 90 to 108, while the median number of transmission events in the reconstructed 

435 trees ranged from 200 to 244 (S3 Table). The most frequent host-species responsible for this 

436 maximum number of transmission events was cattle (from 57% in the reference sampling 

437 scheme to 86% in the combined temporal and wild boars bias). None of the trees reconstructed 

438 by the two other methods presented super-spreaders. 
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439 2.3 Host-species of the index case 

440 When all sequences were sampled, the proportion of correctly reconstructed host-

441 species of the index case (i.e. cattle) was 76% for trees reconstructed by seqTrack, 81% for 

442 outbreaker2 and 57% for TransPhylo (S4 Table). Except when considering the temporal bias 

443 alone with the TransPhylo method, a temporal and a badger bias (combined or not) led to an 

444 increase in the proportion of correctly reconstructed index cases.

445 2.4 Outbreak size

446 In the reference trees, the median number of infected hosts was 245 (S5 Table). Overall, 

447 the simulated outbreak size was close to the credible interval estimated by outbreaker2 (Fig 3). 

448 Indeed, this credible interval contained the simulated outbreak size for all 21 trees reconstructed 

449 with the reference and temporal sampling scheme. However, a species bias (combined or not 

450 with a temporal bias) decreased the number of trees that correctly estimated the outbreak size 

451 and led to a majority of trees that underestimated the outbreak size (20/21 with SB and T+SB, 

452 16/21 for SW and 18/21 for T+SW). According to the statistical model, the outbreak size 

453 estimated by outbreaker2 was not significantly different to the reference tree size (IRR= 1.14, 

454 p-value=0.43) and sampling schemes had no significant effect on outbreak size (Table 3). 

455 Fig 3. Outbreak size credible interval estimated by outbreaker2 and TransPhylo compared to 
456 simulated outbreak size. The point corresponds to the simulated outbreak size. T stands for “temporal 
457 bias”, SB for “badger bias” and SW for “wild boar bias”. T+SB (T+SW) combined the temporal and the 
458 badger (wild boar) bias.

459 TransPhylo could greatly overestimate the outbreak size and the difference between the 

460 lower bound of the interval and the simulated outbreak size could exceed 10,000 infected hosts 

461 (Fig 3). The reference and temporal sampling scheme led to an overestimation of the outbreak 

462 size in the majority of reconstructed trees (19/21 and 16/21): the credible intervals contained 

463 the simulated outbreak size in 3 and 5 out of 21 trees, respectively. The number of correct 

464 estimations remained low for the other types of biases. The statistical model confirmed these 
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465 results, since the outbreak size estimated by TransPhylo was significantly higher than the 

466 simulated outbreak size (IRR= 2.92, p-value <0.001). Moreover, all biased schemes except for 

467 the temporal bias significantly lowered the estimated outbreak size (IRR ranging from 0.49 to 

468 0.68 and p-value <0.01). 

469 Table 3. Estimated outbreak size tested with a Negative Binomial GLMM using reconstruction 
470 method, interaction between method and sampling scheme as fixed effects. 

outbreaker2 TransPhyloFixed effects IRR p-value IRR p-value
Method 1.14 0.43 2.92 <0.001
Method :T 0.98 0.90 0.96 0.80
Method :SB 0.83 0.24 0.50 <0.001
Method :T+SB 0.83 0.23 0.49 <0.001
Method :SW 0.87 0.34 0.68 0.01
Method :T+SW 0.85 0.28 0.65 0.005

471 IRR stands for incidence rates ratio. Results in bold mean that the p-value was <0.05. The reference tree 
472 size was set as the offset and the reference sampling scheme was set as reference. T stands for “temporal 
473 bias”, SB for “badger bias” and SW for “wild boar bias”. T+SB (T+SW) combined the temporal and the 
474 badger (wild boar) bias.

475 2.5 Host-species contribution to transmission

476 The median number of transmission events due to each host-species in the reference 

477 trees was 175 for cattle, 24 for badgers and 40 for wild boars (S6 Table). 

