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A NOTE ON THE RELAXATION PROCESS IN A CLASS OF
NON-EQUILIBRIUM TWO-PHASE FLOW MODELS∗

JEAN-MARC HÉRARD †

Abstract. We focus here on the relaxation process in a class of two-phase flow models, considering
first gas-liquid flows, and then liquid-vapour mixtures. The whole analysis enables to exibit a few
conditions on the flow in order to guarantee the time decay of some variables. The former may depend
on initial conditions but also on equations of state within each phase. The present analysis aims at
providing some better understanding of inner processes, and it is also useful for numerical purposes,
as emphasized in appendix B. It is a sequel of paper [25] where the sole pressure relaxation process in
some multiphase flow models is investigated.
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1. Introduction
The main objective of the present note is to examine the relaxation process in

a class of non-equilibrium two-phase flow models. For that purpose, we consider in
the sequel a class of two-phase flows that we briefly recall below (see also, among
others [1, 3, 7, 11, 12, 14, 15, 17, 18, 20, 21, 28, 30, 31, 34]). Both gas-liquid flows (without
any mass transfer), and liquid-vapour flows with a unique component (for instance
water) will be examined in the sequel. Actually, we wish to examine whether
solutions of the governing set of equations comply with the expected relaxation
process for pressure, velocity and temperature gaps ∆P,∆U,∆T between phases (and
also Gibbs potential gaps when focusing on liquid-vapour flows including mass transfer).

In the case of gas-liquid flows, the statistical fractions of immiscible liquid phase
and gas phase are noted αl(x,t) and αg(x,t), and they are such that:

αl(x,t)+αg(x,t) = 1

If we turn to liquid-vapour flows, we will note αl(x,t) and αv(x,t) statistical fractions
for the liquid phase and vapour phase respectively. Of course they will comply with the
constraint:

αl(x,t)+αv(x,t) = 1

In order to ease notations, we will priviledge the liquid phase in both cases.

Within the k−phase, Uk, Pk, ρk, mk =αkρk and Ek will respectively denote the
phasic mean velocity, mean pressure, mean density, mass fraction and mean total
energy, setting:

Ek =ρk(εk(ρk,Pk)+U2
k/2)

The gas-liquid state variable W lg will be:

W lg = (αl,ml,mg,mlUl,mgUg,αlEl,αgEg)
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while the liquid-vapour state variable will correspond to:

W lv = (αl,ml,mv,mlUl,mvUv,αlEl,αvEv)

The governing set of balance equations for mass, momentum and energy, within
phase k, and for the statistical fraction αl, write:

∂t (αl)+VI(W )∇αl=φl(W ) ;
∂t (mk)+∇.(mkUk) = Γk(W ) ;
∂t (mkUk)+∇.(mkUk⊗Uk+αkPkId)−ΠI(W )∇αk =SQk

(W ) ;
∂t (αkEk)+∇.(αkUk(Ek+Pk))+ΠI(W )∂t (αk) =SEk(W ) .

(1.1)

for k∈ (l,g), or k∈ (l,v), while setting Γk(W ) = 0 for gas-liquid flows.

Source terms are interfacial transfer terms, such that :∑
k

SEk(W ) = 0

together with: ∑
k

SQk
(W) =0

Moreover, for liquid-vapour flows, mass transfer terms agree with:

∑
k

Γk(W ) = 0

We assume that the interfacial velocity takes the form:

VI(W ) =β(W )Ul+(1−β(W ))Uv,g

(with some abuse of notation), in order to satisfy Galilean invariance, and also that the
scalar function β(W ) guarantees unique field by field jump conditions (see below).

If η,Fη denotes the mixture entropy - entropy flux pair:

η=
∑
k

mkSk(Pk,ρk), Fη =
∑
k

mkSk(Pk,ρk)Uk, (1.2)

for given phasic entropies Sk(Pk,ρk) such that:

c2k∂Pk (Sk(Pk,ρk))+∂ρk (Sk(Pk,ρk)) = 0 ,

where:

ρkc
2
k = (

Pk
ρk
−ρk∂ρk (εk(Pk,ρk)))/(∂Pk (εk(Pk,ρk)))

we recall that there exists a unique pressure of the form:

ΠI(W ) =µ(W )Pl+(1−µ(W ))Pv,g (1.3)
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with µ(W )∈ [0,1], such that the following entropy balance holds:

∂t (η)+∇.(Fη) =RHSη(W )≥0, (1.4)

The latter function reads:

µ(W ) =
(1−β(W ))Tv,g

(1−β(W ))Tv,g+β(W )Tl
(1.5)

setting:

1

Tk
=
∂Pk (Sk(Pk,ρk))

∂Pk (εk(Pk,ρk))
.

