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Abstract—The recovery of time-varying graph signals is a
fundamental problem with numerous applications in sensor
networks and forecasting in time series. Effectively capturing the
spatio-temporal information in these signals is essential for the
downstream tasks. Previous studies have used the smoothness
of the temporal differences of such graph signals as an initial
assumption. Nevertheless, this smoothness assumption could
result in a degradation of performance in the corresponding
application when the prior does not hold. In this work, we
relax the requirement of this hypothesis by including a learning
module. We propose a Time Graph Neural Network (TimeGNN)
for the recovery of time-varying graph signals. Our algorithm
uses an encoder-decoder architecture with a specialized loss
composed of a mean squared error function and a Sobolev
smoothness operator.TimeGNN shows competitive performance
against previous methods in real datasets.

Index Terms—Graph neural networks, graph signal processing,
time-varying graph signal, recovery of signals

I. INTRODUCTION

Recent advances in information technology have led to
an accumulation of large amounts of unstructured data. The
representation and analysis of such irregular and complex data
is a daunting task. Graph Signal Processing (GSP) and Graph
Neural Networks (GNNs) are emerging research fields that
have proved to be helpful for such tasks in recent years [1]–[6].
In GSP and GNNs, the data is modeled as signals or vectors
on a set of nodes of a graph, incorporating both the feature
information and the underlying structure of the data. GSP
and GNNs thus provide new perspectives on data handling,
connecting machine learning and signal processing [7], with
profound impact in various fields like semi-supervised learning
[3], computer vision [8], [9], and social media [10].

The sampling and reconstruction of graph signals are
fundamental tasks that have recently attracted considerable
attention from the signal processing and machine learning
communities [1], [11]–[18]. Nevertheless, the problem of time-
varying graph signal reconstruction1 has not been widely
explored [18]. The reconstruction of time-varying graph signals

*Authors have equal contributions
Corresponding author: jcastro@udel.edu
1One can think of the recovery of time-varying graph signals as a matrix

completion task where each column (or row) is associated with time, and each
row (or column) is associated with a vertex of a graph.

has significant applications in data recovery in sensor networks,
forecasting of time-series, and infectious disease prediction [16],
[18], [20]–[22]. Previous studies have extended the definition
of smooth signals from static to time-varying graph signals [23].
Similarly, other works have focused on the rate of convergence
of the optimization methods used to solve the reconstruction
problem [18], [20]. However, the success of these optimization-
based methods requires appropriate prior assumptions about
the underlying time-varying graph signals, which could be
inflexible for real-world applications.

In this work, we propose the Time Graph Neural Network
(TimeGNN) model to recover time-varying graph signals.
TimeGNN encodes the time series of each node in latent vectors.
Therefore, these embedded representations are decoded to
recover the original time-varying graph signal. Our architecture
comprises: 1) a cascade of Chebyshev graph convolutions [2]
with increasing order and 2) linear combination layers. Our
algorithm considers spatio-temporal information using: 1) graph
convolutions [2] and 2) a specialized loss function composed of
a Mean Squared Error (MSE) term and a Sobolev smoothness
operator [18]. TimeGNN shows competitive performance
against previous methods in real-world datasets of time-varying
graph signals.

The main contributions of our work are summarized as
follows: 1) we exploit GNNs to recover time-varying graph
signals from their samples, 2) we relax the strict prior assump-
tion of previous methods by including some learnable modules
in TimeGNN, and 3) we perform experimental evaluations
on natural and artificial data, and compare TimeGNN to four
methods of the literature. The rest of the paper is organized as
follows. Section II introduces the proposed TimeGNN model.
Section III presents the experimental framework and results.
Finally, Section IV shows the conclusions.

II. TIME GRAPH NEURAL NETWORK

A. Preliminaries

We represent a graph with G = (V ,E ,A), where V is the
set of nodes with |V |= N, E ⊆ {(i, j) | i, j ∈ V and i ̸= j} is
the set of edges, and A ∈ RN×N is the weighted adjacency
matrix with A(i, j) = ai, j ∈ R+ if (i, j) ∈ E and 0 otherwise.
In this work, we consider connected, undirected, and weighted
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graphs. We also define the symmetrized Laplacian as L =

I−D− 1
2 AD− 1

2 , where
D = diag(A1) is the diagonal degree matrix of the graph.

