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Introduction

In the last two decades, fractional calculus has proven to be a very useful theory for modeling physical, biological, financial phenomena and situations that arise in the context of engineering [START_REF] Teodoro | A review of definitions of fractional derivatives and other operators[END_REF][START_REF] Hilfer | Applications of fractional calculus in physics[END_REF][START_REF] Kilbas | Theory and applications of fractional differential equations[END_REF][START_REF] Machado | Recent history of fractional calculus[END_REF][START_REF] Balthazar | Models, methods, and applications of dynamics and control in engineering sciences: state of the art[END_REF].

The genesis of the study of this area dates back to the year 1695 when, according to the most diverse references in the literature [START_REF] Machado | Recent history of fractional calculus[END_REF][START_REF] Hilfer | Applications of fractional calculus in physics[END_REF][START_REF] Oliveira | A review of definitions for fractional derivatives and integral[END_REF], the correspondence between L'Hospital and Leibniz "inaugurates" fractional calculus, i.e., a question about the half order derivative of a function.

The answer to this question provided several insights for the development of concepts and enabled the structuring of the foundations of the research that followed. From 1970, after the congress that took place in the city of New Haven, the beginning was given for the flowering more consistent of applications of the theory of calculus of arbitrary order [START_REF] Kilbas | Fractional integrals and derivatives (theory and applications[END_REF].

Nowadays, the fractional derivatives of Riemann-Liouville, Caputo and Grünwald-Letnikov are denominates classical fractional derivatives. As fractional derivatives were widely disseminated via applications in the most diverse areas, the need arose to build new operators that could meet the specific needs of some application contexts.

There are a multitude of definitions of operators, which are considered by their respective authors as fractional derivatives [START_REF] Teodoro | A review of definitions of fractional derivatives and other operators[END_REF], but it is worth mentioning that, in 2015, Ortigueira & Machado [START_REF] Ortigueira | What is a fractional derivative?[END_REF] presented criteria under which a fractional operator should satisfy to be reputed as a fractional derivative. In addition, [START_REF] Tarasov | No violation of the Leibniz rule. no fractional derivative[END_REF] authors set the condition for a fractional derivative definition. In view of these works, we can list in a preliminary way that fractional operators can be classified [START_REF] Teodoro | Derivadas fracionárias: critérios para classificaçao[END_REF] as classical derivatives, local derivatives, derivatives with singular kernel and derivatives with non-singular kernel.

In the paper [START_REF] Vanterler Da | On the ψ-Hilfer fractional derivative[END_REF], Sousa and Oliveira inspired by the definition proposed by Samko et al. [START_REF] Kilbas | Fractional integrals and derivatives (theory and applications[END_REF], Almeida [START_REF] Almeida | A Caputo fractional derivative of a function with respect to another function[END_REF] and motivated by the definition of Hilfer fractional derivative [START_REF] Hilfer | Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives[END_REF], introduced the ψ-Hilfer fractional derivative, which recovers many particular cases of fractional derivatives [START_REF] Teodoro | Fractional derivatives: types and validity criteria[END_REF], among them, those derived from Riemann-Liouville, Caputo, Weyl, Chen and Jumarie, ψ-Caputo, ψ-Riemann-Liouville, Katugampola, Hadamard, Caputo-Hadamard, Caputo Katugampola, Hilfer-Hadamard, Hilfer-Katugampola, Riemann, Prabhakar, Erdélyi-Kober, Liouville, Liouville-Caputo, Riesz, Feller, Cossar and Caputo-Riesz. Another paper that was proposed by Sousa and Oliveira [START_REF] Vanterler Da | Leibniz type rule: ψ-Hilfer fractional operator[END_REF], present a generalization of Leibniz rule that met the generic structure of the ψ-Hilfer fractional derivative. It is known that Leibniz rule gives a differentiation operator conditions to deal with the derivative of the product of two functions, which frequently emerges in the applications of integer and fractional order differential operators. In particular, we highlight the use of Leibniz rule to obtain Lie symmetries for differential equations involving fractional derivatives.

Furthermore, it is worth mentioning that the Lie group theory developed in the 19th century by the Norwegian mathematician Sophus Lie is a tool that gave conditions for the study of solutions of differential equations via groups of transformations acting under the manifold in which the differential equation is well defined [START_REF] Bluman | Applications of symmetry methods to partial differential equations[END_REF][START_REF] Olver | Introduction to partial differential equations[END_REF]. There is a very solid and widespread use of Lie symmetries for the study of differential equations and systems of integer differential equations [START_REF] Oliveri | Lie symmetries of differential equations: classical results and recent contributions[END_REF]. One of the first papers that connected the use of the theory of Lie Symmetries with the derivative of arbitrary order was the work [START_REF] Buckwar | Invariance of a partial differential equation of fractional order under the lie group of scaling transformations[END_REF] in which there was the characterization of exact solutions from symmetries of a differential equation and the glimpse of expansion of the application of Lie symmetries in study of solutions of fractional differential equations.

In [START_REF] Gazizov | Continuous transformation groups of fractional differential equations[END_REF] the authors explicitly presented the infinitesimal extension for differential equations involving the Riemann-Liouville and Caputo fractional derivatives, through the generalized Leibniz rule, and also presented examples. From these works, many others applied the algorithm developed there to find Lie symmetries of differential equations and consequently made use of them, finding order reductions for fractional differential equations.

We can cite as foundation to Lie theory and fractional calculus, the article of Gazizov et.al [START_REF] Gazizov | Fractional differential equations: change of variables and nonlocal symmetries[END_REF] which presents an explicit extension formula to the ψ-Riemann-Liouville fractional derivative, i.e, derivative of a function with respect to another function with 0 < α < 1. Given us the possibility to find non-local symmetries for fractional differential equations. We highlight also the article [START_REF] Costa | Infinitesimal prolongation of the ψ-hilfer derivative[END_REF], in which the authors find the explicit infinitesimal prolongation to ψ-Hilfer fractional derivative, that is more general case to fractional derivative non-singular kernel cited previously. In order to extend the theoretical framework for the use of Lie symmetries in the case of differential equations of fractional calculus, the authors in [START_REF] Leo | A foundational approach to the lie theory for fractional order partial differential equations[END_REF] presents a detailed approach in what was established as the most appropriate space for analysis of Lie symmetries in the case of fractional differential equations is immersed in an infinite-dimensional jet space. Therefore, the authors used geometric notions to prove a generalized prolongation formula in that space.

In 2020, Zhang [START_REF] Zhang | Symmetry determination and nonlinearization of a nonlinear time-fractional partial differential equation[END_REF] considered a time-fractional PDE involving Riemann-Liouville fractional partial derivative given by

∂ α t u = E(x, t, u, u 1 , u 2 , u 3 , ...., u l ) (1.1)
where u = u(x, t) is the dependent variable of two independent variables x, t, and u 0 = u, ∂ α t (•) is the Riemann-Liouville fractional partial derivative of u = u(x, t) of order 0 < α < 1. In this sense, the author presented a simpler form for the infinitesimal generator admitted by a time-fractional partial differential equation and from this result a system was obtained, determining equations, in which a linear equation appears in terms of fractional derivative and another differential equation that depends only on integer derivatives. Furthermore, in this same paper it was concluded that there exists no invertible mapping that converts a nonlinear and linear time-fractional partial differential equation.

On the other hand, Zhang [31] also did another interesting work on Lie symmetry structure of the system consisting of q multi-dimensional time-fractional partial differential equations given by

∂ α t u = E(t, x, u), (1.2) where E = (E 1 • • • , E q ) is a smooth vector function involving p independent variables x = (x 1 , • • • , x p ) ∈ R p and ∂ α t (•) is the Riemann-Liouville fractional derivative of u = (u 1 , • • • , u q ) ∈ R q (q
dependent variables). For more details about the problem (1.2), see [31].

Motivated by the problems (1.1) and (1.2), in this paper our first objective is to consider a new class of differential equations introduced through the Riemann-Liouville fractional derivative with respect to the function ψ(•). In this sense, as a consequence of the formulated problem, our main contributions of this article are best described as follows:

(1) First, we present the definition and a miscellany of results of the infinitesimal extension for the ψ-Riemann-Liouville fractional derivative. Furthermore, we highlight in the paper that this work is the first that involves this type of operator in the α > 0 case. We highlight here the proof of Zhi-Yong Zhang's Theorem for ψ-Riemann-Liouville fractional derivative. On the other hand, we emphasize that in this extension we consider that a the lower limit of the fractional integral is not fixed, more precisely, we assume that a = a + ϵτ |t = a for a parameter ϵ > 0. (2) Motivated by the results discussed in the previous item, we carry out some applications, i.e., we consider the Burgers fractional equation and the fractional diffusion equation. One of the difficulties of working with the ψ-Riemann-Liouville fractional derivative operator is trying to control the ψ(•) function by imposing conditions so that the results can be obtained. For example, in the particular case of this work, we cannot choose the function ψ(t) = log a (t) as it does not satisfy the imposed conditions.