Suitable closure laws for all source terms Γl(W ), φl(W ), SQl(W ) and SEl(W ),
complying with the entropy inequality (1.4) , will be recalled in the sequel. Thus the
function µ(W ) is totally defined once β(W ) is given. Eventually, we note that the
closure law (1.3) satisfies the Realizable Interfacial Pressure condition (see appendix
A).

Specific forms of the function β(W ) are recalled below, while focusing on the
sole convective part associated with system (1.1). We restrict to the one-dimensional
framework, and we first recall the following classical results concerning the structure of
the one-dimensional convective subset of (1.1) :

• The convective system arising from (1.1) is hyperbolic. Its eigenvalues are real:

λ0(W ) =VI(W ) ;

λ1(W ) =Ul−cl ; λ2(W ) =Ul ; λ3(W ) =Ul+cl ;

λ4(W ) =Uv,g−cv,g ; λ5(W ) =Uv,g ; λ6(W ) =Uv,g+cv,g ,

(1.6)

and the set of associated right eigenvectors spans the whole space away from the
resonance state:

|Uk−VI(W )|= ck (1.7)

• Waves associated with eigenvalues Uk±ck (with k∈ (l,v) or k∈ (l,g)) are gen-
uinely non linear ; besides, waves associated with eigenvalues Uk are linearly
degenerate.

• The wave associated with λ0(W ) is linearly degenerate when:

β(W ) = 0 , or: β(W ) = 1 , (1.8)

or when:

β(W ) =
ml

ml+mv,g
. (1.9)

• System (1.1) can be symmetrized away from resonant states (1.7) in the
one-dimensional framework.
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Detailed proofs of the first three properties can be found in [7,11] and in [8,9,31] for the
latter feature, in the 1D-case. Moreover, a proof of symmetry for a class of multiphase
hybrid models has been pointed out in the recent paper [6], still in the 1D-case. We
must note at this stage that a fully different proof of symetrization can also be found
in [16] in the one-dimensional framework for hyperbolic models. The latter point has
major consequences (see [29, 35]). Eventually we emphasize that one straightforward
consequence of the particular choices (1.8), (1.9) of β(W ) is that shock solutions are
well defined (see in particular [19] for a detailed analysis of that feature).

2. Gas-liquid two-phase flow models
We first focus on gas-liquid two-phase flow models, thus omitting mass transfer.

In the following, we consider an homogeneous situation, where:

∇ψ= 0

whatever ψ stands for. Hence system (1.1) reduces to :
∂t (αl) =φl(W ) ;
∂t (mk) = 0 ;
∂t (mkUk) =SQk

(W ) ;
∂t (αkEk)+ΠI(W )∂t (αk) =SEk(W ) .

(2.1)

since the interfacial mass transfer Γk(W ) is null. The latter may be rewritten as:

∂t (αl) =φl(W ) ;
∂t (αlEl)+ΠI(W )∂t (αl) =SEl(W ) ;
∂t (mlUl) =SQl

(W ) ;
∂t (ml) =∂t (mg) = 0 ;
∂t (mlUl+mgUg) = 0 ;
∂t (αlEl+αgEg) = 0 .

(2.2)

We emphasize that the entropy increases throughout step (2.2), since:

∂t (η)≥0 . (2.3)

2.1. Entropy consistent gas-liquid closure laws. A convenient way to
discuss closure laws consists in translating unkown quantities SQk

(W ) and SEk(W ),
thus setting: {

Dk(W ) =SQk
(W ) ;

ψk(W ) =SEk(W )−V EI (W )Dk(W ) ;
(2.4)

Since the latter terms represent interfacial transfer terms, this implies:

Dl(W )+Dg(W ) = 0

and also:

ψl(W )+ψg(W ) = 0

Using the same Galilean invariance argument as before, the interfacial velocity V EI (W )
is written as:

V EI (W ) =βE(W )Ul+(1−βE(W ))Ug
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and the unknown function βE(W ) will be assumed to lie in [0,1]. Hence we may recover
the mixture entropy budget in step (2.2):

∂t (η) =ψl(W )
(

1
Tl
− 1
Tg

)
+Dl(W )

(
V EI (W )−Ul

Tl
− V EI (W )−Ug

Tg

)
−φl(W )

(
ΠI(W )−Pl

Tl
− ΠI(W )−Pg

Tg

) (2.5)

or alternatively:

∂t (η) = 1
TlTg

ψl(W )(Tg−Tl)
+
(

1−βE(W )
Tl

+ βE(W )
Tg

)
Dl(W )(Ug−Ul)

+
(

1−µ(W )
Tl

+ µ(W )
Tg

)
φl(W )(Pl−Pg)

(2.6)

Hence, noting: ∆P=Pl−Pg ,
∆U =Ul−Ug ,
∆T =Tl−Tg ,

(2.7)

we end up with the classical entropy consistent closure laws for source terms.