478 In the reference sampling scheme, the credible interval contained the simulated number 

479 of transmission events due to each host-species in few of the trees reconstructed by outbreaker2 

480 (2/21 trees for cattle, none for badger and wild boars) and TransPhylo (5/21 trees for cattle, 

481 4/21 for badgers and 3/21 for wild boars) (Fig 4). Otherwise, the number of transmission events 

482 in the majority of the remaining trees was either underestimated (cattle: 14/21 trees for 

483 outbreaker2 and 13/21 trees for TransPhylo), overestimated (badgers: 19/21 trees for 

484 outbreaker2 and 13/21 trees for TransPhylo) or no particular trend was observed (wild boars). 

485 Similar results were obtained with the other five sampling schemes (S2-S4 Figs).

486 Fig 4. Credible interval of host-species contribution compared to simulated outbreaks. The credible 
487 interval was either estimated by outbreaker2 or by TransPhylo. The point corresponds to the number of 
488 transmission events due to each host-species in the simulated outbreak. Only the reference sampling 
489 scheme is considered here.
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490 According to the statistical model, the underestimation of the number of reconstructed 

491 transmission events due to cattle (Fig 4) was not significant for either method (Table 4). The 

492 statistical model confirmed the results obtained for badgers, since the number of transmission 

493 events due to badgers estimated by both methods was significantly higher than the simulated 

494 number (IRR=2.06 for outbreaker2 and 1.70 for TransPhylo, p-value<0.001) (Table 4). Results 

495 did not show a significant effect of the sampling scheme on badger contribution for 

496 outbreaker2. However, the sampling scheme with the least number of sampled hosts (temporal 

497 and wild boar biases combined) significantly decreased the number of transmission events due 

498 to badgers compared to the reference sampling scheme in trees reconstructed by TransPhylo. 

499 Finally, the number of transmission events due to wild boars estimated by both methods was 

500 not significantly different to the simulated number in the reference tree (Table 4). 

501 Table 4. Number of transmission events due to each host-species tested with a Negative Binomial 
502 GLMM per host-species using method and interaction between method and sampling scheme as 
503 fixed effects. 

outbreaker2 TransPhyloFixed effects IRR p-value IRR p-value
1. Cattle contribution

Method 0.86 0.09 0.95 0.58
Method :T 1.04 0.58 1.02 0.77
Method :SB 1.06 0.41 0.95 0.45
Method :T+SB 1.06 0.39 0.91 0.20
Method :SW 1.01 0.91 1.03 0.63
Method :T+SW 1.06 0.37 1.09 0.20

2. Badger contribution
Method 2.06 <0.001 1.70 <0.001
Method :T 0.80 0.09 0.84 0.20
Method :SW 1.12 0.39 0.91 0.47
Method :T+SW 0.87 0.27 0.74 0.02

3. Wild boar contribution
Method 1.33 0.12 1.04 0.85
Method :T 0.92 0.62 1.29 0.13
Method :SB 1.08 0.65 1.06 0.72
Method :T+SB 1.03 0.87 1.05 0.80

504 IRR stands for incidence rates ratio. Results in bold mean that the p-value was <0.05. The number of 
505 transmission events in the reference tree was set as the offset and the reference sampling scheme was 
506 set as reference. T stands for “temporal bias”, SB for “badger bias” and SW for “wild boar bias”. T+SB 
507 (T+SW) combined the temporal and the badger (wild boar) bias. 
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508 3. Alternative transmission scenarios

509 3.1 Higher mutation rate

510 As expected, sequences simulated with a higher mutation rate presented a higher 

511 proportion of unique sequences (median: 33.4%) and a higher mean transmission divergence 

512 (median: 0.69) (S7 Table). 

513 A higher mutation rate increased markedly the median accuracy for all three methods: 

514 25.7% (+17.7, range: 15.9-33.3) for outbreaker2, 15.3% (+11.9, range: 8.2-33.3) for seqTrack 

515 and 21.2% (+12.3, range: 13.2-29.3) for TransPhylo (S8-S9 Tables). While the majority of trees 

516 reconstructed by seqTrack again contained super-spreaders (20/21), the median of the 

517 maximum number of transmission events due to a single super-spreader was lower when 

518 considering a higher mutation rate (35 vs. 108, S10 Table).