In this way, the work is organized as follows: In Section 2 we present the definitions, valid properties for the derivative in the sense of ψ-Riemann-Liouville. In the Section 3 we present some important results obtained in the article [START_REF] Zhang | Symmetry determination and nonlinearization of a nonlinear time-fractional partial differential equation[END_REF] and we apply it to the generalized Burgers fractional equation and by the way, we compared it with the algorithm that was developed in [START_REF] Gazizov | Continuous transformation groups of fractional differential equations[END_REF]. In Section 4 we present the entire theoretical framework for obtaining the generalized extension of the ψ-Riemann-Liouville fractional derivative. In the last section we apply the results obtained in some evolution-type fractional equations. Finally, we present considerations. , respectively [START_REF] Vanterler Da | On the ψ-Hilfer fractional derivative[END_REF][START_REF] Kilbas | Fractional integrals and derivatives (theory and applications[END_REF].

Mathematical background and main results

Let

The space of the continuous function f on [a, b] with the norm is defined by

(2.1) ∥f ∥ C[a,b] = max t∈[a,b] |f (t)|.
The weighted space

C γ;ψ[a,b] of functions f on (a , b ] is defined by (2.2) C γ;ψ [a, b] = {f : (a , b ] → R; (ψ(t) -ψ(a)) γ f (t) ∈ C [a, b]} , 0 ≤ γ < 1,
with the norm,

(2.3) ∥f ∥ C γ;ψ [a,b] = ∥(ψ(t) -ψ(a)) γ f ∥ = max t∈[a,b] | (ψ(t) -ψ(a)) γ f (t)|.
The weighted space

C n γ;ψ [a, b] of functions f on (a , b ] is defined by (2.4) C n γ;ψ [a, b] = f : (a , b ] → R; (ψ(t) -ψ(a)) γ f (t) ∈ C n-1 [a, b] ; f (n) (t) ∈ C γ;ψ [a, b] , 0 ≤ γ < 1,
with the norm

(2.5) ∥f ∥ C n γ;ψ [a,b] = n-1 k=0 ∥f ∥ C[a,b] + ∥f (n) ∥ γ;ψ[a,b] = max t∈[a,b] | (ψ(t) -ψ(a)) γ f (t)|, where C 0 γ [a, b] = C γ [a, b] . The weighted space C α γ;ψ [a, b] of functions f on (a , b ] is defined by (2.6) C α γ;ψ [a, b] = f ∈ C γ [a, b] ; RL D α;ψ(t) a + f ∈ C γ [a, b] , γ = α + β(1 -α).
With these spaces exposed, it is possible to list the definitions.

Definition 2.1. [START_REF] Vanterler Da | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] Let α > 0 be a real number -∞ ≤ a < b ≤ ∞, f an integrable function defined on [a, b] and ψ ∈ C 1 ([a, b] , R) be functions such that ψ is increasing and ψ ′ (t) ̸ = 0 for all t ∈ [a, b]. Then, the ψ-Riemann-Liouville fractional integral of f (or Riemann-Liouville fractional integral of f with respect to ψ) of order α ( left-sided and right-sided ) is defined, respectively, as

(2.7) I α;ψ(t) a + f (t) = 1 Γ(α) t a ψ ′ (t)(ψ(t) -ψ(s)) α-1 f (s)ds,

and

(2.8)

I α;ψ(t) b - f (t) = 1 Γ(α) b t ψ ′ (t)(ψ(t) -ψ(s)) α-1 f (s)ds,
and the ψ-Riemann-Liouville fractional derivative of f (or Riemann-Liouville fractional derivative of f with respect to ψ) of order α ( left-sided and right-sided ) is defined,respectively, as

(2.9) RL D α;ψ(t) a + f (t) = 1 Γ(m -α) 1 ψ ′ (t) d dt m t a (ψ(t) -ψ(s)) m-α-1 ψ ′ (s)f (s)ds.

and

(2.10)

RL D α;ψ(t) b - f (t) = 1 Γ(m -α) - 1 ψ ′ (t) d dt m b t (ψ(t) -ψ(s)) m-α-1 ψ ′ (s)f (s)ds.
Note that, in the Eq.(2.7) and Eq.(2.9), if we take ψ(t) = t, yields (2.11)

I α a + f (t) = 1 Γ(α) t a (t -s)) α-1 f (s)ds,

and

(2.12)

RL D α a + f (t) = 1 Γ(m -α) d dt m t a (t -s) m-α-1 f (s)ds,
the classical Riemann-Liouville fractional derivative and integral sense.

Lemma 2.2. [START_REF] Vanterler Da | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] Admitting the sets defined above and the conditions for the functions f and ψ(t) in Definition 2.1 we can rewrite the Eq.(2.7) as:

(2.13)

I α;ψ(t) a + f (t) = ∞ m=0 -α m f [m] ψ (t) [ψ(t) -ψ(a)] α+m Γ(α + m + 1) ,
where t > a.

From the result of the Lemma 2.2 the proof about the integral of the product of two functions arises as a consequence. As shown below: Lemma 2.3. [START_REF] Vanterler Da | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] Let f and g integrable functions on the interval [a, b], α > 0 be and consider a function

ψ ∈ C 1 ([a, b] , R), such that, it is increasing with ψ ′ (t) ̸ = 0 for all t ∈ [a, b]. Then, (2.14) I α;ψ(t) a + (f g)(t) := ∞ k=0 -α k f [k] ψ (t) I α+k;ψ(t) a + g(t).
The Lemma 2.3 is a necessary tool to proof Leibniz rule for the ψ-Riemann-Liouville fractional derivative. From that, follow the result.

Proposition 2.4 (Leibniz rule). [29] Let α ∈ (n -1, n) be, n ∈ N, f, g an integrable functions defined on [a, b] and ψ ∈ C 1 ([a, b] , R) a function such that ψ is increasing and ψ ′ (t) ̸ = 0 for all t ∈ [a, b].
Then, the Leibniz type rule for the ψ-Riemann-Liouville fractional derivative is given by

RL D α;ψ(t) a + (f g) (t) := ∞ m=0 α k f [m] ψ RL D α-m;ψ(t) a + g(t), with f [m] ψ := 1 ψ ′ (t) d dt m f (t).

Lie symmetry for Riemann-Liouville fractional differential equation

In this section we present the theory that was elaborated in [START_REF] Gazizov | Continuous transformation groups of fractional differential equations[END_REF] to obtain the infinitesimal prolongation for the Riemann-Liouville fractional derivative. Similar to the case of integer order, the extension of the extension is a sine qua non apparatus for obtaining the Lie symmetries of a differential equation. Therefore, it is necessary to build it.

Consider a fractional partial differential equation of the form

(3.1) RL D α 0 + u = E [U ]
, where u = u(x, t) denotes the unknown function, and

E [U ] = E(x, t, u, u x , u xx , u xt , . . .)
is the function that depends on x, t, and all derivatives of integer order u.

In this case 0 < α ≤ 1 and the derivative considered is classical Riemann-Liouville fractional derivative Eq.(2.12).

From this, we assume the existence of a Lie transformation group, which was demonstrated in detail for the fractional difference equations in [START_REF] Leo | A foundational approach to the lie theory for fractional order partial differential equations[END_REF]. Consequently, it is possible to define the infinitesimal generator for a fractional differential equation in the Riemann-Liouville sense and, therefore, an extended extension in the Riemann-Liouville fractional derivative [START_REF] Gazizov | Continuous transformation groups of fractional differential equations[END_REF].

Let us assume that Eq.(3.1) is invariant under ϵ > 0, a continuous transformation parameter. So we can write (2) xx + O(ϵ 2 ) . . . where τ (x, t, u), ξ(x, t, u), η(x, t, u), η

t = t + ϵτ (x, t, u) + O(ϵ 2 ), x = x + ϵξ(x, t, u) + O(ϵ 2 ) ū = u + ϵη(x, t, u) + O(ϵ 2 ) RL D α 0 + u = RL D α 0 + u + ϵη α t + O(ϵ 2 ) (3.2) ∂ ū ∂ x = ∂u ∂x + ϵη (1) x + O(ϵ 2 ) ∂ 2 ū ∂ x2 = ∂ 2 u ∂x 2 + ϵη
x e η [START_REF] Balthazar | Models, methods, and applications of dynamics and control in engineering sciences: state of the art[END_REF] xx are infinitesimal coefficients and η α t is the extended infinitesimal coefficients of order α [START_REF] Gazizov | Continuous transformation groups of fractional differential equations[END_REF][START_REF] Bluman | Applications of symmetry methods to partial differential equations[END_REF].