Finally, a node-indexed real-valued graph signal is a function
x : V → R, so that we can represent a one-dimensional graph
signal as x ∈ RN .

B. Reconstruction of Time-varying Graph Signals

The sampling and recovery of graph signals are crucial tasks
in GSP [11], [12]. Several studies have used the smoothness
assumption to address the sampling and recovery problems
for static graph signals. The notion of global smoothness was
formalized using the discrete p-Dirichlet form [24] given by:

Sp(x) =
1
p ∑

i∈V

[
∑

j∈Ni

A(i, j)[x( j)−x(i)]2
] p

2

, (1)

where Ni is the set of neighbors of node i. When p = 2, we
have S2(x) which is known as the graph Laplacian quadratic
form S2(x) = ∑(i, j)∈E A(i, j)[x( j)−x(i)]2 = xTLx [24].

For time-varying graph signals, some studies assumed that
the temporal differences of time-varying graph signals are
smooth ( [18], [23]). Let X = [x1,x2, . . . ,xM] be a time-varying
graph signal, where xs ∈ RN is a graph signal in G at time s.
Qiu et al. [23] defined the smoothness of X as:

S2(X) =
M

∑
s=1

xTs Lxs = tr(XTLX). (2)

S2(X) only computes the summation of the individual
smoothness of each graph signal xs ∀ s ∈ {1,2, . . . ,M}, so
we do not consider any temporal information. To address this
problem, we can define the temporal difference operator Dh
as follows [23]:

Dh =


−1
1 −1

1
. . .
. . . −1

1

 ∈ RM×(M−1). (3)

Therefore, we have that XDh = [x2−x1,x3−x2, . . . ,xM−xM−1].
Some studies [18], [23] have found that S2(XDh) shows better
smoothness properties than S2(X) in real-world time-varying
data, i.e. xs −xs−1 exhibits smoothness in the graph even if xs
is not smooth across the graph. Qiu et.al. [23] used S2(XDh) to
present a Time-varying Graph Signal Reconstruction (TGSR)
method as follows:

min
X̃

1
2
∥J◦ X̃−Y∥2

F +
υ

2
tr
(
(X̃Dh)

TLX̃Dh
)
, (4)

where J ∈ {0,1}N×M is a sampling matrix, ◦ is the Hadamard
product between matrices, υ is a regularization parameter, and
Y ∈ RN×M is the matrix of observed values. The optimization
problem in (4) has some limitations: 1) the solution of
(4) could lose performance if the real-world dataset does
not satisfy the smoothness prior assumption, and 2) (4) is
solved with a conjugate gradient method in [23], which has
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Fig. 1: Cascade of Chebyshev graph convolutions.

a slow convergence rate because S2(X̃Dh) is ill-conditioned
( [18]). Our algorithm relaxes the smoothness assumption by
introducing a learnable module. Similarly, TimeGNN is fast
once the GNN parameters are learned.

C. Graph Neural Network Architecture

TimeGNN is based on the Chebyshev spectral graph con-
volutional operator defined by Defferrard et.al. [2], whose
propagation rule is given as follows:

X′ =
K

∑
k=1

Z(k)W(k), (5)

where W(k) is the kth matrix of trainable parameters, Z(k)

is computed recursively as Z(1) = X, Z(2) = L̂X, Z(k) =
2L̂Z(k−1) − Z(k−2), and L̂ = 2L

λmax
− I. We use the filtering

operation in (5) to propose a new convolutional layer composed
of: 1) a cascade of Chebyshev graph filters, and 2) a linear
combination layer as in Fig. 1. More precisely, we define the
propagation rule of each layer of TimeGNN as follows:

H(l+1) =
α

∑
ρ=1

µ
(l)
ρ

ρ

∑
k=1

Z(k)W(k)
l,ρ , (6)

where H(l+1) is the output of layer l+1, α is a hyperparameter,
µ
(l)
ρ is a learnable parameter, Z(k) is recursively computed as in