Property 1: (Entropy consistent source terms for gas-liquid flow models)
Assume that source terms are such that:φl(W ) =K(W )∆P ,

Dl(W ) =−d(W )∆U ,
ψl(W ) =−q(W )∆T ,

(2.8)

with positive functions K(W ),d(W ),q(W ). Then solutions of system (2.2) guarantee:

∂t (η)≥0

�

Owing to (2.7), (2.6) and (2.8), this result is obtained in a straightforward way.

Pressure, temperature and velocity relaxation time scales respectively involved in
functions K(W ),q(W ),d(W ) will be noted τP (W ),τT (W ),τU (W ). We obviously
retrieve expected forms for drag terms and heat transfer terms d(W ) and q(W ). These
may be taken from [27], when focusing on temperature and velocity relaxation time
scales. Of particular interest, references [4, 5, 13] discuss closure laws for the pressure
relaxation time scales. Actually, more complex entropy consistent closure laws than
(2.8) might be considered, but this will not be discussed herein for sake of clarity.

2.2. Pressure-velocity-temperature relaxation process. Starting with
system (2.2), the governing equations of Pk,Tk,Uk can be derived in a straightforward
manner. These are:

mk∂t (Uk) =Dk(W ) ,
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mk∂Pk (εk) |ρk∂t (Pk) =ψk(W )+(V EI (W )−Uk)Dk(W )−(ΠI(W )−ρ2
k∂ρk (εk) |Pk)φk(W ) ,

and:

mk∂Tk (εk)|ρk∂t (Tk) =ψk(W )+(V EI (W )−Uk)Dk(W )−(ΠI(W )−ρ2
k∂ρk (εk) |Tk)φk(W ) .

Hence we get:

∂t

(
∆lg
)

=−Rlg(W )∆lg (2.9)

noting:

∆lg = (∆U ,∆T ,∆P)T

and:

Rlg(W ) =

algUU (W ) 0 0

algTU (W ) algTT (W ) algTP (W )

algPU (W ) algPT (W ) algPP (W )

 (2.10)

Coefficients in matrix Rlg(W )∈R3×3 read:

algUU (W ) =d(W )

(
1

ml
+

1

mg

)
,

together with: 
algTU (W ) =d(W )∆U

(
βE(W )−1
ml∂Tl (εl)|ρl

+ βE(W )
mg∂Tg (εg)|ρg

)
,

algTT (W ) = q(W )
(

1
ml∂Tl (εl)|ρl

+ 1
mg∂Tg (εg)|ρg

)
,

algTP (W ) =K(W )
(

ΠI−ρ2l ∂ρl (εl)|Tl
ml∂Tl (εl)|ρl

+
ΠI−ρ2g∂ρg (εg)|Tg
mg∂Tg (εg)|ρg

)
,

(2.11)

and: 
algPU (W ) =−d(W )∆U

(
1−βE(W )
ml∂Pl (εl)|ρl

− βE(W )
mg∂Pg (εg)|ρg

)
,

algPT (W ) = q(W )
(

1
ml∂Pl (εl)|ρl

+ 1
mg∂Pg (εg)|ρg

)
,

algPP (W ) =K(W )
(
Al+Ag+( µ(W )−1

ml∂Pl (εl)|ρl
+ µ(W )
mg∂Pg (εg)|ρg

)∆P
)
.