The infinitesimal generator admitted by Eq.(3.1) is given by

(3.3) X = τ (x, t, u) ∂ ∂t + ξ(x, t, u) ∂ ∂x + η(x, t, u) ∂ ∂u ,
where the infinitesimals τ = τ (x, t, u), ξ = ξ(x, t, u) and η = η(x, t, u), furthermore,

(3.4) τ = dt dϵ ϵ=0 , ξ = dx dϵ ϵ=0 , η = du dϵ ϵ=0 .
Therefore, to find the Lie point transformation group (3.2) at which the differential equation becomes invariant is similar to finding the infinitesimal generator Eq.(3.3) [START_REF] Leo | A foundational approach to the lie theory for fractional order partial differential equations[END_REF].

For derivative of order α we have extended infinitesimal generator can be written as

(3.5) P r (α,l) X = X + η α t ∂ ∂(∂ α t u) + l i=1 η (i) ∂ ∂u i ,
where

η (i) := D i x (η -ξu x -τ u t ) + ξu i+1 + τ u it , with u it = ∂ i+1 u ∂x i ∂t , i = 0, 1, • • • , l and η (0) = η. Furthermore, D i := ∂ ∂x i + u i ∂ ∂u + u ij ∂ ∂u j + • • • , and 
η α t = D α t (η) + ξD α t (u x ) -D α t (ξu x ) + D α t (D t (τ )u) -D α+1 t (τ u) + τ D α+1 t (u)
, and l is the order of fractional partial differential equation (FPDE) with respect derivative integer order.

From this, using generalized Leibniz rule [START_REF] Gazizov | Continuous transformation groups of fractional differential equations[END_REF][START_REF] Osler | Leibniz rule for fractional derivatives generalized and an application to infinite series[END_REF], one has

η α t = ∂ α η ∂t α + (η u -αD t (τ )) ∂ α u ∂t α -u ∂ α η u ∂t α + µ + ∞ n=1 α n ∂ n η u ∂t n - α n + 1 D n+1 t (τ ) × × D α-n t (u) - ∞ n=1 α n D n t (ξ)D α-n t (u x ).
With the construction carried out above, which was presented for the first time in [START_REF] Gazizov | Continuous transformation groups of fractional differential equations[END_REF] and then used by several other papers [START_REF] Gazizov | Group-invariant solutions of fractional differential equations[END_REF][START_REF] Leo | A theorem on the existence of symmetries of fractional PDEs[END_REF][START_REF] Leo | A foundational approach to the lie theory for fractional order partial differential equations[END_REF][START_REF] Zhang | Symmetry determination and nonlinearization of a nonlinear time-fractional partial differential equation[END_REF], it is possible to find Lie symmetries of fractional differential equations.

In the following section we mention a simplification for the infinitesimal generator Eq.(3.3), in the case of time-fractional evolution equations, made by observation and demonstration carried out in [START_REF] Zhang | Symmetry determination and nonlinearization of a nonlinear time-fractional partial differential equation[END_REF] and, consequently, a way that simplifies the system of determining equations that are central to obtaining Lie symmetries .

Lie point symmetry for time-fractional evolution equation

In the paper [START_REF] Zhang | Symmetry determination and nonlinearization of a nonlinear time-fractional partial differential equation[END_REF], Zhang et al. proved that for fractional evolution equations the infinitesimal generator (3.3) can be rewrite as

X = ξ(x) ∂ ∂x + τ (t) ∂ ∂t + η(x, t, u) ∂ ∂u where η is linear in u.
That is, we can write the infinitesimal generator with the infinitesimals ξ(x, t, u

) = ξ(x), τ (x, t, u) = τ (t) and η(x, t, u) = θ(x)u + ρ(x, t).
This was already known [START_REF] Gazizov | Continuous transformation groups of fractional differential equations[END_REF][START_REF] Leo | A foundational approach to the lie theory for fractional order partial differential equations[END_REF], but it was written in the form of a theorem only [START_REF] Zhang | Symmetry determination and nonlinearization of a nonlinear time-fractional partial differential equation[END_REF] as can be seen from the following theorem.

Firstly, consider Eq.(3.1) in the form

RL 0 D α t u = H [U ] + S(x, t)
, by the reference [START_REF] Zhang | Symmetry determination and nonlinearization of a nonlinear time-fractional partial differential equation[END_REF] follow the results. Theorem 4.1 (Z.Y. Zhang's Theorem [START_REF] Zhang | Symmetry determination and nonlinearization of a nonlinear time-fractional partial differential equation[END_REF]). If the infinitesimal generator Eq.(3.3) leaves Eq.(3.1) invariant, then X must take the form

X = ξ(x) ∂ ∂x + τ (t) ∂ ∂t + η(x, t, u) ∂ ∂u ,
where τ (t) t=0 = 0 and η uu = 0.

A detailed proof of this theorem can be found in the paper cited above. In addition to the theorem follow the consequence.

Corollary 4.2 ([30]

). In operator X, the infinitesimal τ (t) is expressed explicitly as

(4.1) τ (t) = c 2 t 2 + c 1 t,
and η(x, t, u) is given by

(4.2) η = θ(x)u + ρ(x, t), c 2 = 0, 1 2 (α -1)(2c 2 t + c 1 )u + θ(x)u + ρ(x, t), c 2 ̸ = 0,
where c 1 and c 2 are integral constants, θ(x) and ρ(x, t) are undetermined functions of their arguments, respectively.

The consequence of the Corollary 4.2 is that τ ′′ = 0, implies γ = α -1 2 = 0. One of the important results detailed in the paper that provides a simple method for calculating Lie symmetries for the Riemann-Liouville fractional derivatives is given by the following theorem, however, it is worth mentioning that the symmetries could already be found by another way as presented in [START_REF] Gazizov | Continuous transformation groups of fractional differential equations[END_REF][START_REF] Leo | A foundational approach to the lie theory for fractional order partial differential equations[END_REF][START_REF] Soares | Cálculo Fracionário e as equações de evolução[END_REF][START_REF] Soares | A note on lie point symmetry to generalized fractional Burgers' equation[END_REF], but in Zhang's method the calculations are simpler and makes infinitesimals explicit and, moreover, it has the potential to be implemented computationally.

Theorem 4.3 ([30]

). Following the above notations, Lie Symmetries of equations Eq.(3.1) are determined by

         RL D α 0 + ρ + (η u -ατ ′ )S -ξS x -τ S t - V H ui ∂ i ρ ∂x = 0, (η u -ατ ′ )H -ξH x -τ H t - V H ui (η (i) - ∂ i ρ ∂x ) - W/V H ui η (i) = 0 (4.3)
where the sets W = {all terms effective in H}, V = { the terms in W which are linear in u i } and W \ V = {the terms contained in W but not in V }.

From these results one can apply the method to find the Lie symmetries for the generalized fractional Burgers' equation (GFBE), for example. Therefore, we have that the result below is a consequence of the application of Zhang's method. Theorem 4.4 ([22]). Let the generalized fractional Burgers' equation be

(4.4) RL D α 0 + u = u xx + g(u)u x , u = u(x, t)
where 0 < α ≤ 1, g(u) smooth function, not constant and Riemann-Liouville fractional derivative sense. Then, the determining equations that give the Lie symmetries is

       RL D α 0 + ρ -ρ xx = 0, ατ ′ -2ξ ′ = 0, (θ ′ u + ρ x )g(u) + θ ′′ u = 0, (ατ ′ -ξ ′ )g(u) + (γτ ′ u + θu + ρ)g ′ (u) -ξ ′′ -2θ ′ = 0. (4.5)
Proof. Consider the generalized fractional Burgers' equation (4.4) by Theorem 4.3 and since S(x, t) = 0, H = u xx + g(u)u x , I = {u xx , g(u)u x }, J = {u xx } and I/J = {g(u)u x } replace all in Eq.( 4.3), we get

RL D α 0 + ρ -F uxx ρ xx = 0, (η u -ατ ′ )F -F uxx (η (2) xx -ρ xx ) -F u η -F ux η (1) x = 0. (4.6) Furthermore, F u = g ′ (u)u 2
x , F ux = g(u) and F uxx = 1. Then, substituting in the system (4.6) and separating the equations in terms of the derivatives of u with respect to the independent variable x, we obtain

       RL D α 0 + ρ -ρ xx = 0, ατ ′ -2ξ ′ = 0, (θ ′ u + ρ x )g(u) + θ ′′ u = 0, (ατ ′ -ξ ′ )g(u) + (γτ ′ u + θu + ρ)g ′ (u) -ξ ′′ -2θ ′ = 0. (4.7) □ 4.1.
Gazizov's method for GFBE. In this subsection we present the algorithm that was established in the article by Gazizov et al. [START_REF] Gazizov | Continuous transformation groups of fractional differential equations[END_REF] in which there is a system of determining equations to find the Lie symmetries of a Riemann-Liouville fractional differential equation. Theorem 4.5. Let the generalized fractional Burgers' equation be

RL D α 0 + u = u xx + g(u)u x , u = u(x, t)
where 0 < α ≤ 1, g(u) smooth function, not constant and Riemann-Liouville derivative sense. Then, the determining equations is given by follow system:

(4.8)                ξ u = ξ t = τ u = τ x = η uu = 0, α n ∂ t (η u ) - α n + 1 D n+1 t (τ ) = 0, to n = 1, 2, 3, • • • , ξ ′′ (x) -g(u)ατ ′ (t) -2η xu + g(u)ξ ′ (x) -ηg ′ (u) = 0, 2ξ ′ (x) -ατ ′ (t) = 0, ∂ α t (η) -u∂ α t (η u ) -η xx -g(u)η x = 0. Proof.
To prove the theorem we will write the following differential function

∆ = RL D α 0 + u -u xx -g(u)u x
to apply the algorithm to find the Lie symmetries Riemann-Liouville fractional derivative sense. Using the invariance criterion, its follows that P r (α,2) X∆ = X∆ + η (1) x

∂ ∂u x ∆ + η (2) xx ∂ ∂u xx ∆ + η α ∂ α ∂u α ∆ = 0, when ∆ = 0. So, we get ηg ′ (u)u x -η (1) x g(u) -η (1) xx + η α = 0. The infinitesimal coefficients η (i)
x are obtained from the formula given in Eq.(5.6), which can be seen in [START_REF] Bluman | Applications of symmetry methods to partial differential equations[END_REF].