519 The credible interval contained the simulated outbreak size for 16/21 trees reconstructed 

520 by outbreaker2 and in only 4/21 trees reconstructed by TransPhylo, otherwise the outbreak size 

521 was overestimated (Fig 5 and S11 Table). For both methods, the credible interval contained the 

522 number of transmission events due to each host-species in only 4/21 trees for cattle, 3/21 

523 (outbreaker2) and 5/21 (TransPhylo) for badgers and 1/21 for wild boars (Fig 6). Otherwise, 

524 cattle contribution was underestimated by TransPhylo (16/21 trees in Fig 6, and S12 Table) and 

525 wildlife contribution was overestimated by outbreaker2 (13/21 trees for badgers and wild boars 

526 in Fig 6, and S12 Table).

527 Fig 5. Outbreak size credible interval compared to simulated outbreak size in the high mutation 
528 rate scenario. The credible interval was either estimated by outbreaker2 or by TransPhylo. The point 
529 corresponds to the simulated outbreak size.

530 Fig 6. Credible interval of host-species contribution compared to simulated outbreaks in the high 
531 mutation rate scenario. The credible interval was either estimated by outbreaker2 or by TransPhylo. 
532 The point corresponds to the number of transmission events due to each host-species in the simulated 
533 outbreak.
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534 3.2 Single-host system

535 Sequences simulated within a single-host system presented a lower proportion of unique 

536 sequences (median: 3.6%) and a lower mean transmission divergence (median: 0.14) (S7 

537 Table). 

538 Similarly to the multi-host systems, the accuracy was the highest for TransPhylo (6.5%), 

539 then outbreaker2 (5.5%) and the lowest for seqTrack (2%) (S8-S9 Table). Super-spreaders were 

540 present in all trees reconstructed by seqTrack but also in trees reconstructed by outbreaker2 

541 (5/26 trees, median of maximum 39 transmission events due to a single super-spreader) and 

542 TransPhylo (10/26 trees, median: 39.5) (S10 Table).

543 The credible interval contained the simulated outbreak size in all 26 trees reconstructed 

544 by outbreaker2 and in 16/26 trees reconstructed by TransPhylo, otherwise the outbreak size 

545 was overestimated (Fig 7 and S11 Table). 

546 Fig 7. Outbreak size credible interval compared to simulated outbreak size in the single-host 
547 system scenario. The credible interval was either estimated by outbreaker2 or by TransPhylo. The point 
548 corresponds to the simulated outbreak size.

549 3.3 Dead-end epidemiological host

550 The credible interval never contained the simulated number of transmission events due to 

551 wild boars and wild boar contribution was overestimated in all 17 reconstructed trees (Fig 8). 

552 Otherwise, similarly to the multi-host systems without a dead-end epidemiological host, cattle 

553 contribution tended to be underestimated by both methods (17/17 trees for outbreaker2 and 

554 10/17 for TransPhylo) and badger contribution, overestimated by outbreaker2 (15/17 trees in 

555 Fig 8, and S12 Table).

556 Fig 8. Credible interval of host-species contribution compared to simulated outbreaks in the dead-
557 end epidemiological host scenario. The credible interval was either estimated by outbreaker2 or by 
558 TransPhylo. The point corresponds to the number of transmission events due to each host-species in the 
559 simulated outbreak.
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560 3.4 Badger index

561 The proportion of correctly reconstructed badger index cases compared to cattle index 

562 cases was markedly lower  for outbreaker2 (28%), seqTrack (28%) and TransPhylo (11%).

563 For all transmission scenarios, even the reference multi-host scenario, similar results 

564 were obtained when considering the reference tree or the reconstructible outbreak (S2 Appendix 

565 and S11-S12 Tables). 

