
HAL Id: hal-04368762
https://hal.science/hal-04368762

Submitted on 1 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximizing Influence with Graph Neural Networks
George Panagopoulos, Nikolaos Tziortziotis, Michalis Vazirgiannis, Fragkiskos

D Malliaros

To cite this version:
George Panagopoulos, Nikolaos Tziortziotis, Michalis Vazirgiannis, Fragkiskos D Malliaros. Maximiz-
ing Influence with Graph Neural Networks. ASONAM 2023 - IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining, Nov 2023, Kusadasi, Turkey. pp.237-244,
�10.1145/3625007.3627293�. �hal-04368762�

https://hal.science/hal-04368762
https://hal.archives-ouvertes.fr

Maximizing Influence with Graph Neural Networks
George Panagopoulos1, Nikolaos Tziortziotis2, Michalis Vazirgiannis1, Fragkiskos D. Malliaros3

1École Polytechnique, IP Paris, France
{george.panagopoulos, michalis.vazirgiannis}@polytechnique.edu

2Jellyfish, France
ntziorzi@gmail.com

3Université Paris-Saclay, CentraleSupélec, Inria, France
fragkiskos.malliaros@centralesupelec.fr

Abstract—Finding the seed set that maximizes the influence
spread over a network is a well-known NP-hard problem. Though
a greedy algorithm can provide near-optimal solutions, the
subproblem of influence estimation renders the solutions inefficient.
In this work, we propose GLIE, a graph neural network that
learns how to estimate the influence spread of the independent
cascade. GLIE relies on a theoretical upper bound that is tightened
through supervised training. Experiments indicate that it provides
accurate influence estimation for real graphs up to 10 times
larger than the train set. Subsequently, we incorporate it into
two influence maximization techniques. We first utilize Cost
Effective Lazy Forward optimization substituting Monte Carlo
simulations with GLIE, surpassing the benchmarks albeit with
a computational overhead. To improve computational efficiency
we develop a provably submodular influence spread based on
GLIE’s representations, to rank nodes while building the seed
set adaptively. The proposed algorithms are inductive, meaning
they are trained on graphs with less than 300 nodes and up to 5
seeds, and tested on graphs with millions of nodes and up to 200
seeds. The final method exhibits the most promising combination
of time efficiency and influence quality, outperforming several
baselines.

Index Terms—influence maximization, graph neural networks,
graph representation learning

I. INTRODUCTION

Several real-world problems can be cast as combinatorial
optimization problem over a graph. From distributing packages
[1] and vehicles’ management [2] optimization on graphs
lies in the core of many real-world problems that are vital
to our way of living. Unfortunately, the majority of these
problems are NP-hard, and hence we can only approximate
their solution in a satisfactory time limit that matches the
real world requirements. Recent machine learning methods
have emerged as a promising solution to develop heuristic
methods that provide fast and accurate approximations.The
general idea is to train a supervised or unsupervised learning
model to infer the solution given an unseen graph and the
problem constraints. The models tend to consist of Graph
Neural Networks (GNNs) to encode the graph and the nodes, Q-
learning [3] to produce sequential predictions, or a combination
of both. The practical motivation behind learning to solve
combinatorial optimization problems, is that inference time
is faster than running an exact combinatorial solver [4]. That

Supported in part by ANR (French National Research Agency) under the
JCJC project GraphIA (ANR-20-CE23-0009-01).

said, specialized combinatorial algorithms like CONCORDE for
the Traveling Salesman Problem (TSP) or GUROBI in general,
cannot be surpassed yet [5].

Though many such methods have been proposed for a
plethora of problems, influence maximization (IM) has not
been addressed yet extensively. IM addresses the problem of
finding the set of nodes in a network that would maximize the
number of nodes reached by starting a diffusion from them
[6]. The problem is proved to be NP-hard, from a reduction to
the set-cover problem. Moreover, the influence estimation (IE)
problem that is embedded in IM, i.e., estimating the number
of nodes influenced by a given seed set, is #P-hard and would
require 2|E| possible combinations to compute exactly, where
|E| is the number of network edges [7]. Typically, influence
estimation is approximated using repetitive Monte-Carlo (MC)
simulations of the independent cascade (IC) diffusion model
[8]. In general, the seed set is built greedily, taking advantage
of the submodularity of the influence function which guarantees
at least (1 − 1

e) approximation to the optimal. Although the
latter lack of efficiency as one still has to estimate the influence
of every candidate seed in every step of building the seed sets.
Hence, several scalable algorithms [9], [10] and heuristics [11]
were developed capitalizing on sketches or the structure of the
graph to produce more efficient solutions.