This equation depends on the variables u

x , u xx , u xt , u t , • • • and D α-n t u, D α-n t u x to n = 1, 2, 3, • • • which are independent. Substituting the expressions of η (1) x , η (2) 
xx , η α and separating the expressions into powers of u we get the following system (4.9)

           ξ u = ξ t = τ u = τ x = η uu = 0; α n ∂ t (η u ) -α n+1 D n+1 t (τ ) = 0, for n = 1, 2, 3, • • • ; ξ ′′ (x) -αg(u)τ ′ (t) -2η xu + g(u)ξ ′ (x) -ηg ′ (u) = 0; 2ξ ′ (x) -ατ ′ (t) = 0; ∂ α t (η) -u∂ α t -η xx -g(u)η x = 0.
□ By the solution of system (4.5) for the case g(u) arbitrary, we obtain that the symmetry admitted by GFBE is X = ∂ ∂x . In addition to the above symmetry the following symmetries for the particular cases of g(u).

Case I: g(u) = u:

In the system (4.5), we obtain ξ = c 1 x + c 2 and τ = c 1 2t α , because ξ = ξ(x) and τ = τ (t). In (4.7), ρ x = 0 and θ ′ = 0. In (4.7), yields γ = 0 since τ is linear, ρ = 0, because the equation is equal to zero and separating the coefficients of u, we get ατ ′ -ξ ′ + θ = 0. Follow that, θ = c 1 . Therefore,

X 2 = x ∂ ∂x + 2t α ∂ ∂t -u ∂ ∂u .
Case II: g(u) = u p , with p > 1:

In the system (4.5), becomes (4.10)

       RL D α 0 + ρ -ρ xx = 0; ατ ′ -2ξ ′ = 0; θ ′′ u + (θ ′ u + pθ + ρ x -ξ ′ + ατ ′ ) u p = 0; (2θ ′ -ξ ′′ ) + (γτ ′ u + ρ)pu p-1 = 0.
In Eq.(4.10), we obtain ξ = c 1 x + c 2 and τ = c 1 2t α . From the linearity of τ , we have γ = 0 in the Eq.(4.10), in additional, we also obtain ρ = 0 and θ ′ = 0. Since this, in Eq.(4.10), θ = -c 1 p .

Therefore,

X 2 = x ∂ ∂x + 2t α ∂ ∂t - u p ∂ ∂u .
Case III: g(u) = e bu , with b = const. ̸ = 0: In the system (4.5), yields (4.11)

       RL D α 0 + ρ -ρ xx = 0; ατ ′ -2ξ ′ = 0; (θ ′ u + ρ x + ατ ′ -ξ ′ + bθu)e bu + θ ′′ u = 0; (γτ ′ u + ρ)be bu -ξ ′′ -2θ ′ = 0.
In Eq. . From η = θu + ρ, we get

X 2 = x ∂ ∂x + 2t α ∂ ∂t - 1 b ∂ ∂u .
Case IV: g(u) = 1 + u u :

In the system (4.5), yields (4.12)

         RL D α 0 + ρ -ρ xx = 0; ατ ′ -2ξ ′ = 0; -ξ ′′ -θ ′ + (θ ′ + θ ′′ ) u = 0; (-γτ ′ + ατ ′ -ξ ′ + ρ x -θ) 1 u -ρ 1 u 2 + ατ ′ -ξ ′ + ρ x = 0.
In Eq.(4.12), we obtain ξ = c 1 x + c 2 and τ = c 1 2t α . From the linearity of τ , we have γ = 0 in the equation (4.12), in additional, we also obtain ρ = 0 and θ = c 1 . Therefore, we get

X 2 = x ∂ ∂x + 2t α ∂ ∂t + u ∂ ∂u .
As a particular case of Theorem 4.5, see [START_REF] Soares | A note on lie point symmetry to generalized fractional Burgers' equation[END_REF] in which only Case III was presented.

Remark 4.6. We emphasize that both methods for calculating Lie symmetries for fractional derivatives are valid and more than that they represent the same algorithm, however the method introduced by Zhang makes the calculations simpler, due to the fact that it involves a system with just one equation with fractional derivative and the remaining equations of integer order.

Prolongation for ψ-Riemann-Liouville derivative

In this section we present the definition and results for the infinitesimal extension for the ψ-Riemann-Liouville fractional derivative. It is important to highlight that, in the literature there is no extension for this operator in the case α > 0. Furthermore, we can see that this operator generalizes the Riemann-Liouville fractional derivative and for ψ(t) = t we recover it. We also emphasize that in this extension considered that a the lower bound of the fractional integral is not fixed, more precisely, we assume that a = a + ϵτ | t=a for a parameter ϵ > 0.

In other words, we are going to show the infinitesimal prolongation η α;ψ t in the sense of the ψ-Riemann-Liouville fractional derivative, i.e., (5.1)

RL D α;ψ(t) a + u = RL D α;ψ(t) a + u + ϵη α;ψ(t) t + O(ϵ 2 ).
For the calculations carried out, it is assumed equations of the type

(5.2) RL D α;ψ(t) a u = E(x, t, u, u x , u t , u xx , u xt , • • • ),
that is, time-fractional partial differential equations, u = u(x, t) and α > 0.

In order to facilitate Lie symmetry analysis of Eq.( 5.2), we rewrite the equation as

(5.3) RL D α;ψ(t) a u = H(x, t, u, u x , u t , u xx , u xt , • • • ) + S(x, t), α > 0,
where H has in its argument the dependent variable u or their respective derivatives with respect to x or both of them and the function S is a function of x and t of only the remaining terms in E.

With the purpose to find the Lie symmetries of a fractional partial differential equation in the direction of ψ-Riemann-Liouville, for the case of an evolution equation we define the following change of coordinates inspired by the change of coordinates presented in [START_REF] Bluman | Applications of symmetry methods to partial differential equations[END_REF][START_REF] Olver | Introduction to partial differential equations[END_REF]. Definition 5.1. Let infinitesimal generator (3.3) be admitted by Eq.( 5.3), i.e., which is defined in the space-(x, t, u(x, t)). It is possible to denoted another infinitesimal generator admitted by the Eq.( 5.3) such that (5.4)

X ψ = ξ 1 (x, ψ(t), u) ∂ ∂x + τ 1 (x, ψ(t), u) ∂ ∂ψ(t) + η 1 (x, ψ(t), u) ∂ ∂ u ,
in space-(x, ψ(t), u), where u = u(x, ψ(t)), ξ 1 ≡ X(x) = ξ, τ 1 ≡ X(ψ(t)) = τ ψ ′ (t) and η 1 ≡ X( u) = η. Therefore, we get (5.5)

X ψ = ξ 1 (x, ψ(t), u) ∂ ∂x + τ 1 (x, ψ(t), u) ∂ ∂ψ(t) + η 1 (x, ψ(t), u) ∂ ∂ u .
Note that equality is valid for application in their respective coordinates [START_REF] Bluman | Applications of symmetry methods to partial differential equations[END_REF]. In the paper [START_REF] Gazizov | Fractional differential equations: change of variables and nonlocal symmetries[END_REF] this approach to changing coordinates is presented in which for each function ψ(t) it is possible to rewrite the symmetries. This was inspired by classical theory of the Lie Symmetry [START_REF] Bluman | Applications of symmetry methods to partial differential equations[END_REF][START_REF] Olver | Introduction to partial differential equations[END_REF].