566 Discussion

567 In this work, we evaluated and compared the performances of three outbreak 

568 reconstruction methods on simulated M. bovis data in a multi-host system, as well as the impact 

569 of observation biases on these performances. M. bovis, characterized by a low mutation rate, is 

570 a prime example of a multi-host pathogen for which sampling biases complicate the estimation 

571 of host-species contribution to transmission, an estimation which is however necessary to select 

572 appropriate measures for disease control. Contrary to previous evaluations of outbreak 

573 reconstruction methods, the transmission model we used to simulate our data was not tailored 

574 to a specific method [25,31,52] but to the slowly evolving multi-host pathogen. Moreover, the 

575 epidemiological indicators we estimated were also relevant in a multi-host system and not just 

576 general performance indicators [53].

577 Reconstructing transmission trees can have multiple objectives according to the studied 

578 pathogen and epidemiological system, the most obvious objective is the accurate reconstruction 

579 of who-infected-whom. The proportion of correctly reconstructed transmission events (which 

580 we called accuracy) has previously been used to evaluate performances of outbreak 

581 reconstruction methods [25,53]. With the low mutation rate characteristic of M. bovis, we 

582 estimated poor accuracies (median accuracy lower than 9% for all three methods). Sobkowiak 

583 et al. compared these outbreak reconstruction methods on real M. tuberculosis data, which is 
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584 also a slow-evolving pathogen, and estimated the positive predictive value (PPV), meaning the 

585 number of epidemiologically linked case-contact pairs that were correctly identified (preprint, 

586 [54]). Contrary to the accuracy indicator we estimated, the links between cases were not 

587 directed, we thus expected this study to estimate a higher number of correctly reconstructed 

588 cases. The PPV estimated by Sobkowiak et al. was 15% for TransPhylo, 11% for outbreaker2 

589 and 10% for seqTrack. These PPV values were in the range of values we estimated for accuracy 

590 and the ranking of methods was the same as the one we obtained (with TransPhylo as the best, 

591 followed by outbreaker2). 

592 Accuracy was little influenced by the sampling biases or the complexity of the 

593 epidemiological system, however it was greatly dependent on the mutation rate. When the 

594 mutation rate was multiplied by a factor of 10 (~6.6 x 10-5 substitutions per site per day), the 

595 accuracies we estimated more than doubled. In the study that presented and tested outbreaker2, 

596 Campbell et al. estimated the average proportion of transmission pairs correctly inferred when 

597 using solely temporal and genetic information from simulated Ebola virus (mutation rate: 0.31 

598 x 10-5 per site per day) and SARS-CoV-1 (1.14 x 10-5 per site per day) outbreaks [25]. Moreover, 

599 Firestone et al. compared TransPhylo and outbreaker2 on six FMDV outbreaks simulated with 

600 a high mutation rate (2.2 x 10-5 per site per day) and estimated the proportion of infected hosts 

601 (premises) for which the most likely source predicted was the true source [53]. Since both 

602 indicators corresponded to the accuracy we estimated, we expected similar results. However, 

603 Campbell et al. estimated an average accuracy of 29% (from the simulated Ebola data) and 70% 

604 (SARS-CoV-1). In addition, when genomic data was available for all infected hosts, the 

605 accuracy estimated by Firestone et al. was 4% for TransPhylo and 35% for outbreaker2. While 

606 these values were respectively higher for outbreaker2 and lower for TransPhylo compared to 

607 the range of values we calculated, the ranking of methods obtained by Firestone et al. was the 

608 same as the one we obtained (with outbreaker2 as the better of the two).
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609 The lowest accuracy always being estimated for seqTrack could be due to the fact that 

610 this method does not consider a transmission model [21], but simply sampling dates and genetic 

611 distances. As mentioned by Nigsch et al., seqTrack is thus strongly dependent on the temporal 

612 order of sampling dates and when the sampling order does not necessarily coincide with the 

613 infection order (here, because of imperfect case detection and sampling protocol varying 

614 according to host-species), “the order of ancestries cannot be inferred with certainty” [55]. 