We address IM using graph neural networks to capitalize
on the aforementioned advantages and their ability to easily
incorporate contextual information such as user profiles and
topics [12], a task that remains unsolvable for non-specialized
IM algorithms and heuristics. We propose GLIE, a GNN that
provides efficient IE for a given seed set and a graph with
influence probabilities. It can be used as a standalone influence
predictor with competitive results for graphs up to 10 times
larger than the train set. Moreover, we leverage GLIE for
IM, combining it with CELF [13], that typically does not
scale beyond networks with thousands of edges. The proposed
method runs in networks with millions of edges in seconds, and
exhibits better influence spread than a state-of-the-art algorithm
and previous GNN-RL methods for IM. In addition, we propose
PUN, a method that uses GLIE’s representations to compute
the number of neighbors predicted to be uninfluenced and
uses it as an approximation to the marginal gain. We prove
PUN’s influence spread is submodular and monotone, and
hence can be optimized greedily with a guarantee, in contrast

ar
X

iv
:2

10
8.

04
62

3v
7

 [
cs

.L
G

]
 1

4
O

ct
 2

02
3

to prior learning-based methods. The experiments indicate that
PUN provides the best balance between influence quality and
efficiency.

The paper is organized as follows. Section II presents an
overview of relevant approaches and clarifies the proposed
models’ advantages. Section III describes the proposed methods,
starting with IE and advancing progressively towards faster
methods for IM. Section IV presents the experimental results
for IE and IM. Finally, Section V summarizes the contribution
and presents future steps.

II. RELATED WORK

The first approach to solving combinatorial optimization
(CO) using neural networks was based on attention NNs
for discrete structures, POINTERNETS [14], followed by an
architecture that combines POINTERNETS with an actor-critic
training to find the best route for TSP [15]. The first architecture
that utilized graph-based learning was S2N-DQN [16], using
STRUCT2VEC to encode the states of the nodes and the graph,
and training a Deep Q-network (DQN) model that chooses the
right node to add in a solution given the current state.

Based on S2V-DQN, a DQN for the network dismantling
problem was recently proposed [17]. The model, named
FINDER, uses a deep Q-learning architecture where the
representations are derived by three GRAPHSAGE layers. The
reward is based on the size of the giant connected component
size, i.e., every new node (seed) chosen, aims to dismantle the
network as much as possible. Some of the main advantages of
FINDER is that it is trained on small synthetic data, which are
easy to make, and can extrapolate to relatively large graphs.
On the other hand, one of the core disadvantages is that it can
not work with directed graphs and weighted edges. Another
recent supervised deep learning approach on IM, GCOMB [18],
utilizes a probabilistic greedy to produce scores on graphs
and trains a GNN to predict them. A Q-network receives the
scores along with an approximate calculation of the node’s
neighborhood correlation with the seed set, to predict the next
seed. This approach, though scalable and comparable to SOTA
in accuracy, has to be trained on a large random subset of the
graph (30% of it) and tested on the rest. This makes the model
graph-specific, i.e., it has to be retrained to perform well on
a new graph. This imposes a serious overhead, considering
the time required for training, subsampling and labeling these
samples using the probabilistic greedy method with traditional
IE. As shown in [18] Appendix G, it takes more than hundreds
of minutes and is thus out of our scope. Another GNN that
addresses influence prediction is [19]. DEEPIS uses the power
sequence of the influence probability matrix and a two-layer
GNN to regress the susceptibility of each node. Subsequently,
the estimation propagates in the neighbors based on the IC
probability. DEEPIS is a different architecture then GLIE, which
receives only indications of the seed set. Moreover, DEEPIS
is not tested extensively in influence maximization and as we
will see in the experimental section, its use of the powers of
influence probability matrix is detrimental to its scalability.
Finally, a recent work on learning approximations to general

submodular policies [20] requires a specific model to capture
the state of IM, which is non-trivial to devise. A different branch
of learning-based IM relies on supplementary information
such as diffusion cascades [21] to derive a more effective
IM algorithm [22]. This is clearly diagonal to the current
methodology, which does not assume any further information
from the typical IM setting.

In this paper, we propose an approach that combines the
advantages of the aforementioned methods in that it is only
trained on small simulated data once and generalizes to larger
graphs, and it addresses the problem of IM in weighted directed
networks. Furthermore, the approach can be broken down into a
GNN for influence estimation and two IM methods. The former
can act alone as an influence predictor and be competitive with
relevant methods, such as DMP [23] for graphs up to one
scale larger than the train set. GLIE is used to propose: (1)
CELF-GLIE, CELF [13] with GLIE as influence estimator; (2)
PUN, an adaptive IM method [24] that optimizes greedily a
submodular influence spread using GLIE’s representations.

We note here that the majority of the relevant literature on
deep learning for combinatorial optimization address small
graphs [14], [16] which makes them not applicable to our
task. More scalable, unsupervised methods [25] are tailored to
specific problems and are non-trivial to adjust to our problem,
with the exception of [26] which was found significantly worse
than the SOTA algorithm we compare with [18].