For the ψ-Riemann-Liouville fractional derivative the extended infinitesimal generator given in Eq.(3.5) can be written as

P r ([α;ψ],l) X ψ = X ψ + η α;ψ t ∂ ∂(∂ α;ψ t u) + l i=1 η (i) ∂ ∂u i ,
where

η (i) := D i x (η -ξu x -τ u t ) + ξu i+1 + τ u it , (5.6) with u it = ∂ i+1 u ∂x i ∂t , i = 0, 1, • • • , l and η (0) = η.
In addition, we get

D i := ∂ ∂x i + u i ∂ ∂u + u ij ∂ ∂u j + • • • .
In consequence of the invariance condition [START_REF] Leo | A foundational approach to the lie theory for fractional order partial differential equations[END_REF], yields

(5.7) P r ([α;ψ],l) X RL a D α;ψ t u -H -S ( RL a D α;ψ t u-H-S=0) = 0.
Remark 5.2. Note that, in general, the published works put an additional condition, which is imposed, τ (x, t, u) t=0 = 0, to obtain the invariance, however, we verified that this additional condition does not need to be imposed, since it appears, naturally, in symmetry calculations. As concluded at the end of this work.

For the case of the ψ-Riemann-Liouville fractional derivative, the fractional total derivative with respect to variable t is given by

(5.8) RL D α;ψ(t) a + (.) = ∞ m=0 α m (ψ(t) -ψ(a)) m-α Γ(m + 1 -α) D m;ψ t (.) . Note that, D m;ψ(t) = 1 ψ ′ (t) d dt m D m
t , where D m t is total derivative of m order with respect to t. It might also be noted, D 0 t (u) = u and D m+1 t u = D t (D m t u), furthermore D t , for two independent variables is defined as

D t = ∂ t + u ψ ∂ u + u xt ∂ ux + u tt ∂ ut + • • • .
Replacing ψ(t) = t and a = 0 in Eq.(5.8), it's possible recover to fractional total derivative of Riemann-Liouville given in [START_REF] Leo | A foundational approach to the lie theory for fractional order partial differential equations[END_REF]31].

Lemma 5.3. Let α > 0 be a real number, m ∈ N, with 0 < m -α < 1 and u(x, t) a function defined on C n [a, b] and -∞ ≤ a < b ≤ ∞, and ψ ∈ C 1 ([a, b] , R) be functions such that ψ is increasing and ψ ′ (t) ̸ = 0 for all t ∈ [a, b]. Consider also, the infinitesimal approximations of order one with respect to the small parameter ϵ > 0 of t = t + ϵτ (x, t, u) + O(ϵ 2 ), x = x + ϵξ(x, t, u) + O(ϵ 2 ) and u = u + ϵη(x, t, u) + O(ϵ 2 ), then

ψ(t) -ψ(a) m-α D m;ψ(t) u(x, t) = [ψ(t) -ψ(a)] m-α 1 + ϵ(m -α) (ψ ′ (t)τ -ψ ′ (a)τ ) ψ(t) -ψ(a) × × D m;ψ(t) u(x, t) + ϵη (m;ψ) + O(ϵ 2 ),
where τ = τ (x, t,

Proof. Using order one approximations with respect to the parameter ϵ > 0, yields

ψ(t) -ψ(a) = [ψ(t + ϵτ ) -ψ(a + ϵτ )] + O(ϵ 2 ) = ψ(t) + ϵψ ′ (t)τ -ψ(a) -ϵψ ′ (a)τ + O(ϵ 2 ) = ψ(t) -ψ(a) + ϵ (ψ ′ (t)τ -ψ ′ (a)τ ) + O(ϵ 2 ) = [ψ(t) -ψ(a)] 1 + ϵ ψ ′ (t)τ -τ ψ ′ (a) ψ(t) -ψ(a) + O(ϵ 2 ).
From this, we get

ψ(t) -ψ(a) m-α = (ψ(t) -ψ(a)) 1 + ϵ ψ ′ (t)τ -τ ψ ′ (a) ψ(t) -ψ(a) m-α + O(ϵ 2 ) = (ψ(t) -ψ(a)) m-α 1 + ϵ(m -α) ψ ′ (t)τ -τ ψ ′ (a) ψ(t) -ψ(a)
+ O(ϵ 2 ). (5.9) Furthermore, we consider in compliance with Eq.(3.2)

(5.10) D m;ψ(t) u(x, t) = D m;ψ(t) u(x, t) + ϵη (m;ψ) + O(ϵ 2 )
, where

(5.11) η (m;ψ(t)) = D m,ψ(t) t (η -ξu x -τ u t ) + ξD m;ψ(t) t u x + τ D m+1;ψ(t) t u.
From Eq.(5.9) and Eq.(5.10), we conclude the proof. □ Proposition 5.4. Let Eq.(3.3) be a infinitesimal generator admitted by Eq.(3.1) with ψ-Riemann-Liouville fractional derivative, then the α-th (α ∈ R + ) extended infinitesimal is given by (5.12)

η α;ψ = RL D α;ψ(t) a (η -ξu x -τ u t ) + ξ RL D α;ψ(t) a u x + τ ψ ′ (t) RL D α+1;ψ(t) a u + ω(x, t, u), where ω(x, t, u) = ψ ′ (a)τ RL D α;ψ(t) a D 1,ψ(t) t -D 1,ψ(t) t RL D α;ψ(t)
a u, and τ = τ (x, t, u) t=a .

Proof. Using the Proposition 2.4, we write 

RL D α;ψ(t) a u = ∞ m=0 α m u [m] ψ RL D α-m;ψ(t) a (1) = ∞ m=0 α m ψ(t) -ψ(a) m-α Γ(m -α + 1) D m;ψ(t
η α;ψ(t) = ∞ m=0 α m (ψ(t) -ψ(a)) m-α η (m;ψ(t)) + (m -α)(ψ(t) -ψ(a)) m-α-1 (τ ψ ′ (t) -τ ψ ′ (a)) D m;ψ(t) u Γ(m -α + 1
) .

Substituting Eq.(5.11) in Eq.( 5.13), one has

η α;ψ(t) = ∞ m=0 α m (ψ(t) -ψ(a)) m-α D m;ψ(t) (η -ξu x -τ u t ) + ξD m;ψ(t) u x + τ D m+1;ψ(t) u Γ(m -α + 1) + ∞ m=0 α m (m -α)(ψ(t) -ψ(a)) m-α-1 τ ψ ′ (t)D m;ψ u Γ(m -α + 1) - - ∞ m=0 α m (m -α)(ψ(t) -ψ(a)) m-α-1 τ ψ ′ (a)D m;ψ u Γ(m -α + 1) . (5.14)
Using again the Proposition 2.4 in Eq.(5.14), we obtain

η α;ψ(t) = D α;ψ(t) a (η -ξu x -τ u t ) + ξD α;ψ(t) u x + ∞ m=0 α m (ψ(t) -ψ(a)) m-α τ D m+1;ψ(t) u Γ(m -α + 1) + ∞ m=0 α m (m -α)(ψ(t) -ψ(a)) m-α-1 τ ψ ′ (t)D m;ψ(t) u Γ(m -α + 1) - - ∞ m=0 α m (m -α)(ψ(t) -ψ(a)) m-α-1 τ ψ ′ (a)D m;ψ(t) u Γ(m -α + 1) . (5.15)
Replace m by m -1 in the third term and substitute m = 0 in the last term of Eq.(5.15) 

η α;ψ(t) = a D α;ψ t (η -ξu x -τ u t ) + ξD α;ψ(t) t u x + ∞ m=1 α m -1 (ψ(t) -ψ(a)) m-α-1 τ D m+1;ψ t u Γ(m -α) - α(ψ(t) -ψ(a)) -α-1 τ u Γ(1 -α) + ∞ m=1 α m (m -α)(ψ(t) -ψ(a)) m-α-1 τ ψ ′ (t)D m;ψ t u Γ(m -α) - - ∞ m=0 α m (m -α)(ψ(t) -ψ(a)) m-α-1 τ ψ ′ (a)D m;ψ(t) u Γ(m -α + 1) . ( 5 
η α;ψ(t) = D α;ψ(t) (η -ξu x -τ u t ) + ξD α;ψ(t) u x + ∞ m=0 α + 1 m (ψ(t) -ψ(a)) m-α-1 τ ψ ′ (t)D m+1;ψ(t) u Γ(m -α) - ∞ m=0 α m (m -α)(ψ(t) -ψ(a)) m-α-1 τ ψ ′ (a)D m;ψ t u Γ(m -α + 1) = D α;ψ(t) (η -ξu x -τ u t ) + ξD α;ψ(t) u x + τ ψ ′ (t)D α+1;ψ(t) u- - ∞ m=0 α m (m -α)(ψ(t) -ψ(a)) m-α-1 τ ψ ′ (a)D m;ψ t u Γ(m -α + 1) (I)
.