(2.12)

We have used the following notation here for k= l,g:

Ak =
ρkc

2
k

αk

Obviously, at least two points should be emphasized. First of all, we note that the
matrix Rlg(W ) is block triangular, and this also means that retaining the ”flow in
a box” assumption with null velocities, is actually relevant. Moreover, it may be
noted that both coefficients algPU (W ) and algTU (W ) vanish when the expected velocity
equilibrium is reached. We now can summarize results in the following:

Property 2: (Relaxation effects in a class of immiscible two-phase flow mod-
els)
Consider EOS within each phase such that, for k= l,g:

0≤∂Tk (εk)|ρk . (2.13)
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Then the relaxation process is ensured for solutions of (2.9), when using positive func-
tions K(W ),q(W ),d(W ), if eigenvalues of matrix Rlg(W ) have a positive real part. This
is guaranteed if ∆P is small enough in the following sense:

|∆P|×| (µ(W )−1)αg
ρl∂Pl (εl)|ρl

+
µ(W )αl

ρg∂Pg (εg) |ρg
|≤αgρlc2l +αlρgc

2
g , (2.14)

and if:

algTT (W )algPP (W )−algTP (W )algPT (W )>0 . (2.15)

�

Proof:

• First we may check that λ=algUU (W ) is a real positive eigenvalue of matrix
Rlg(W ).

• The other two eigenvalues of Rlg(W ) are solutions λ± of polynomial:

q(λ) =λ2−(algTT (W )+algPP (W ))λ+algTT (W )algPP (W )−algTP (W )algPT (W )

Considering the two conditions (2.13) and (2.14), we may conclude that the

sum algTT (W )+algPP (W ) is positive, thus:
– If the two eigenvalues are complex conjugate, then their real part

(algTT (W )+algPP (W ))/2 is positive ;
– Suppose now that the two eigenvalues λ± lie in R, then: λ+ +λ−=
algTT (W )+algPP (W ). Thus the sum of eigenvalues is positive and their
product reads :

λ+λ−=algTT (W )algPP (W )−algTP (W )algPT (W )

Hence both λ+ and λ− are positive, owing to (2.15).
�

Remark 1:
• The first condition (2.13) is satified in many EOS. Among these we may at

least mention generalized stiffened gas EOS:

(γk−1)ρkεk =Pk+γkΠk

• The threshold effect on ∆P arising in second condition (2.14), which comes out
when taking the energy budget equation into account, and which does not exist
when restricting to the barotropic case (see [22]), was first mentionned in [2].
Simple practical computations enable to show that it can be hardly violated
in an industrial framework. Eventually we note that the following sufficient
condition:

|∆P|(| 1

ρl∂Pl (εl) |ρl
|+ | 1

ρg∂Pg (εg) |ρg
|)≤min(ρlc

2
l ,ρgc

2
g)

guarantees that the condition (2.14) holds.
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• It also seems worth examining the third condition (2.15) in some specific con-
ditions of EOS. For instance, if we restrict to perfect gas EOS:

ρkεk =Pk/(γk−1)

it may be checked that it will be automaticaly satisfied.

�

3. Liquid-vapour flow models
We still consider an homogeneous situation, and focus now on system (1.1) with

mass transfer terms Γk(W ), for k= l,v, thus:

∂t (αl) =φl(W ) ;
∂t (αlEl)+ΠI(W )∂t (αl) =SEl(W ) ;
∂t (mlUl) =SQl

(W ) ;
∂t (ml) = Γl(W ) ;
∂t (ml+mv) = 0 ;
∂t (mlUl+mvUv) = 0 ;
∂t (αlEl+αvEv) = 0 .

(3.1)

3.1. Entropy consistent liquid-vapour closure laws. In a similar way,
we rewrite unknown source terms in order to focus on the following variables Dk(W ),
ψk(W ) such that:{

Dk(W ) =SQk
(W )− Ul+Uv

2 Γk(W ) ;
ψk(W ) =SEk(W )−V EI (W )Dk(W )−HI(W )Γk(W ) ;

(3.2)

Recall that interfacial mass, momentum, and heat transfer terms, are such that:

Γl(W )+Γv(W ) = 0 ,

Dl(W )+Dv(W ) = 0 ,

and also:

ψl(W )+ψv(W ) = 0 .

We have set (see [10,23,32]):

HI(W ) =hI(W )+UlUv/2 ,

and we still consider the Galilean invariant formulation:

V EI (W ) =βE(W )Ul+(1−βE(W ))Uv .

where βE(W )∈ [0,1].