615 Contrary to what we observed with outbreaker2 and TransPhylo, trees reconstructed by 

616 seqTrack presented super-spreaders with extreme numbers of transmission events due to a 

617 single infected host (over a hundred transmissions) that lowered when considering a higher 

618 mutation rate. The low genetic diversity combined with the lack of a transmission model could 

619 therefore account for the reconstruction of super-spreaders, which in turn could contribute to 

620 the low accuracy. Similarly, the lower genetic diversity obtained with the single-host system 

621 could explain the presence of less prolific super-spreaders in trees reconstructed with 

622 TransPhylo and outbreaker2.

623 While we estimated poor accuracies for all three methods, a high proportion of correctly 

624 reconstructed directed transmission events is difficult to obtain and might not be the main 

625 objective when studying a multi-host system implicating wildlife or with a low sampling 

626 proportion. However, the presence of super-spreaders is an important indicator to consider since 

627 it highlighted the fact that seqTrack reconstructed unrealistic transmission dynamics with 

628 prolific super-spreaders. 

629 Other than reconstructing who-infected-whom, outbreak reconstruction can aim to 

630 estimate epidemiological indicators, from which practical measures can be directly inferred. 

631 The first we studied was the outbreak size, which could by comparison with the number of 

632 sampled cases be informative e.g. of the need to increase the sampling effort [35]. Outbreak 

633 size estimation was sensitive to sampling biases, the complexity of the epidemiological system 
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634 and also the mutation rate. The outbreak size was correctly estimated by outbreaker2 but 

635 consistently overestimated by TransPhylo, even though we considered the same non-

636 informative prior for the sampling proportion when implementing both methods. This 

637 overestimation could therefore be due to the fact that Didelot et al. developed this method to 

638 study partially sampled M. tuberculosis outbreaks and account for within-host diversity [31], 

639 whereas we assumed all cases sampled in the reference scheme and no within-host diversity in 

640 the sequence simulation. Furthermore, when not all sequences were sampled, better results were 

641 obtained for TransPhylo and the estimated outbreak size significantly lowered.

642 With a higher mutation rate, TransPhylo also overestimated the outbreak size, but to a 

643 lesser extent. Xu et al. developed in 2019 a method of simultaneous inference on multiple M. 

644 tuberculosis clusters based on TransPhylo. From this study, Xu et al. discussed the link between 

645 mutation rate and sampling proportion, explaining that with a faster assumed clock, the 

646 branches in the phylogenetic trees are shorter and TransPhylo is therefore less likely to place 

647 unsampled cases along them [56]. This could explain the lower effect we estimated.

648 Some epidemiological indicators are relevant only in the context of a multi-host system 

649 and reveal the host-species that should be primarily targeted, such as the identification of the 

650 host-species responsible for the outbreak and the accurate reconstruction of each host-species’ 

651 contribution to the outbreak. The index case indicator was sensitive to sampling biases and to 

652 the host-species of the index case. The proportion of correctly reconstructed host-species of the 

653 index case was high for outbreaker2 and seqTrack (over 75%) when considering cattle index 

654 cases. However, the fact that TransPhylo could designate unsampled hosts as index cases, 

655 combined with a tendency to overestimate the outbreak size and thus, the number of unsampled 

656 hosts, could explain this method’s poorer performance. Moreover, biased sampling schemes 

657 generally led to a higher proportion of correctly reconstructed host-species of the index case, 

658 which could be explained by the fact that only non-index cases (wildlife) were concerned by 
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659 these sampling schemes. Finally, this indicator was sensitive to the host-species responsible for 

660 the outbreak and had a poorer performance when the index case was a badger.

661 Host contribution estimation was influenced by the sampling biases and the complexity 

662 of the epidemiological system but not the mutation rate. With either mutation rates, outbreaker2 

663 and TransPhylo poorly reconstructed the contribution of each host-species and tended to 

664 underestimate the host-species that contributed the most to transmission (cattle) while 

665 overestimating those that contributed the least (wildlife). Both outbreak reconstruction methods 

666 were developed and tested on single-host systems [21,25,31], and not on multi-host systems 

667 where each host-species play a different role. While TransPhylo has previously been applied to 

668 multi-host systems, a human-deer SARS-CoV-2 system [35] and two badger-cattle bTB 

669 systems [57,58], the estimation of host-species contribution to transmission in these systems 

670 was not straightforward. The high number of unsampled cases estimated in the human-deer 

671 system (mean sampling proportion of 0.1%) complicated the inference of transmission events 