Note that (I) can be write as

ψ ′ (a)τ 1 ψ ′ (t) d dt RL a D α;ψ(t) u -RL D α;ψ D 1,ψ(t) t u .
In fact,

∞ m=0 α m (m -α)(ψ(t) -ψ(a)) m-α-1 τ ψ ′ (a)D m;ψ t u Γ(m -α + 1) , ∞ m=0 α m τ ψ ′ (a) 1 ψ ′ (t) ∂ ∂t (ψ(t) -ψ(a)) m-α D m;ψ(t) t u Γ(m -α + 1) . (5.17) Furthermore, 1 ψ ′ (t) d dt (ψ(t) -ψ(a)) m-α D m;ψ(t) u = 1 ψ ′ (t) d dt (ψ(t) -ψ(a)) m-α D m;ψ u + (ψ(t) -ψ(a)) m-α D m+1;ψ(t) u. (5.18)
Replacing Eq.(5.18) in Eq.( 5.17), we get

ψ ′ (a)τ ∞ m=0 α m 1 ψ ′ (t) d dt (ψ(t) -ψ(a)) m-α D m;ψ(t) u -(ψ(t) -ψ(a)) m-α D m+1;ψ u Γ(m -α + 1) . τ 1 ψ ′ (t) d dt ∞ m=0 α m (ψ(t) -ψ(a)) m-α D m;ψ t u Γ(m -α + 1) - ∞ m=0 α m (ψ(t) -ψ(a)) m-α D m+1;ψ(t) u Γ(m -α + 1)
.

Therefore, ψ ′ (a)τ D 1,ψ(t) RL D α;ψ(t) u -RL D α;ψ(t) D 1,ψ(t) u .
Finally, we can write

η α;ψ(t) = RL a D α;ψ t (η -ξu x -τ u t ) + ξD α;ψ a u x + τ ψ ′ (t)D α+1;ψ a u + ψ ′ (a)τ RL D α;ψ a D 1,ψ t u -D 1,ψ t RL D α;ψ a u ,
where τ = τ (x, t, u) t=a . Therefore we concluded the proof. □ Note that, if ψ(t) = t, we get [START_REF] Ortigueira | What is a fractional derivative?[END_REF] where τ = τ (x, t, u) t=a . In this case, we have the extension to the Riemann-Liouville fractional derivative.

η α = RL a D α; t (η -ξu x -τ u t ) + ξD α a u x + τ D α+1 a u + τ RL D α a ∂ ∂t u - ∂ ∂t RL D α a u , (5.
If in addition, a = 0 and ψ(t) = t, it is possible to recover the case that has been used frequently in the applications of Lie symmetries for Riemann-Liouville fractional differential equations, as

η α = RL 0 D α t (η -ξu x -τ u t ) + ξD α 0 u x + τ D α+1 0 u.
Lemma 5.5. Let RL a D α;ψ t be the time total derivative in terms of ψ-Riemann-Liouville fractional derivative and η(x, t, u) infinitesimal, then (5.20)

RL D α;ψ(t) a (η) = RL D α;ψ(t) a (η)+η u RL D α;ψ(t) a (u)-u RL D α;ψ(t) a (η u )+ ∞ m=1 α m D m,ψ t (η u ) RL D α-m;ψ(t) a (u)+µ,
where µ is given by

µ = ∞ m=2 m n=2 n k=2 k-1 r=0 α m m n k r 1 k! (ψ(t) -ψ(a)) m-α Γ(m + 1 -α) [-u] r D m,ψ t u k-r D m-n,ψ t D k,ψ u η .
(5.21)

Theorem 5.6. The more detailed expression for the extended prolongation of αth order in the ψ-Riemann-Liouville fractional derivative sense is given by

η α;ψ = ∂ α;ψ η ∂t α;ψ + η u -α D 1;ψ t (τ ) RL D α;ψ(t) a (u) -u RL D α;ψ(t) a (η u ) - ∞ m=1 α m D m;ψ t (ξ) RL D α-m;ψ a (u x ) + ∞ m=1 α m D m;ψ t (η u ) - α m + 1 D m+1;ψ t (τ ) RL D α-m;ψ a (u) + µ + ω(x, t, u) (5.22)
where ω(x, t, u) and µ is given by Eq.(5.12) and Eq.(5.21) respectively.

Proof. Using the Proposition (2.4), we get

RL D α;ψ a (ξu x ) = ξ RL D α;ψ a (u x ) + ∞ m=1 α m D m;ψ t (ξ) RL D α-m;ψ a (u x ) ; RL D α;ψ(t) a (τ u t ) = τ RL D α+1;ψ a (u) + ∞ m=0 α m + 1 D m+1;ψ t (τ ) RL D α-m;ψ a (u) ; τ RL D α+1;ψ a (u) = τ RL D α+1;ψ a (u) + ∞ m=1 α + 1 m D m;ψ t (τ ) RL D α+1-m;ψ a (u) . (5.23) 
Replacing Eq.(5.20) and Eq.(5.23) in Eq.(5.12), we have

η α;ψ = ∂ α;ψ η ∂t α;ψ + η u -α D 1;ψ t (τ ) RL D α;ψ(t) a (u) -u RL D α;ψ(t) a (η u ) - ∞ m=1 D m;ψ t (ξ) RL D α-m;ψ a (u x ) + ∞ m=1 α m D m;ψ t (η u ) - α m + 1 D m+1;ψ t (τ ) RL D α-m;ψ a (u) + µ + ω(x, t, u), where µ = ∞ m=2 m n=2 n k=2 k-1 r=0 α m m n k r 1 k! (ψ(t) -ψ(a)) m-α Γ(m + 1 -α) [-u] r D m,ψ t u k-r ∂ m-n+k;ψ η ∂t m-n;ψ ∂u k , ω(x, t, u) = ψ ′ (a)τ RL D α;ψ (t) a D 1,ψ(t) t -D 1,ψ(t) t RL D α;ψ(t) a u, and τ = τ (x, t, u) t=a . 
□ Lemma 5.7. It holds that µ = 0 if and only if η uu = 0, in other words, η is linear with respect u.

Proof. By the expression of µ in Eq.(5.21), if η is linear in u then D k;ψ u (η) = 0, that implies µ = 0. On the other hand, consider the terms D 2,ψ t u 2 which occur uniquely for n = 2, then we separate the case n = 2 from µ and rewrite µ as the following form

µ = ∞ m=2 1 r=0 α m m 2 2 r 1 2! (ψ(t) -ψ(a)) m-α Γ(m + 1 -α) [-u] r D 2,ψ t u 2-r ∂ m-2;ψ ∂t m-2;ψ (η uu ) + ∞ m=3 m n=3 n k=2 k-1 r=0 α m m n k r 1 k! (ψ(t) -ψ(a)) m-α Γ(m + 1 -α) [-u] r D m,ψ t u k-r ∂ m-n+k;ψ η ∂t m-n+k;ψ ∂u k = ∞ m=2 α m m 2 (ψ(t) -ψ(a)) m-α (D 1;ψ t u) 2 Γ(m + 1 -α) ∂ m-2;ψ ∂t m-2;ψ (η uu ) + ∞ m=3 m n=3 n k=2 k-1 r=0 α m m n k r 1 k! (ψ(t) -ψ(a)) m-α Γ(m + 1 -α) [-u] r D m,ψ t u k-r ∂ m-n+k;ψ η ∂t m-n+k;ψ ∂u k . (5.24)
For the coefficient of (D

1;ψ t u) 2 , let p = m -2, then it becomes ∞ p=0 α p + 2 p + 2 2 (ψ(t) -ψ(a)) p+2-α Γ(p + 3 -α) ∂ p;ψ ∂t p;ψ (η uu ) = 1 2 α(α -1) ∞ p=0 α -2 p (ψ(t) -ψ(a)) p+2-α Γ(p + 3 -α) ∂ p;ψ ∂t p;ψ (η uu ) = 1 2 α(α -1) RL a D α-2;ψ t (η uu ) .
Taking the coefficient of (D 1;ψ t u) 2 to zero by assumption that µ is equal to zero, we get RL a D α-2;ψ t (η uu ) = 0, then η uu = k(x, u)(ψ(t) -ψ(a)) α-3 with an undetermined function k(x, t). It's worth noting that (5.25)

k-1 r=0 k r [-u] r D m,ψ t u k-r = k-1 r=0 (-1) r 1 r! m!k! c 1 ! • • • c m !c! u k-c n j=1 D j,ψ t u j! cj ,
where c j are non-negative integers and the second sum works on

c 1 +• • •+c n = c ≤ k, c 1 +2c 2 +• • •+nc n = n.
Then, in Eq.(5.25), the total degree of each term is k. In particular for k = 2, we separate the case of k = 2 from the last summation of µ in Eq.(5.24) and rearrange it as the form