We note in the sequel:

µk =hk−TkSk



Jean-Marc Hérard 9

where the free enthalpy hk writes:

hk = εk(Pk,ρk)+
Pk
ρk

The governing equation for the mixture entropy η now writes:

∂t (η) = 1
TlTv

(ψl(W )+hI(W )Γl(W ))(Tv−Tl)
+
(

1−βE(W )
Tl

+ βE(W )
Tv

)
Dl(W )(Uv−Ul)

+
(

1−µ(W )
Tl

+ µ(W )
Tv

)
φl(W )(Pl−Pv)

+(µvTv −
µl
Tl

)Γl(W )

(3.3)

We still note: 
∆P=Pl−Pv ,
∆U =Ul−Uv ,
∆T =Tl−Tv ,
∆µ= µl

Tl
− µv
Tv

,

(3.4)

Hence we get:

Property 3: (Entropy consistent source terms for liquid-vapor flow models)
The following source terms:

φl(W ) =K(W )∆P ,
Dl(W ) =−d(W )∆U ,
ψl(W )+hI(W )Γl(W ) =−q(W )∆T ,
Γl(W ) =−Λ(W )∆µ ,

(3.5)

are entropy consistent, assuming that functions K(W ),d(W ),q(W ),Λ(W ) are positive,
which means that solutions of (3.1) comply with:

∂t (η)≥0

�

In the sequel, we will retain the closure law:

hI(W ) = 0 .

3.2. The relaxation process in liquid-vapour two-fluid models. Using
system (3.1), we may first derive the governing equations of Uk, which read:

mk∂t (Uk) =Dk(W )+(
Ul+Uv

2
−Uk)Γk(W ) ,

Thus we get:

∂t (∆U) =−
(

(
1

ml
+

1

mv
)d(W )+(

1

2ml
− 1

2mv
)Γl(W )

)
∆U =−alvUU (W )∆U .

Again, starting with the total phasic energy equation,substracting the phasic kinetic
energy governing equation, the time variation of the internal energy follows. This in
turn enables to get :

mk∂Pk (εk)|ρk∂t (Pk) =ψk(W )+(V EI (W )−Uk)Dk(W )−(ΠI(W )−ρ2
k∂ρk (εk)|Pk)φk(W )

−(εk+ρk∂ρk (εk) |Pk)Γk(W ) .
(3.6)
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Moreover we have:

mk∂Tk (εk)|ρk∂t (Tk) =ψk(W )+(V EI (W )−Uk)Dk(W )−(ΠI(W )−ρ2
k∂ρk (εk) |Tk)φk(W )

−(εk+ρk∂ρk (εk)|Tk)Γk(W ) .
(3.7)

Besides, the entropy variations agree with:

mkTk∂t (Sk) =ψk(W )+(V EI (W )−Uk)Dk(W )−(ΠI(W )−Pk)φk(W )−hkΓk(W ) .
(3.8)

By introducing the vector of unknowns ∆lv ∈R4:

∆lv = (∆U ,∆T ,∆P,∆µ)T

we may write its time evolution:

∂t

(
∆lv
)

=−Rlv(W )∆lv (3.9)

with real entries for the matrix Rlv(W )∈R4×4:

Rlv(W ) =


alvUU (W ) 0 0 0
alvTU (W ) alvTT (W ) alvTP (W ) alvTµ(W )

alvPU (W ) alvPT (W ) alvPP (W ) alvPµ(W )

alvµU (W ) alvµT (W ) alvµP (W ) alvµµ(W )

 (3.10)

The above mentionned coefficients are as follows:

alvTU (W ) =d(W )∆U
(

βE(W )−1
ml∂Tl (εl)|ρl

+ βE(W )
mv∂Tv (εv)|ρv

)
,

alvTT (W ) = q(W )
(

1
ml∂Tl (εl)|ρl

+ 1
mv∂Tv (εv)|ρv

)
,

alvTP (W ) =K(W )
(

ΠI(W )−ρ2l ∂ρl (εl)|Tl
ml∂Tl (εl)|ρl

+
ΠI(W )−ρ2v∂ρv (εv)|Tv

mv∂Tv (εv)|ρv

)
,

alvTµ(W ) = Λ(W )
(
−εl−ρl∂ρl (εl)|Tl
ml∂Tl (εl)|ρl

+
−εv−ρv∂ρv (εv)|Tv
mv∂Tv (εv)|ρv

) (3.11)

and: 

alvPU (W ) =d(W )∆U
(

βE(W )−1
ml∂Pl (εl)|ρl

+ βE(W )
mv∂Pv (εv)|ρv

)
,

alvPT (W ) = q(W )
(

1
ml∂Pl (εl)|ρl

+ 1
mv∂Pv (εv)|ρv

)
,

alvPP (W ) =K(W )
(
Al+Ag+( µ(W )−1

ml∂Pl (εl)|ρl
+ µ(W )
mv∂Pv (εv)|ρv

)∆P
)
,

alvPµ(W ) = Λ(W )
(
− εl+ρl∂ρl (εl)|Plml∂Pl (εl)|ρl

− εv+ρv∂ρv (εv)|Pv
mv∂Pv (εv)|ρv

) (3.12)