III. METHODOLOGY

A. GLIE: Graph Learning-based Influence Estimation

In this section, we introduce GLIE, a GNN model that aims
to learn how to estimate the influence of seed set S over a
graph G = (V,E). Let A ∈ Rn×n be the adjacency matrix
and X ∈ Rn×d be the features of nodes, representing which
nodes belong to the seed set by 1 and 0 otherwise:

Xu =

{
{1}d, u ∈ S
{0}d, u /∈ S

. (1)

For the analysis that follows, we set d = 1. More dimensions
will become meaningful when we parameterize the problem.
If we normalize A by each row, we form a row-stochastic
transition matrix, as:

Auv = pvu =

{ 1
deg(u) , v ∈ N (u)

0, v /∈ N (u)
, (2)

where deg(u) is the in-degree of node u and N (u) is the set
of neighbors of u. Based on the weighted cascade model [6],
each row u stores the probability of node u being influenced by
each of the other nodes that are connected to it by a directed
link v → u. Note that, in case of directed influence graphs, A
should correspond to the transpose of the adjacency matrix.
The influence probability p(u|S) resembles the probability of
a node u getting influenced if its neighbors belong in the seed
set, i.e., during the first step of the diffusion. We can use

message passing to compute a well-known upper bound p̂(u|S)
of p(u|S) for u:

p̂(u|S) = Au ·X =
∑

v∈N (u)∩S

1

deg(u)
= (3)

∑
v∈N (u)∩S

pvu ≥ 1−
∏

v∈N (u)∩S

(1− pvu) = p(u|S), (4)

where the second equality stems from the definition of the
weighted cascade and the inequality from the proof in [27], App.
A. As the diffusion covers more than one-hop, the derivation
requires repeating the multiplication to approximate the total
influence spread. To be specific, computing the influence
probability of nodes that are not adjacent to the seed set requires
estimating recursively the probability of their neighbors being
influenced by the seeds. If we let H1 = A ·X , and we assume
the new seed set St to be the nodes influenced in the step
t−1, their probabilities are stored in Ht, much like a diffusion
in discrete time. We can then recompute the new influence
probabilities with Ht+1 = A ·Ht.

Theorem 1. The repeated product Ht+1 = A ·Ht computes
an upper bound to the real influence probabilities of each
infected node at step t+ 1.

Proof.

p̂t(u|St) = Au ·Ht =
∑

v∈N (u)∩St

p̂vpvu ≥ (5)

∑
v∈N (u)∩St

pvpvu ≥ 1−
∏

v∈N (u)∩St

(1− pvpvu) = pt(u|St) (6)

• (5) stems from (4) in the manuscript:

p̂(u|S) = Au ·X =
∑

v∈N (u)∩S

1

deg(u)
=

∑
v∈N (u)∩S

pvu

≥ 1−
∏

v∈N (u)∩S

(1− pvu) = p(u|S).

• (6) can be proved by induction similar to [27]. For every
pv ≤ 1, the base case

∑
v∈X pvpvu ≥ 1 − ∏

v∈X (1 −
pvpvu) is obvious for |X | = 1. For |X | > 1, we have:

1−
∏
v∈X

(1− pvpvu) = 1− (1− pxpxu)
∏

v∈X\x
(1− pvpvu)

= 1−
∏

v∈X\x
(1− pvpvu) + pxpxu

∏
v∈X\x

(1− pvpvu) (7)

≤
∑

v∈X\x
pvpvu + pxpxu

∏
v∈X\x

(1− pvpvu)

≤
∑

v∈X\x
pvpvu + pxpxu =

∑
v∈X

pvpvu. (8)

• In (6) we have p(u|v) = pvpvu per definition of the
IC, and thus p(u|S) = 1 − ∏

v∈N (u)∩S(1 − pvpvu),
where pv = 1 for v ∈ S1, which are the initial
seed set that are activated deterministically. Thus, (6)
stands, and these probabilities are an upper bound of the
real influence probabilities. Hence, the influence spread
σ̂(S) =

∑
(u,v)∈E puv is an upper bound to the real σ(S).

In reality, due to the existence of cycles, two problems
arise. Firstly, if the process is repeated, the influence of the
original seeds may increase again, which comes in contrast
with the independent cascade model. This can be controlled
by minimizing the repetitions, e.g., four repetitions cause the
original seeds to be able to reinfect other nodes in a network
with triangles. To this end, we leverage up to three neural
network layers. Another problem due to cycles pertains to
the probability of neighbors influencing each other. In this
case, the product of the complementary probabilities in Eq. (4)
does not factorize for the non-independent neighbors. This
effect was analyzed extensively in [23], App. B, and proved
that the influence probability computed by p(u|S) is itself an
upper bound on the real influence probability for graphs with
cycles. Intuitively, the product that represents non-independent
probabilities is larger than the product of independent ones. This
renders the real influence probability, which is complementary
to the product, smaller than what we compute.