(5), and W(k)
l,ρ is the kth learnable matrix in the layer l for the

branch ρ . The architecture of TimeGNN is given by stacking n
cascade layers as in (6), where the input is (J◦X)Dh. Finally,
our loss function is such that:

L =
1

|S | ∑
(i, j)∈S

(X(i, j)− X̄(i, j))2

+λ tr
(
(X̄Dh)

T(L+ εI)X̄Dh
)
, (7)

where X̄ is the reconstructed graph signal, S is the training
set, with S a subset of the spatio-temporal sampled indexes
given by J, and ε ∈ R+ is a hyperparameter. The term
tr
(
(X̄Dh)

T(L+ εI)X̄Dh
)

is the Sobolev smoothness ( [18]).
We can think of TimeGNN as an encoder-decoder network

with a loss function given by an MSE term plus a Sobolev
smoothness regularization. The first layers of TimeGNN
encode the term (J◦X)Dh to an H-dimensional latent vector
that is then decoded with the final layer. As a result, we
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Sea Surface Temperature
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Fig. 2: Pipeline of our Time Graph Neural Network (TimeGNN) for the recovery of time-varying graph signals.

capture the spatio-temporal information using the GNN, the
temporal encoding-decoding structure, and the regularization
term tr

(
(X̄Dh)

T(L+ εI)X̄Dh
)

where we use the temporal
operator Dh. The parameter λ in (7) weighs the importance of
the regularization term against the MSE loss. Figure 2 shows
the pipeline of our TimeGNN applied to a graph of the sea
surface temperature in the Pacific Ocean.

III. EXPERIMENTS AND RESULTS

We compare TimeGNN with Graph Convolutional Networks
(GCN) [3], Natural Neighbor Interpolation (NNI) [25], TGSR
[23], and Time-varying Graph signal Reconstruction via
Sobolev Smoothness (GraphTRSS) [18].

A. Implementation Details
We implement TimeGNN and GCN using PyTorch and

PyG [26]. We define the space search for the hyperparameters
tuning of TimeGNN as follows: 1) number of layers {1,2,3},
2) hidden units {2,3, . . . ,10}, 3) learning rate [0.005,0.05],
4) weight decay [1e − 5,1e − 3], 5) λ ∈ [1e − 6,1e − 3], 6)
α ∈ {2,3,4}. Similarly, we set the following hyperparameters:
1) ε = 0.05, and 2) the number of epochs to 5,000. The graphs
are constructed based on the coordinate locations of the nodes
in each dataset with a k-Nearest Neighbors (k-NN) algorithm as
in [18]. NNI, TGRS, and GraphTRSS are implemented using
the code in [18] in MATLAB® 2022b. The hyperparameters of
the baseline methods are optimized following the same strategy
as with TimeGNN.

B. Datasets
Synthetic Graph and Signals: We use the synthetic graph
dataset developed in [23]. The graph contains 100 nodes
randomly generated from a uniform distribution in a 100×100
square area using k-NN. The graph signals are generated with
the recursive function xt = xt−1 +L−1/2ft , where x1 is a low
frequency graph signal with energy 104, L−1/2 = Uλ

−1/2UT,
where U is the matrix of eigenvectors, λ = diag(λ1,λ2, . . . ,λN)

is the matrix of eigenvalues, λ−1/2 = diag(0,λ−1/2
2 , . . . ,λ

−1/2
N ),

and ft is an i.i.d. Gaussian signal.
PM 2.5 Concentration: We use the daily mean concentration
of PM 2.5 in the air in California, USA2. Data were collected
from 93 sensors over 220 days in 2015.

2https://www.epa.gov/outdoor-air-quality-data

Sea-surface Temperature: We use the sea-surface temperature
data, which are measured monthly and released by the NOAA
PSL3. We use a sample of 100 locations in the Pacific Ocean
over a duration of 600 months.
Intel Lab Data: We use the data captured by the 54 sensors
deployed at the Intel Berkeley Research Laboratory 4. The data
consists of temperature readings between February 28th and
April 5th, 2004.

C. Evaluation Metrics

We use the Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), and Mean Absolute Percentage Error (MAPE)
metrics, as defined in [18], to evaluate our algorithm.