Eventually, setting:

Fk = (
1

ρk∂Pk (εk) |ρk
− hk
Tk∂Tk (εk) |ρk

)

Gk =
hk

Tk∂Tk (εk)|ρk
(εk+ρk∂ρk (εk)|Tk)− 1

ρk∂Pk (εk)|ρk
(εk+ρk∂ρk (εk)|Pk)

Hk =
hk

Tk∂Tk (εk) |ρk
(−ΠI(W )+ρ2

k∂ρk (εk)|Tk)− 1

ρk∂Pk (εk) |ρk
(−ΠI(W )+ρ2

k∂ρk (εk)|Pk)
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for k= l,v, we have:

alvµU (W ) =d(W )∆U
(

(βE(W )−1) Fl
mlTl

+βE(W ) Fv
mvTv

)
,

alvµT (W ) = q(W )
(

Fl
mlTl

+ Fv
mvTv

)
,

alvµP (W ) =K(W )
(

Hl
mlTl

+ Hv
mvTv

)
,

alvµµ(W ) = Λ(W )
(

Gl
mlTl

+ Gv
mvTv

) (3.13)

�

Remark 2: In some specific situations, for instance when considering stiffened
gas EOS:

Pk+γkΠk = (γk−1)ρkεk

we may have:

alvPµ(W ) = 0

and also:

alvµµ(W )>0

�

Now, we may give the following general result:

Property 4: (Relaxation effects in a class of liquid-vapour flow models)
We still assume that EOS within each phase are such that, for k= l,v:

0≤∂Tk (εk)|ρk (3.14)

and also that functions K(W ),q(W ),d(W ),Λ(W ) remain positive.

In order to guarantee the relaxation process, four conditions are required.
• The velocity relaxation process is ensured in (3.9), if and only if:

(mv−ml)

(ml+mv)
∆µ<2

d(W )

Λ(W )
(3.15)

• In order to guarantee the pressure-temperature-potential relaxation process in
(3.9), the following three conditions are mandatory: I lv>0

II lv>0
III lv>0

(3.16)

noting:

I lv =alvTT (W )+alvPP (W )+alvµµ(W )

but also:

II lv =alvTTa
lv
µµ+alvPPa

lv
µµ+alvPPa

lv
TT −alvTPalvPT −alvPµalvµP −alvTµalvµT
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and:

III lv =alvTTa
lv
µµa

lv
PP −alvTTalvPµalvµP −alvPPalvTµalvµT −alvµµalvPTalvTP +alvTµa

lv
µPa

lv
PT +alvµTa

lv
TPa

lv
Pµ

�

Proof:
Note first that the relaxation process will be effective if eigenvalues of matrix Rlv(W )
are either real positive, or imaginary with a positive real part. The first obvious
eigenvalue is real and equal to:

λ0 =alvUU (W )

The other three eigenvalues λ1,λ2,λ3 are those of matrix alvTT (W ) alvTP (W ) alvTµ(W )

alvPT (W ) alvPP (W ) alvPµ(W )

alvµT (W ) alvµP (W ) alvµµ(W )

 (3.17)

a) Actually the first condition (3.15) simply corresponds to the constraint :

alvUU (W )>0

which implies that λ0 is real positive

b) Without any loss of generality, we may assume that λ1 is real positive, and
that λ2,λ3 are either real positive, or complex conjugate with a positive real part.

• First note that :
– The function:

I lv =λ1 +λ2 +λ3

is always positive. It is obvious in the real case, but also in the imaginary
case since:

I lv =λ1 +2Real(λ2)>0

– A similar result holds for :

II lv =λ1λ2 +λ2λ3 +λ1λ3

since II lv may be rewritten as:

II lv = 2λ1Real(λ2)+ ||λ2||2>0

when λ2 is imaginary.
– This also holds true for:

III lv =λ1λ2λ3

which writes : III lv =λ1||λ2||2>0 when λ2 is not real.
• The characteristic polynomial associated with matrix arising in (3.17) is:

p3(λ) =−λ3 +I lvλ2−II lvλ+III lv

where the functions I lv,II lv,III lv match with expressions arising in Property
4. This completes the proof.