We can thus contend that the estimation p̂(u|S) provides an
upper bound on the real influence probability—and we can use
it to compute an upper bound to the real influence spread of
a given seed set i.e., the total number of nodes influenced by
the diffusion. Since message passing can compute inherently
an approximation of influence estimation, we can parameterize
it to learn a function that tightens this approximation based
on supervision. In our neural network architecture, each layer
consists of a GNN with batchnorm and dropout omitted here,
and starting from H0 = X ∈ Rn×d we have:

Ht+1 = ReLU([Ht, AHt]Wt). (9)

The readout function that summarizes the graph representation
based on all nodes’ representations is a summation with skip
connections:

HG
S =

∑
v∈V

[Hv
0 , H

v
1 , . . . ,H

v
t]. (10)

This representation captures the probability of all nodes being
active throughout each layer. The output that represents the
predicted influence spread is derived by:

σ̂(S) = ReLU(HG
S Wo). (11)

Our loss function is a simple least squares regression. Note
that, in the case where Wt is an untrained positive semidefinite
Gaussian random matrix in [0, 1], the representations of each
layer Hv

t would correspond to the upper bound of the influence
probability of seed set’s t-hop neighbors [23]. This upper bound
is not retained once the weights Wt are trained. In our approach,
the parameters of the intermediate layers Wt are trained such
that the upper bound is reduced and the final layer Wo can
combine the probabilities to derive a cumulative estimate for
the total number of influenced nodes. We empirically verify
this by examining the layer activations which can be seen in
Fig. 1. The heatmaps indicate a difference between columns
(nodes) expected to be influenced, meaning we could potentially
predict not only the number but also who will be influenced.
However, since σ̂ is derived by multiple layers, the relationships

Influence set
representation

INFLUENCE ESTIMATION

ReadOut

<latexit sha1_base64="bj5/PXvRWwwvKiEDd3D4l4386No=">AAACHnicbVDLSgNBEJyNr7i+ol4EL4sh4CnsSkCPQS/ejGIekIQwO+kkQ2YfzPRKwhK/xYNX/Qxv4lW/wl9wdhMkJjbMUFR1U93lhoIrtO0vI7Oyura+kd00t7Z3dvdy+wc1FUSSQZUFIpANlyoQ3IcqchTQCCVQzxVQd4dXiV5/AKl44N/jOIS2R/s+73FGUVOd3FELYYRx+isW3wHt3kQ4mZidXN4u2mlZy8CZgTyZVaWT+251AxZ54CMTVKmmY4fYjqlEzgRMzFakIKRsSPvQ1NCnHqh2nF4wsQqa6Vq9QOrno5Wy8xMx9ZQae67u9CgO1KKWkP9pzQh7F+2Y+2GE4LOpUS8SFgZWEofV5RIYirEGlEmud7XYgErKUIdmFuZtwlGym/q10Qk5i3ksg9pZ0SkVS7elfPlyllWWHJMTckocck7K5JpUSJUw8kieyQt5NZ6MN+Pd+Ji2ZozZzCH5U8bnD7tyoyY=</latexit>

Output

<latexit sha1_base64="zD9WQbVg7fQXtpMLWuzDCBfHyo4=">AAACHXicbVDLSsNAFJ3UV42vqAsXboKl4KokUtBl0Y07K9gHtKFMppN26OTBzI20hHyLC7f6Ge7ErfgV/oKTNEhtvTDD4Zx7OfceN+JMgmV9aaW19Y3NrfK2vrO7t39gHB61ZRgLQlsk5KHoulhSzgLaAgacdiNBse9y2nEnN5neeaRCsjB4gFlEHR+PAuYxgkFRA+OkD3QKSf5LktzFEMWQpvrAqFg1Ky9zFdgFqKCimgPjuz8MSezTAAjHUvZsKwInwQIY4TTV+7GkESYTPKI9BQPsU+kk+QGpWVXM0PRCoV4AZs4uTiTYl3Lmu6rTxzCWy1pG/qf1YvCunIQF6igakLmRF3MTQjNLwxwyQQnwmQKYCKZ2NckYC0xAZaZXF22iabab/LVRCdnLeayC9kXNrtfq9/VK47rIqoxO0Rk6Rza6RA10i5qohQhK0TN6Qa/ak/amvWsf89aSVswcoz+lff4AVRSi+Q==</latexit>