µ = ∞ m=3 m n=3 1 r=0 α m m n 2 r 1 2! (ψ(t) -ψ(a)) m-α Γ(m + 1 -α) [-u] r D m;ψ t u 2-r ∂ m-n;ψ ∂t m-n;ψ (η uu ) + ∞ m=3 m n=3 n k=3 k-1 r=0 α m m n k r 1 k! (ψ(t) -ψ(a)) m-α Γ(m + 1 -α) [-u] r D m,ψ t u k-r ∂ m-n+k;ψ η ∂t m-n+k;ψ ∂u k = k(x, u) ∞ m=3 m n=3 α m m n (ψ(t) -ψ(a)) m-α Γ(m + 1 -α) D m-n,ψ t (ψ(t) -ψ(a)) α-3 m-1 i=1 m -1 i D i,ψ t u D m-i,ψ t u + ∞ m=3 m n=3 n k=3 k-1 r=0 α m m n k r 1 k! (ψ(t) -ψ(a)) m-α Γ(m + 1 -α) [-u] r D m,ψ t u k-r η [k] u [n-m] ψ(t)
,

where η Proof. We show the preposition by analyzing the structure of Eq.(5.7) on the solution manifold of Eq.(5.3), expanding condition (5.7) yields (5.27) η α;ψ(t) -τ (x, ψ(t), u)(H 

[k] u [n-m] ψ(t) = ∂ m-n;ψ η ∂t m-n;ψ ∂u k • By the uniqueness of nonlinear terms D i,ψ t u D m-i,ψ
ψ(t) -S [1] ψ(t) ) -ξ(x, ψ(t), u)(H x -S x ) - l i=0 H ui η (i) = 0,
where η (i) is given by Eq.(5.6) and η α;ψ(t) by Eq.(5.22), H 

ψ(t) = 1 ψ ′ (t) d dt
H and similar for H x and H ui into Eq.(5.27) and vanishing the coefficients of RL D α-m;ψ(t) u 

ψ(t) + u [1] ψ(t) ξ [1]
ψ(u) = 0, which implies ξ t = ξ u = 0, i.e. ξ = ξ(x). Now, looking at the coefficient of u (5.27), which uniquely appears in η (l) = D (l)

[l-1] ψ(t) = 1 ψ ′ (t) d dt ∂ l u ∂x l-1 in Eq.
x (η -ξu x -τ u t ) + ξu l + ξu l+1 + τ u lt , where

D l x (τ u [1] ψ(t) ) = l j=0 l j D j x τ D l-j x u [1] ψ(t) ,
then the coefficient of u (l-1)t in Eq.(5.27) is F u l D x τ = 0 which means

D x τ = τ x + u x τ u = 0,
since F u l ̸ = 0. Therefore, implies τ x = τ u = 0,, i.e. τ = τ (t). Therefore, Eq.(5.27) becomes

∂ α;ψ η ∂t α;ψ + η u -α D 1;ψ t (τ ) (H -S) -u RL D α;ψ(t) a (η u ) + ∞ m=1 α m D m;ψ t (η u ) - - α m + 1 D m+1;ψ t (τ ) RL D α-m;ψ a (u) + µ + ω(x, t, u) -τ (t)(H t -S t ) -ξ(x)(H x -S x ) + - l i=0 H ui η (i) = 0, (5.29) 
where η (i) is determined by (5.6). Substituting η uu = 0 into Eq.(5.29) using Lemma 5.7, yields (5.30)

RL D α-m;ψ a (u) : α m D m;ψ t (η u ) - α m + 1 D m+1;ψ t (τ ) = 0, m = 1, 2, • • • and ∂ α;ψ η ∂t α;ψ + η u -α D 1;ψ t (τ ) (H -S) -u RL D α;ψ(t) a (η u ) + ω(x, t, u) -τ (t)(H t -S t ) + -ξ(x)(H x -S x ) - l i=0
H ui η (i) = 0.

(5.31)

Since τ = τ (t), in the Eq.(5.30) it is possible to put it in the following format (5.32)

α 1 D 1;ψ t (η u ) - α 2 D 2;ψ t (τ ) = 0, m = 1 D m-1;ψ t D 1;ψ t (η u ) - α -m m + 1 D 2;ψ t τ = 0, m ≥ 2.       
In the first expression in (5.32) we write, D 1;ψ t (η u ) = α -1 2 D 2;ψ t (τ ) and substituting in second equations gives

(5.33) α -1 2 - α -m m + 1 D m-1;ψ t D 2;ψ t τ = 0, m = 2, 3, . . . .
To solve the ordinary differential equations in t, we just need to take the first case for m, that is, m = 2. Remembering that we are considering τ (t) t=a = b, in this case, a and b different from zero. Therefore,

τ (ψ(t)) = c 0 + c 1 (ψ(t) -ψ(a)) + c 2 (ψ(t) -ψ(a)) 2
with three integral constants, c 0 , c 1 and c 2 . Then solving the first equation in system (5.32) yields two different cases:

(i) D 2;ψ t τ = 0, that is, c 2 = 0, then D 1;ψ t (η u ) = 0, in additional, we have η uu = 0 in Lemma 5.7, thus τ = b + c 1 (ψ(t) -ψ(a)), and η = θ(x)u + ρ(x, ψ(t))

(ii) D 2;ψ t τ ̸ = 0, that is, c 2 ̸ = 0, then integrating the first equation in system (5.32) in t, we get

η = 1 2 (α -1) (2c 2 (ψ(t) -ψ(a)) + c 1 ) u + θ(x)u + ρ(x, ψ(t)),
It is worth mentioning that the functions θ(x) and ρ(x, ψ(t)) are undetermined functions, which can be determined by Eq.(5.31). □ Theorem 5.9 (Zhi-Yong Zhang's Theorem for ψ-Riemann-Liouville, [START_REF] Zhang | Symmetry determination and nonlinearization of a nonlinear time-fractional partial differential equation[END_REF]). Following the above notations, Lie Symmetries of fractional evolution equations are determined by

         RL a D α;ψ t ρ + (η u -α D 1;ψ t τ )G -ξG x -τ G t - V H ui ∂ i ρ ∂x i + ω(x, t, u) = 0, (η u -α D 1;ψ t τ )H -ξH x -τ H t - V H ui (η (i) - ∂ i ρ ∂x i ) - W/V
H ui η (i) = 0.

(5.34)

where the sets W = {all terms effective in H}, V = { the terms in W which are linear in u i } and W \V = {the terms contained in W but not in V }.

Proof. For the proof of this result, we make use of the result obtained in the Proposition 5.8, in particular, the Eq.( 5.31) which is given by

∂ α;ψ η ∂t α;ψ + η u -α D 1;ψ t (τ ) (H -S) -u RL D α;ψ(t) a (η u ) + ω(x, t, u) -τ (t)(H [1] ψ -S [1] ψ )+ -ξ(x)(H x -S x ) - l i=0
H ui η (i) = 0, (5.35) where τ (ψ(t)) = c 0 + c 1 (ψ(t) -ψ(a)) + c 2 (ψ(t) -ψ(a)) 2 , ξ(x) and η is given by Eq.(5.26). Therefore, Lie Symmetries of Eq.( 5.3) are uniquely determined by Eq.(5.35). Moreover, on the space (x, t, u), we get

∂ α;ψ η ∂t α;ψ -u RL D α;ψ(t) a (η u ) = ∂ α;ψ ∂t α;ψ (η -uη u ) = ∂ α;ψ ∂t α;ψ ρ(x, t). (5.36)
Let W = { all terms in H } and V = { all terms in H are linear in u i }. Taking terms that have u and derivatives of u with respect to x or not, we write Eq.(5.35) in two parts given in (5.34). Therefore, we complete the proof. □

Some results

In this section we present the application of the results obtained in the previous sections, in particular, we take the Burgers equations and the linear diffusion equation to exemplify.

The Burgers equation, which is a non-linear equation written in terms of the ψ-Riemann-Liouville fractional derivative is given by: (6.1)

RL D α;ψ(t) a + u = g(u)u x + κu xx ,
where, u = u(x, t), α > 0 and κ > 0.

Theorem 6.1. Let the generalized Burgers' fractional equation be

(6.2) RL D α;ψ(t) a + u = g(u)u x + u xx , u = u(x, t)
where 0 < α < 1, κ = 1 and g(u) smooth function, not constant and ψ-Riemann-Liouville fractional derivative. Then, the determining equations that give the Lie symmetries is

(6.3)              RL D α;ψ(t) a + ρ -ρ xx = 0 α D 1,ψ(t) a + (τ ) -2ξ ′ = 0 (θ ′ u + ρ x )g(u) + θ ′′ u = 0 (α D 1,ψ(t) a + (τ ) -ξ ′ )g(u) + (γ D 1,ψ(t) a + (τ ) u + θu + ρ)g ′ (u) -ξ ′′ -2θ ′ = 0 ω(x, t, u) = 0.
Proof. Applying Theorem 5.8 and Theorem 5.9 the system follows. □

From the determining equations given by the system (6.3) we obtain the symmetry X = ∂ ∂x for arbitrary g(u).