672 and while phylogenetic evidence seemed to support multiple human-to-deer spillover events, 

673 deer-to-human transmission could not be ruled out [35]. In a badger-cattle system in the South-

674 West of England, van Tonder et al. were interested in between-species transmission and as such 

675 TransPhylo was implemented in addition to a Bayesian ancestral state reconstruction method 

676 (BASTA, [16]), which was primarily used to estimate the number of within- and between-

677 species transitions [57]. Finally, Akhmetova et al. also implemented TransPhylo in addition to 

678 Bayesian phylogenetic methods in a badger-cattle system in Northern Ireland and highlighted 

679 a mostly cattle-driven (over 90% of strongly supported reconstructed transmission events) 

680 epidemic in the region [58]. 

681 Biases simulated with the sampling schemes resulted in a decrease in the number of 

682 infected hosts for which contribution estimates was overestimated. Therefore, when sampling 

683 schemes had a significant effect on host contribution, they tended to yield better results with 
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684 this particular host-system and either lowered (for wildlife) or increased (for cattle) the 

685 estimated number of transmission events. In addition, neither outbreaker2 nor TransPhylo 

686 could accurately reconstruct asymmetrical roles between host-species, i.e. the presence of a 

687 dead-end epidemiological host. 

688 In the epidemiological multi-host system we extended, the basic reproduction number 

689 varied according to the combination of host-species considered [39]. Moreover, Bouchez-

690 Zacria et al. calculated inter- and intra-species generation time distributions that showed a more 

691 rapid spread from cattle farms than from badger groups. We added to the transmission model, 

692 a third population of host-species (wild boars) that could transmit or not the pathogen. The 

693 complexity of this multi-host system could have contributed to the poor results we obtained for 

694 host-species contribution. Indeed, both outbreaker2 and TransPhylo considered a single 

695 generation time, sampling time and/or offspring distribution for all three host-species, not 

696 accounting for host-species variation in the natural history of the disease nor the uneven 

697 transmission dynamics. A multi-host system where all three host-species contributed unevenly 

698 to transmission is not unusual, results obtained from Bayesian ancestral state reconstructions 

699 (Mascot, [19]) in other French regions point to the presence of similarly complex bTB multi-

700 host systems [59]. Furthermore, the impact of said complexity on method performance does not 

701 only concern systems with multiple host-species, pathogens for which different categories (e.g. 

702 age groups and/or vaccination status [60]) of hosts can be defined (according to infectiousness 

703 or duration of infection) also constitute complex epidemiological systems. Finally, considering 

704 what can be reconstructed by the method (reconstructible outbreak) instead of the reference tree 

705 did not improve results for the outbreak size nor the host contribution indicators.

706 We were limited by practical considerations and the ensuing choices we made. With the 

707 M. bovis data we simulated, convergence was a limiting factor for TransPhylo but not for 

708 outbreaker2. Indeed, in order to limit the computational time, we fixed a maximum number of 
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709 iterations, which narrowed the number of reconstructed trees we could compare to those that 

710 converged in less than 48 hours in BEAST2 and 12 hours in TransPhylo. Moreover, in order to 

711 better compare reconstructions, we used the same evolutionary model for the phylogenetic 

712 reconstruction in BEAST2. A more adapted evolutionary model could lead to a more accurate 

713 phylogenetic tree reconstruction and thus, a better performance from TransPhylo. 

714 With the sequence simulation model we implemented, we simulated a low proportion 

715 of unique sequences from 13-year-long outbreaks, which is consistent with M. bovis low 

716 mutation rate. In the study on 167 M. bovis sequences in the South-West of France from which 

717 we selected the value of the mutation rate [12], the proportion of unique sequences isolated 

718 (37.1%) was around six times higher than the median proportion we simulated. The higher 

719 proportion of unique sequences in this previous study could be due to the fact that not all 

720 sequences are sampled in real data and that the outbreak lasted longer as suggested by the 

721 MRCA which was estimated to have been circulating 27 years earlier. In the sequence 

722 simulation model, we also considered the same mutation rate within all three host-species, 

723 however whether M. bovis evolves the same way within different host-species remains 

724 unknown. Indeed, M. tuberculosis mutation rates in humans may decrease during periods of 

725 latency, which differs from what was observed in non-human primates [61]. A similar 

726 phenomenon could lead to variability in the evolution of M. bovis within and between host-

727 species [62] and thus, to the difference in the proportion of unique sequences observed and 

728 simulated.