2nd Layer

<latexit sha1_base64="nJ+FhxIQcnK30jjjyxZ9+atp+cM=">AAACK3icbVDLSgNBEJz1GeNr1aOXwRDwFHYloMegFw8eIpgHJDHMTjo6ODu7zPRKwrJf4Ld48Kqf4Unx6tlfcJIs4qthmKKqm+quIJbCoOe9OHPzC4tLy4WV4ura+samu7XdNFGiOTR4JCPdDpgBKRQ0UKCEdqyBhYGEVnBzMtFbt6CNiNQFjmPohexKiaHgDC3Vd8sHl2kXYYSpGmQZncHZZ3h6xsags6zYd0texZsW/Qv8HJRIXvW++9EdRDwJQSGXzJiO78XYS5lGwSVkxW5iIGb8hl1Bx0LFQjC9dHpORsuWGdBhpO1TSKfs94mUhcaMw8B2hgyvzW9tQv6ndRIcHvVSoeIEQfGZ0TCRFCM6yYYOhAaOcmwB41rYXSm/ZppxtAkWy99t4tFkN/NlYxPyf+fxFzQPKn61Uj2vlmrHeVYFskv2yD7xySGpkVNSJw3CyR15II/kybl3np1X523WOufkMzvkRznvn1aIqKQ=</latexit>

1st Layer

<latexit sha1_base64="+giw3PGcCZxNLb5ydEESwpYmiks=">AAACK3icbVDJSgNBEO1xjXEb9eilMQQ8hRkJ6DHoxYOHCGaBJIaeTiVp0rPQXSMJw3yB3+LBq36GJ8WrZ3/BzoLExIKmH+9V8aqeF0mh0XHerZXVtfWNzcxWdntnd2/fPjis6jBWHCo8lKGqe0yDFAFUUKCEeqSA+Z6Emje4Guu1B1BahMEdjiJo+awXiK7gDA3VtvPufdJEGGKiMU3pFE4/zZMbNgKVptm2nXMKzqToMnBnIEdmVW7b381OyGMfAuSSad1wnQhbCVMouIQ024w1RIwPWA8aBgbMB91KJuekNG+YDu2GyrwA6YSdn0iYr/XI90ynz7CvF7Ux+Z/WiLF70UpEEMUIAZ8adWNJMaTjbGhHKOAoRwYwroTZlfI+U4yjSTCbn7eJhuPd9K+NSchdzGMZVM8KbrFQvC3mSpezrDLkmJyQU+KSc1Ii16RMKoSTR/JMXsir9WS9WR/W57R1xZrNHJE/ZX39AHkfqLg=</latexit>

+

<latexit sha1_base64="tk1uIw9vnvjBFUgOSZUbAwmLSgE=">AAACBXicbVDLSsNAFL3xWeur6tJNsBQEoSRS0GXRjcsW7APaUCbTm3boZBJmJmIpXbtwq5/hTtz6HX6Fv+CkDVJbLwwczrmXc+b4MWdKO86Xtba+sbm1ndvJ7+7tHxwWjo6bKkokxQaNeCTbPlHImcCGZppjO5ZIQp9jyx/dpnrrAaVikbjX4xi9kAwECxgl2lD1i16h6JSd2dirwM1AEbKp9Qrf3X5EkxCFppwo1XGdWHsTIjWjHKf5bqIwJnREBtgxUJAQlTeZBZ3aJcP07SCS5gltz9jFiwkJlRqHvtkMiR6qZS0l/9M6iQ6uvQkTcaJR0LlRkHBbR3b6a7vPJFLNxwYQKpnJatMhkYRq002+tGgTP6bZ1K+Nachd7mMVNC/LbqVcqVeK1ZusqxycwhmcgwtXUIU7qEEDKCA8wwu8Wk/Wm/VufcxX16zs5gT+jPX5A87bmHQ=</latexit>

Mean

<latexit sha1_base64="wpY2BYmCIJpnxFNMT+zgenLx/5E=">AAACGnicbVDLSsNAFJ34rPUVHzs3wVJwVRIp6LLoxo1QwT6gLWUyvW2HTiZh5kZaQ//EhVv9DHfi1o1f4S84TYvU1gszHM65l3M4fiS4Rtf9slZW19Y3NjNb2e2d3b19++CwqsNYMaiwUISq7lMNgkuoIEcB9UgBDXwBNX9wPdFrD6A0D+U9jiJoBbQneZczioZq28dNhCEm6a9ZcgtUjsdtO+cW3HScZeDNQI7Mpty2v5udkMUBSGSCat3w3AhbCVXImYBxthlriCgb0B40DJQ0AN1K0vRjJ2+YjtMNlXkSnZSdv0hooPUo8M1mQLGvF7UJ+Z/WiLF72Uq4jGIEyaZG3Vg4GDqTKpwOV8BQjAygTHGT1WF9qihDU1g2P28TDSfZ9K+Nachb7GMZVM8LXrFQvCvmSlezrjLkhJySM+KRC1IiN6RMKoSRR/JMXsir9WS9We/Wx3R1xZrdHJE/Y33+AP3iocE=</latexit>