Jean-Marc Hérard 13

�

Remark 3:
• As it occured in the gas-liquid framework, the three coefficients alvTU , alvPU and
alvµU vanish when ∆U tends to zero, that is when the flow is close to velocity
equilibrium.

• The first condition I lv>0 arising in (3.16) is more or less equivalent to the
condition (2.14) arising in the gas-liquid case, while cancelling the last term
alvµµ(W ). This is in fact exact in the limit case where τP→0.

We also note that when condition (3.14) is satisfied for all phasic EOS, the
quantity alvTT (W ) is positive.

Eventually, it seems worth mentioning that for stiffened gas EOS - see remark
2 -, the coefficient alvµµ(W ) remains positive. Actually a simplified form of Gk
writes:

Gk =
hk

Tk∂Tk (εk)|ρk
(εk+ρk∂ρk (εk)|Tk)

since:

εk+ρk∂ρk (εk) |Pk = 0

in that case. Moreover, we have : εk+ρk∂ρk (εk)|Tk =Cv,kTk>0.
• When enforcing alvµµ(W ),alvµT (W ) and alvµP (W ) to zero, the second condition

II lv>0 degenerates, and we obviously retrieve the counterpart of the second
condition:

aTT (W )aPP (W )−aTP (W )aPT (W )>0

in Property 2 associated to the gas-liquid framework.

• It must also be emphasized that IIIlv

q(W )K(W )Λ(W ) no longer includes any pressure

/ temperature / potential relaxation time scale τP ,τT ,τµ. This latter condition
must be checked by the computer code.

�

4. Concluding remarks
We first recall that the present investigation is the sequel of a detailed analysis of

the sole pressure relaxation process in various multiphase flow models (see [25]).

Some conditions pertaining to initial conditions or phasic equations of state have
been pointed out, focusing on liquid-gas models first, and turning then to liquid-vapour
flows including mass transfer. Detailed expressions of relaxation time scales have not
been discussed herein. We refer to classical literature [27] for that purpose, while
restricting to velocity, temperature and potential relaxation time scales. Turning to
the pressure relaxation time scale τP , the reader may for instance examine [13], and
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also [4,5]. The latter time scales rely on a simple combination of phasic viscosities and
statistical fractions.

Eventually we would like to give emphasis on the following:
• Quite obviously, the relaxation process is much more intricated when consid-

ering the liquid-vapour case, as it was expected. As it has been emphasized
in the text, the velocity relaxation is in some sense decoupled from the
thermodynamical effects, but this is actually less obvious when mass transfer
occurs. The exact phasic EOS also play a crucial role when investigating
the relaxation process. An important point is that the four relaxation time
scales do not interfer in the relaxation conditions arising in properties 1−3.
Conditions must be implemented in computer codes in order to check the
relaxation process.

• As far as numerical approximations of solutions are concerned, at least
two different strategies may be considered. A first one, which is classicaly
applied [10, 12, 24, 33], consists in using the fractional step method in order to
account for source terms, thus accounting for various relaxation time scales
successively. One immediate advantage of this strategy dwells in its great
simplicity. Moreover, this approach is clearly consistent with the overall
entropy inequality. However, it may have some weaknesses when the time
scales are very different from one another (see [2] for instance), and thus it
motivates some comparison with more coupled numerical strategies. Actually,
the present analysis may be used for numerical purposes. This precisely
corresponds to the algorithm which is detailed in appendix B. Some first
results are provided in [26], while using first-order time schemes in the re-
laxation step. The latter strategy can be extended to higher-order time schemes.

• We also recall that the present analysis has been conducted with the particu-
lar choice hI(W ) = 0. At this stage, it also seems worth mentionning another
particular case where:

hI(W ) =ω(W )µl+(1−ω(W ))µv

where ω(W ) lies in [0,1]. which was recently pointed out in [32]. The
corresponding analysis remains to be done in that case. This in some sense
represents a little change of paradigm, as far as the mass transfer closure law
is concerned.
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Appendix A : The RIP condition. We consider some gas-liquid flow model as
discussed in section 2, thus focusing on immiscible components. We assume some initial
condition W 0(x) =W (x,t= 0), such that:

Uk(x,t= 0) = 0 ,

and with uniform pressure and temperature fields:

Pk(x,t= 0) =P0 ; Tk(x,t= 0) =T0.

The flow will remain steady, if:

∂t (ψ)(x,t= 0) = 0

whatever ψ is.