729 We chose to compare results from the same epidemiological and genetic data for all 

730 three methods. While difficult to implement when studying a slowly evolving multi-host system 

731 that implicates wildlife, contact data can be directly incorporated in the transmission tree 

732 inference with outbreaker2. The addition of contact data led to higher accuracies than those 

733 obtained with only temporal and genetic data in simulated Ebola virus and SARS-CoV-1 
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734 outbreaks [25]. Similarly, when limited genetic diversity was expected in their study on M. 

735 avium ssp paratuberculosis, Nigsch et al. took advantage of the fact that seqTrack can 

736 incorporate additional data in the form of weighting matrices [55]. They thus resolved equally 

737 probable ancestries using known exposure time or susceptibility based on accepted 

738 epidemiological knowledge. Even when the method does not allow additional epidemiological 

739 data, Xu et al. mentioned that one of the strengths in their study on M. tuberculosis transmission 

740 within a Spanish cohort lied in the extensive contact investigation data that allowed them to 

741 validate the results of their genomic and TransPhylo analysis [63]. Using these available 

742 features and strategies could have improved results obtained for outbreaker2 and seqTrack as 

743 well as help evaluate those from TransPhylo. However, since limited real contact data can be 

744 obtained for wildlife, we chose not to include additional epidemiological data in this study. 

745 Furthermore, we limited our study to only three methods, available in a package and that only 

746 needed sampling times as epidemiological data. Additional methods would be interesting to test 

747 on this simulated data, especially methods that simultaneously inferred phylogenetic and 

748 transmission trees like phybreak [26], since none were considered here. Finally, the simulated 

749 multi-host data could also be used to test Bayesian ancestral state reconstruction methods like 

750 Mascot [19], previously used to study complex bTB multi-host systems [59].

751 The overall poor performances we obtained for accuracy and host-species contribution, 

752 even without biased sampling schemes, suggest that when studying the transmission of a slowly 

753 evolving pathogen in complex multi-host systems, outbreak reconstruction methods should not 

754 be implemented alone but as a complement to epidemiological and phylogenetic methods. The 

755 difficulty in estimating host-species contribution highlights the need to develop new outbreak 

756 reconstruction methods adapted to complex epidemiological systems as well as evaluate these 

757 methods on data simulated in multi-host systems and not specific to the each method. 
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outbreak as a reference.

S1 Fig. Proportion of transmission pairs with 0, 1 and 2 SNPs between their sequences according 
to transmission scenario. Reference stands for the complex multi-host system where cattle are index 
cases and wild boars contribute to transmission. High mutation rate is the same scenario as the reference 
except for the higher mutation rate used to simulate sequences. Single-host stands for the only-cattle 
scenario. Dead-end host stands for the scenario where wild boars did not contribute to transmission and 
badger index, the reference scenario with badger as index cases.

S2 Fig. Credible interval of the number of transmission events due to cattle estimated by 
outbreaker2 and TransPhylo compared (color) to the number in the simulated outbreak (point) 
according to sampling scheme. T stands for “temporal bias”, SB for “badger bias” and SW for “wild 
boar bias”. T+SB (T+SW) combined the temporal and the badger (wild boar) bias.

S3 Fig. Credible interval of the number of transmission events due to badgers estimated by 
outbreaker2 and TransPhylo compared (color) to the number in the simulated outbreak (point) 
according to sampling scheme. T stands for “temporal bias”, SW for “wild boar bias” and T+SW 
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S4 Fig. Credible interval of the number of transmission events due to wild boars estimated by 
outbreaker2 and TransPhylo compared (color) to the number in the simulated outbreak (point) 
according to sampling scheme. T stands for “temporal bias”, SB for “badger bias” and T+SB combined 
the temporal and the badger bias.
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