Mean

<latexit sha1_base64="wpY2BYmCIJpnxFNMT+zgenLx/5E=">AAACGnicbVDLSsNAFJ34rPUVHzs3wVJwVRIp6LLoxo1QwT6gLWUyvW2HTiZh5kZaQ//EhVv9DHfi1o1f4S84TYvU1gszHM65l3M4fiS4Rtf9slZW19Y3NjNb2e2d3b19++CwqsNYMaiwUISq7lMNgkuoIEcB9UgBDXwBNX9wPdFrD6A0D+U9jiJoBbQneZczioZq28dNhCEm6a9ZcgtUjsdtO+cW3HScZeDNQI7Mpty2v5udkMUBSGSCat3w3AhbCVXImYBxthlriCgb0B40DJQ0AN1K0vRjJ2+YjtMNlXkSnZSdv0hooPUo8M1mQLGvF7UJ+Z/WiLF72Uq4jGIEyaZG3Vg4GDqTKpwOV8BQjAygTHGT1WF9qihDU1g2P28TDSfZ9K+Nachb7GMZVM8LXrFQvCvmSlezrjLkhJySM+KRC1IiN6RMKoSRR/JMXsir9WS9We/Wx3R1xZrdHJE/Y33+AP3iocE=</latexit>

�̂(s)

<latexit sha1_base64="YCzKP8zTMuyZ/6I7z3yJbIUbg2M=">AAACFXicbVDLSsNAFJ3UV62PRl26GSyFuimJFHRZdOOygn1AE8pkOmmHzkzCzEQsod/hwq1+hjtx69qv8BectEFq64ULh3Pu5RxOEDOqtON8WYWNza3tneJuaW//4LBsHx13VJRITNo4YpHsBUgRRgVpa6oZ6cWSIB4w0g0mN5nefSBS0Ujc62lMfI5GgoYUI22ogV32xkinnqIjjmY1dT6wK07dmQ9cB24OKiCf1sD+9oYRTjgRGjOkVN91Yu2nSGqKGZmVvESRGOEJGpG+gQJxovx0HnwGq4YZwjCSZoWGc3b5I0VcqSkPzCVHeqxWtYz8T+snOrzyUyriRBOBF0ZhwqCOYNYCHFJJsGZTAxCW1GSFeIwkwtp0Vaou28SPWTb1a2Maclf7WAedi7rbqDfuGpXmdd5VEZyCM1ADLrgETXALWqANMEjAM3gBr9aT9Wa9Wx+L04KV/5yAP2N9/gCXJJ7I</latexit>

n ⇥ 1

<latexit sha1_base64="CCEqGwEzfGQVsDkBjHs6QbEGVkg=">AAACDnicbVDLTgIxFL2DL8QX6tJNIyFxRWYMiS6JblxiIo8IhHRKBxo6nUl7x0gI/+DCrX6GO+PWX/Ar/AULTAyCN2lycs69OafHj6Uw6LpfTmZtfWNzK7ud29nd2z/IHx7VTZRoxmsskpFu+tRwKRSvoUDJm7HmNPQlb/jD66neeODaiEjd4SjmnZD2lQgEo2ipe0XaKEJuiNfNF9ySOxuyCrwUFCCdajf/3e5FLAm5QiapMS3PjbEzphoFk3ySayeGx5QNaZ+3LFTU2nTGs8QTUrRMjwSRtk8hmbGLF2MaGjMKfbsZUhyYZW1K/qe1EgwuO2Oh4gS5YnOjIJEEIzL9PukJzRnKkQWUaWGzEjagmjK0JeWKizbx4zSb+bWxDXnLfayC+nnJK5fKt+VC5SrtKgsncApn4MEFVOAGqlADBgqe4QVenSfnzXl3PuarGSe9OYY/43z+AGEXnAA=</latexit>

n ⇥ 1

<latexit sha1_base64="CCEqGwEzfGQVsDkBjHs6QbEGVkg=">AAACDnicbVDLTgIxFL2DL8QX6tJNIyFxRWYMiS6JblxiIo8IhHRKBxo6nUl7x0gI/+DCrX6GO+PWX/Ar/AULTAyCN2lycs69OafHj6Uw6LpfTmZtfWNzK7ud29nd2z/IHx7VTZRoxmsskpFu+tRwKRSvoUDJm7HmNPQlb/jD66neeODaiEjd4SjmnZD2lQgEo2ipe0XaKEJuiNfNF9ySOxuyCrwUFCCdajf/3e5FLAm5QiapMS3PjbEzphoFk3ySayeGx5QNaZ+3LFTU2nTGs8QTUrRMjwSRtk8hmbGLF2MaGjMKfbsZUhyYZW1K/qe1EgwuO2Oh4gS5YnOjIJEEIzL9PukJzRnKkQWUaWGzEjagmjK0JeWKizbx4zSb+bWxDXnLfayC+nnJK5fKt+VC5SrtKgsncApn4MEFVOAGqlADBgqe4QVenSfnzXl3PuarGSe9OYY/43z+AGEXnAA=</latexit>