In additional to that symmetry above, there exist for the particular cases, the follow: 

g(u) Additional infinitesimal operators for GFBE u X 2 = x ∂ ∂x + 2(ψ(t)-ψ(a)) α ∂ ∂ψ -u ∂ ∂u u p with p > 1 X 2 = x ∂ ∂x + 2(ψ(t)-ψ(a)) α ∂ ∂ψ -u p ∂ ∂u e bu with b = const. ̸ = 0 X 2 = x ∂ ∂x + 2(ψ(t)-ψ(a)) α ∂ ∂ψ -1 b ∂ ∂u u 1 + u X 2 = x ∂ ∂x + 2(ψ(t)-ψ(a)) α ∂ ∂ψ + u ∂
′ (a)τ (a) RL D α;ψ(t) a D 1,ψ(t) t -D 1,ψ(t) t RL D α;ψ(t) a u = 0,
from the fact that u(x, t) ̸ = 0, it only remains that the product ψ ′ (a)τ (a) = 0, but ψ ′ (a) ̸ = 0, by definition of the ψ-Riemann-Liouville fractional derivative, therefore τ (x, t, u) t=a = 0. This condition is generally imposed in articles that address Lie symmetries of fractional differential equations. However, it is not necessary to impose such a condition, since it emerges naturally in the calculations. Theorem 6.4. Let the generalized time-fractional diffusion equation be

(6.4) RL D α;ψ(t) a + u = (K(u)u x ) x , u = u(x, t)
where 0 < α ≤ 2 and K(u) smooth function, not constant and ψ-Riemann-Liouville derivative sense. Then, the determining equations that give the Lie symmetries is

(6.5)                (θ ′′ u + ρ xx ) K(u) -RL D α;ψ(t) a + ρ = 0 γ D 1,ψ(t) a + (τ ) u + θu + ρ K ′ (u) + α D 1,ψ(t) a + (τ ) -2ξ ′ K(u) = 0 γ D 1,ψ(t) a + (τ ) u + θu + ρ K ′′ (u) -(α + γ) D 1,ψ(t) a + (τ ) -2ξ ′ + θ K ′ (u) = 0 2 (θ ′ u + ρ x ) K ′ (u) -(ξ ′′ -2θ ′ ) K(u) = 0 ω(x, t, u) = 0.
Proof. Applying Proposition 5.8 and Theorem 5.9 the system follows. □

From the determining equations given by the system (6.5), there exist the cases, below: Case K ′ (u) = 0:

The system can be written as, (τ ) -2ξ ′ + θ K ′ (u) = 0 2 (θ ′ u + ρ x ) K ′ (u) -(ξ ′′ -2θ ′ ) K(u) = 0 ω(x, t, u) = 0. Separating in terms of derivatives of K(u), we obtain (6.7)

             RL D α;ψ(t) a + ρ -ω(x, t, u) = 0 θ ′′ u + ρ xx + α D 1,ψ(t) a + (τ ) -2ξ ′ -ξ ′′ + 2θ ′ K(u) = 0 γ D 1,ψ(t) a + (τ ) + θ + 2θ ′ u + ρ x + ρ+ -(γ + α) D 1,ψ(t) a + (τ ) + 2ξ ′ -θ K ′ (u) = 0 γ D 1,ψ(t) a + (τ ) u + θu + ρ K ′′ (u) = 0.
Calculating the derivative of all terms in the Eq.(6.7) with respect to the variable x and, from the Eq.(6.7), we get that ρ = 0, yields (θ ′′′ u -2ξ ′′ -ξ ′′′ + 2θ ′′ ) K(u) = 0. Subcase ξ ′′ = 0 and θ ′ = 0: From this, ξ = c 1 x + c 2 and in Eq.(6.7), we obtain θ = 2c 1 . Therefore,

X = x ∂ ∂x + 2u ∂ ∂u .
Subcase ξ ′′′ = 0 and θ ′ ̸ = 0: From this, ξ = c 1 x 2 + c 2 x + c 3 and combining the equations, we get (6.8) (θu + ρ) ′ = 2ξ ′′ K(u) K ′ (u) .

Using Eq.(6.8) in Eq.(6.7), yields (6.9) c 1 3 + 4 K(u) K ′ (u) = 0.

If c 1 = 0, we obtain ξ = c 2 x + c 3 and η = 2ξ ′ K(u) K ′ (u) + c 4 .

If c 1 ̸ = 0, we get 3 + 4 K(u) K ′ (u) = 0, yields K(u) = c 5 (c 1 + 3u) -4/3 . From this,

X 2 = x 2 ∂ ∂x -x(c 1 + 3u) ∂ ∂u .

Considerations

In this work we present the framework to construct Lie Symmetry in the case of derivative of one function in relation to another, which in current literature we call as ψ-Riemann-Liouville fractional derivative. It is worth mentioning that in the work [START_REF] Gazizov | Fractional differential equations: change of variables and nonlocal symmetries[END_REF] the extension for ψ-Riemann-Liouville fractional derivative was introduced, however for the interval (0, 1), for the fixed lower limit of integration and for equations fractional ordinary differentials. Therefore, in this work the extension to α ∈ R + was presented, the proof of Leibniz's type rule in the case of a fractional derivative of order α in relation to another function, the extension of the method developed in the paper [START_REF] Zhang | Symmetry determination and nonlinearization of a nonlinear time-fractional partial differential equation[END_REF] for the case of fractional evolution equations with ψ-Riemann-Liouville fractional derivative, in addition, we present in Section 4 a comparison between Gazizov's method and the method developed by Zhang et al., concluding that both provide the same results, but the method presented in [START_REF] Zhang | Symmetry determination and nonlinearization of a nonlinear time-fractional partial differential equation[END_REF] is simpler.

Finally, the application of the theory obtained to find Lie symmetries for the generalized Burgers' fractional equation and for the nonlinear diffusion equation, time-fractional porous medium equation. In addition to the work presented here, it is possible to think of Lie symmetries for more general fractional operators, such as ψ-Caputo and ψ-Hadamard, including in variable order. These cases are already under development and will be presented soon.

[31] Z.-Y. Zhang and J. Zheng, Symmetry structure of multi-dimensional time-fractional partial differential equations, Nonlinearity, 2021, 34(8), 5186.
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  [a, b] (0 < a < b < ∞) be a finite interval on the half-axis R + and C [a, b], AC n [a, b], C n [a, b] be the spaces of continuous functions, n-times absolutely continuous, n-times continuously differentiable functions on [a, b]

  (4.11), we obtain ξ = c 1 x + c 2 and τ = c 1 2t α . From the linearity of τ , we have γ = 0 in the Eq.(4.11), in additional, we also obtain ρ = 0 and θ ′ = 0. Since this, in Eq.(4.11), θu = -c 1 b

tuProposition 5 . 8 .

 58 in Eq.(5.26), we obtain their coefficients k(x, u) = 0 and, then η uu = 0.□ Let Eq.(3.3) be admitted by the fractional evolution equation, then X ψ is given byX ψ = ξ(x) ∂ ∂x + c 2 (ψ(t) -ψ(a)) 2 + c 1 (ψ(t) -ψ(a)) + c 0 ∂ ∂ψ + η(x, ψ(t))u + ρ(x, ψ(t)), c 2 = 0, 1 2(α -1) (2c 2 (ψ(t) -ψ(a)) + c 1 ) u + θ(x)u + ρ(x, ψ(t)), c 2 ̸ = 0.

  m = 1, 2, • • • . Then, for n = 1 we have D 1;ψ t ξ = ξ

  u + ρ xx ) K(u) -RL D -2ξ ′ K(u) = 0 -(ξ ′′ -2θ ′ ) K(u) = 0 ω(x, t, u) = 0.Without loss of generality, letK(u) = 1. (t) a + ρ = ρ xx θ ′′ u = 0 α D 1,ψ(t) a + (τ ) -2ξ ′ = 0 ξ ′′ = 2θ ′ ω(x, t, u) = 0.We obtain the symmetryX 1 = of equation RL D α;ψ(t) a + ρ = ρ xx . Case K ′ (u) ̸ = 0: u + ρ xx ) K(u) -RL D u + θu + ρ K ′ (u) + α D 1,ψ(t) a + (τ ) -2ξ ′ K(u) = 0 γ D 1,ψ(t) a + (τ ) u + θu + ρ K ′′ (u) -(α + γ) D 1,ψ(t) a +

∂u Table 1 .

 ∂u1 Additional Symmetries Remark 6.2. Note that, for ψ(t) = t, we recover the case to Riemann-Liouville fractional derivative, furthermore, for convenient ψ(t), i.e., monotone increasing and with ψ ′ (t) ̸ = 0 in the interval in which the derivative is defined, we can obtain other symmetries for each coordinate changes that are represented by several possibilities of ψ(t) functions.

Remark 6.3. Note that, in Theorem 6.4 the equation ω(x, t, u) = 0 by Proposition 5.4, yields ψ
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