Obviously, source terms vanish, and we get:


∂t (αk)(x,t= 0) = 0 ;
∂t (mk)(x,t= 0) = 0 ;
∂t (mkUk)(x,t= 0)+P0∇α0

k−ΠI(W
0)∇α0

k = 0 ;
∂t (αkEk)(x,t= 0) = 0 .

(4.1)

Thus the flow will remain steady if:(
P0−ΠI(W

0)
)
∇α0

l = 0

whatever the initial profile of α0
l is, or in other words:

ΠI(W
0) =P0

This is refered to as the Realizable Interfacial Pressure (RIP) condition.

Appendix B : a relaxation algorithm for source terms. We discuss here an
algorithm in order to account for source terms in the so-called relaxation step. Four
distinct -positive- time scales are involved in this step, which are τP ,τU ,τT and τµ. We
need to get approximations of solutions of the following system of ODE:

∂t (αl) =φl(W ) ;
∂t (αlEl)+ΠI(W )∂t (αl) =SEl(W ) ;
∂t (mlUl) =SQl

(W ) ;
∂t (ml) = Γl(W ) ;
∂t (ml+mv) = 0 ;
∂t (mlUl+mvUv) = 0 ;
∂t (αlEl+αvEv) = 0 .

(4.2)

The algorithm contains two distinct steps.
• Relaxation step: first compute approximate solutions of the vector :

∆lv = (∆U ,∆T ,∆P,∆µ)T

at time tn+1, starting with known values at time tn, where ∆lv is solution of :

∂t

(
∆lv
)

=−Rlv(W )∆lv
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still noting: 
∆P=Pl−Pv ,
∆U =Ul−Uv ,
∆T =Tl−Tv ,
∆µ= µl

Tl
− µv
Tv

,

(4.3)

• Second step: for a given value of ∆lv at time tn+1 provided by the previous
relaxation step, look for values of Tn+1

v , Pn+1
v and Un+1

v that satisfy the three
constraints: ∂t (ml+mv) = 0 ;

∂t (mlUl+mvUv) = 0 ;
∂t (αlEl+αvEv) = 0 ;

(4.4)

which can be rewritten as: (ml+mv)
n+1 =M0 = (ml+mv)

n ;
(mlUl+mvUv)

n+1 =M0U0 = (mlUl+mvUv)
n ;

(αlEl+αvEv)
n+1 =M0E0 = (αlEl+αvEv)

n .
(4.5)

Besides, intermediate unknowns Tn+1
l ,Pn+1

l ,Un+1
l and µn+1

l are given straight-
fully by: 

Pn+1
l =Pn+1

v +∆P ,
Un+1
l =Un+1

v +∆U ,
Tn+1
l =Tn+1

v +∆T ,
(µlTl )

n+1 = (µvTv )n+1 +∆µ .

(4.6)

At the discrete level, this turns into the following sequence (getting rid of supscript
.n+1):

• Step 1:
Compute an approximate solution of the relaxation step, using a first-order
Euler time scheme, while frozing the matrix Rlv:

∆lv = (Id+∆tRlv(Wn))−1(∆lv)n

• Step 2:
a) Use the mass conservation law (first equation in (4.4)) to get the liquid
statistical fraction αl:

αl=
M0−ρv(Pv,Tv)

ρl(Pv+∆P,Tv+∆T )−ρv(Pv,Tv)
(4.7)

b) Use the momentum conservation law (second equation in (4.4)) to get veloc-
ities:

Uv =U0−
M0−mv

M0
∆U ; Ul=U0 +

mv

M0
∆U

with:

mv = (1−αl)ρv(Pv,Tv) ; ml=M0−mv (4.8)
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c) Use the total energy balance (third equation in (4.4)) and the latter formulas
to obtain a first constraint:

M0E0 =mvεv(Pv,Tv)+(M0−mv)εl(Pv+∆P,Tv+∆T )

+ 1
2

(
M0U

2
0 + mv(M0−mv)

M0
(∆U)2

) (4.9)

d) Use the Gibbs potential disequilibrium to obtain the second constraint linking
the two unknowns Tv,Pv:

µl(Pv+∆P,Tv+∆T )

Tv+∆T
− µv(Pv,Tv)

Tv
= ∆µ (4.10)

• Step 3:
Solve the two-equation system (4.9), (4.10), using (4.7), (4.8), in terms of the
two main unknowns Tv,Pv, in the admissible range.

• Step 4:
Update all variables.

Of course higher-order schemes may be used in Step 1 instead of Euler scheme.
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