s

<latexit sha1_base64="23SfVbqOtw1ZZiJvEHNjSo3deTc=">AAACBXicbVDLSsNAFL2pr1pfVZdugqXgqiRS0GXRjcsW7APaUCbTm3boZBJmJmIJXbtwq5/hTtz6HX6Fv+CkLVJbLwwczrmXc+b4MWdKO86XldvY3Nreye8W9vYPDo+KxyctFSWSYpNGPJIdnyjkTGBTM82xE0skoc+x7Y9vM739gFKxSNzrSYxeSIaCBYwSbaiG6hdLTsWZjb0O3AUowWLq/eJ3bxDRJEShKSdKdV0n1l5KpGaU47TQSxTGhI7JELsGChKi8tJZ0KldNszADiJpntD2jF2+SEmo1CT0zWZI9Eitahn5n9ZNdHDtpUzEiUZB50ZBwm0d2dmv7QGTSDWfGECoZCarTUdEEqpNN4Xysk38mGVTvzamIXe1j3XQuqy41Uq1US3VbhZd5eEMzuECXLiCGtxBHZpAAeEZXuDVerLerHfrY76asxY3p/BnrM8fRDKYvA==</latexit>

n ⇥ 1

<latexit sha1_base64="CCEqGwEzfGQVsDkBjHs6QbEGVkg=">AAACDnicbVDLTgIxFL2DL8QX6tJNIyFxRWYMiS6JblxiIo8IhHRKBxo6nUl7x0gI/+DCrX6GO+PWX/Ar/AULTAyCN2lycs69OafHj6Uw6LpfTmZtfWNzK7ud29nd2z/IHx7VTZRoxmsskpFu+tRwKRSvoUDJm7HmNPQlb/jD66neeODaiEjd4SjmnZD2lQgEo2ipe0XaKEJuiNfNF9ySOxuyCrwUFCCdajf/3e5FLAm5QiapMS3PjbEzphoFk3ySayeGx5QNaZ+3LFTU2nTGs8QTUrRMjwSRtk8hmbGLF2MaGjMKfbsZUhyYZW1K/qe1EgwuO2Oh4gS5YnOjIJEEIzL9PukJzRnKkQWUaWGzEjagmjK0JeWKizbx4zSb+bWxDXnLfayC+nnJK5fKt+VC5SrtKgsncApn4MEFVOAGqlADBgqe4QVenSfnzXl3PuarGSe9OYY/43z+AGEXnAA=</latexit>

Pun

<latexit sha1_base64="8jtdPxKGxsiYPMAcv7UMbSO+b74=">AAAB83icbVBNS8NAEJ34WetX1aOXYBE8lUQKeix68VjBfkATyma7aZduNmF3Viyhf8OLB0W8+me8+W/ctjlo64OBx3szzMyLMsE1et63s7a+sbm1Xdop7+7tHxxWjo7bOjWKshZNRaq6EdFMcMlayFGwbqYYSSLBOtH4duZ3HpnSPJUPOMlYmJCh5DGnBK0UBMieUNO8aeS0X6l6NW8Od5X4BalCgWa/8hUMUmoSJpEKonXP9zIMc6KQU8Gm5cBolhE6JkPWs1SShOkwn988dc+tMnDjVNmS6M7V3xM5SbSeJJHtTAiO9LI3E//zegbj6zDnMjPIJF0sio1wMXVnAbgDrhhFMbGEUMXtrS4dEUUo2pjKNgR/+eVV0r6s+fVa/b5ebdwUcZTgFM7gAny4ggbcQRNaQCGDZ3iFN8c4L86787FoXXOKmRP4A+fzB6yykhs=</latexit>

Glie

<latexit sha1_base64="Fk+yZoO5t2ged73NhKug865kUn8=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKexKQI9BD3qMYB6QLGF20kmGzM6uM73BsOQ7vHhQxKsf482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFRw0SJ5lDnkYx0K2AGpFBQR4ESWrEGFgYSmsHoZuY3x6CNiNQDTmLwQzZQoi84Qyv5HYQnNDy9lQKm3WLJLbtz0FXiZaREMtS6xa9OL+JJCAq5ZMa0PTdGP2UaBZcwLXQSAzHjIzaAtqWKhWD8dH70lJ5ZpUf7kbalkM7V3xMpC42ZhIHtDBkOzbI3E//z2gn2r/xUqDhBUHyxqJ9IihGdJUB7QgNHObGEcS3srZQPmWYcbU4FG4K3/PIqaVyUvUq5cl8pVa+zOPLkhJySc+KRS1Ild6RG6oSTR/JMXsmbM3ZenHfnY9Gac7KZY/IHzucPTLSScw==</latexit>