D. Experiments

We construct the graphs using k-NN with the coordinate
locations of the nodes in each dataset with a Gaussian kernel
as in [18]. We follow a random sampling strategy in all
experiments. Therefore, we compute the reconstruction error
metrics on the non-sampled vertices for a set of sampling
densities. We evaluate all the methods with a Monte Carlo cross-
validation with 50 repetitions for each sampling density. For the
synthetic data, k = 5 in the k-NN, and the sampling densities
are given by {0.1,0.2, . . . ,0.9}. For PM2.5 concentration, k = 5
and the sampling densities are {0.1,0.15,0.2, . . . ,0.45}. For
the sea-surface temperature, we keep k = 5 and the sampling
densities are set to {0.1,0.2, . . . ,0.9}. For Intel Lab data, we
set k = 3 and the sampling densities at {0.1,0.3,0.5,0.7}.

E. Results and Discussion

Figure 3 shows the performance of TimeGNN against the
previous methods for all datasets using RMSE. Furthermore,
Table I shows the quantitative comparisons using the averages
of all metrics along the set of sampling densities. We do not
plot the performance of GCN in Fig. 3 because this network
performs considerably worse than the other methods, as shown
in Table I. GCN was implemented using the same input and
loss function as in TimeGNN. Our algorithm outperforms
previous methods for several metrics in PM2.5 concentration

3https://psl.noaa.gov
4http://db.csail.mit.edu/labdata/labdata.html

https://www.epa.gov/outdoor-air-quality-data
https://psl.noaa.gov
http://db.csail.mit.edu/labdata/labdata.html
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Fig. 3: Comparison of TimeGNN to baseline methods in one synthetic and three real-world datasets (RMSE).

TABLE I: Quantitative comparison of TimeGNN with the baselines in all datasets using the average error metrics.

Method Synthetic Graph Signals PM2.5 Concentration Sea-surface Temperature Intel Lab Data
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

GCN (Kipf and Welling [3]) 11.296 8.446 1.123 4.657 2.959 0.550 3.766 2.922 0.548 2.998 2.327 0.120
NNI (Kiani et. al. [25]) 0.775 0.436 0.255 4.944 2.956 0.593 0.772 0.561 0.067 0.661 0.291 0.015
GraphTRSS (Giraldo et. al. [18]) 0.260 0.256 0.178 3.824 2.204 0.377 0.357 0.260 0.029 0.056 0.023 0.001
TGSR (Qiu et. al. [23]) 0.263 0.193 0.144 3.898 2.279 0.394 0.360 0.263 0.030 0.069 0.037 0.002

TimeGNN (ours) 0.452 0.323 0.226 3.809 2.172 0.362 0.275 0.203 0.023 0.156 0.095 0.005

The best and second-best performing methods on each dataset are shown in red and blue, respectively.

and sea-surface temperature datasets. The synthetic data were
created to satisfy the conditions of smoothly evolving graph
signals (Definition 1 in [23]), while here, we relaxed that prior
assumption by adding a trainable GNN module. Therefore,
TGRS and GraphTRSS are better suited for that artificial
dataset, as shown in Fig. 3 and Table I. Similarly, the Intel
Lab dataset is highly smooth. Some of the reasons behind our
model’s success in real-world datasets are: 1) its ability to
capture spatio-temporal information, 2) its encoding-decoding
structure, and 3) its powerful learning module given by a
cascade of Chebyshev graph convolutions.

IV. CONCLUSIONS

In this paper, we introduced a GNN architecture named
TimeGNN for the recovery of time-varying graph signals from
their samples. Similarly, we proposed a new convolutional layer
composed of a cascade of Chebyshev graph filters. TimeGNN
includes a learning module that relaxes the requirement of
strict smoothness assumptions. We found that our framework
shows competitive performance against several approaches in
the literature for reconstructing graph signals, delivering better
performance in real datasets. Our algorithm could help solve
problems like recovering missing data from sensor networks,
forecasting weather conditions, intelligent transportation sys-
tems, and many others.

For future work, we plan to extend our framework to other
graph filters like transformers [27], and alternative compact
operators as introduced in [28]. Similarly, we will explore
TimeGNN in highly dynamic 4D real datasets [29], [30].
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