Glie

<latexit sha1_base64="Fk+yZoO5t2ged73NhKug865kUn8=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKexKQI9BD3qMYB6QLGF20kmGzM6uM73BsOQ7vHhQxKsf482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFRw0SJ5lDnkYx0K2AGpFBQR4ESWrEGFgYSmsHoZuY3x6CNiNQDTmLwQzZQoi84Qyv5HYQnNDy9lQKm3WLJLbtz0FXiZaREMtS6xa9OL+JJCAq5ZMa0PTdGP2UaBZcwLXQSAzHjIzaAtqWKhWD8dH70lJ5ZpUf7kbalkM7V3xMpC42ZhIHtDBkOzbI3E//z2gn2r/xUqDhBUHyxqJ9IihGdJUB7QgNHObGEcS3srZQPmWYcbU4FG4K3/PIqaVyUvUq5cl8pVa+zOPLkhJySc+KRS1Ild6RG6oSTR/JMXsmbM3ZenHfnY9Gac7KZY/IHzucPTLSScw==</latexit>

Sum

<latexit sha1_base64="kFlaCuIQeTEczX6e5oHEet5TSTg=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgqexKQY9FLx4r2g/oLiWbpm1okl2SiViW/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMvTgU34PvfXmFtfWNzq7hd2tnd2z8oHx61TGI1ZU2aiER3YmKY4Io1gYNgnVQzImPB2vH4Zua3H5k2PFEPMElZJMlQ8QGnBJwUhsCewNDs3sppr1zxq/4ceJUEOamgHI1e+SvsJ9RKpoAKYkw38FOIMqKBU8GmpdAalhI6JkPWdVQRyUyUzW+e4jOn9PEg0a4U4Ln6eyIj0piJjF2nJDAyy95M/M/rWhhcRRlXqQWm6GLRwAoMCZ4FgPtcMwpi4gihmrtbMR0RTSi4mEouhGD55VXSuqgGtWrtrlapX+dxFNEJOkXnKECXqI5uUQM1EUUpekav6M2z3ov37n0sWgtePnOM/sD7/AGvwpId</latexit>

A>

<latexit sha1_base64="oeEzO2upmY11zr1JHnQ9E9++kEU=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS0GPVi8cK9gPaWDbbTbu62Q27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvTAQ36HnfTmFldW19o7hZ2tre2d0r7x+0jEo1ZU2qhNKdkBgmuGRN5ChYJ9GMxKFg7fDxeuq3n5g2XMk7HCcsiMlQ8ohTglZqXd73UCX9csWrejO4y8TPSQVyNPrlr95A0TRmEqkgxnR9L8EgIxo5FWxS6qWGJYQ+kiHrWipJzEyQza6duCdWGbiR0rYkujP190RGYmPGcWg7Y4Ijs+hNxf+8borRRZBxmaTIJJ0vilLhonKnr7sDrhlFMbaEUM3trS4dEU0o2oBKNgR/8eVl0jqr+rVq7bZWqV/lcRThCI7hFHw4hzrcQAOaQOEBnuEV3hzlvDjvzse8teDkM4fwB87nD27Djws=</latexit>

s

<latexit sha1_base64="t5Z8j6uw1dDrul9BiPoeucvIxm0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6perVpr1ir12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A4OuM/g==</latexit>

s

<latexit sha1_base64="t5Z8j6uw1dDrul9BiPoeucvIxm0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6perVpr1ir12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A4OuM/g==</latexit>

=

<latexit sha1_base64="XP9iErG+L6qrY8EDX+rDc8RxBHg=">AAACBXicbVDLSgNBEOz1GeMr6tHLYAh4CrsS0IsQ9OIxAfOAZAmzk95kyOyDmVkxhJw9eNXP8CZe/Q6/wl9wNlkkJjYMFFXdVE15seBK2/aXtba+sbm1ndvJ7+7tHxwWjo6bKkokwwaLRCTbHlUoeIgNzbXAdiyRBp7Alje6TfXWA0rFo/Bej2N0AzoIuc8Z1YaqX/cKRbtsz4asAicDRcim1it8d/sRSwIMNRNUqY5jx9qdUKk5EzjNdxOFMWUjOsCOgSENULmTWdApKRmmT/xImhdqMmMXLyY0UGoceGYzoHqolrWU/E/rJNq/cic8jBONIZsb+YkgOiLpr0mfS2RajA2gTHKTlbAhlZRp002+tGgTP6bZ1K+NachZ7mMVNC/KTqVcqVeK1ZusqxycwhmcgwOXUIU7qEEDGCA8wwu8Wk/Wm/VufcxX16zs5gT+jPX5A+wtmIY=</latexit>

L̂S

<latexit sha1_base64="7zTrdAR4gsqi8D5fz/nDX5Zs1s0=">AAAB8HicbVA9SwNBEJ3zM8avqKXNYRCswp0EtAzaWFhENB+SHGFvs5cs2d07dueEcORX2FgoYuvPsfPfuEmu0MQHA4/3ZpiZFyaCG/S8b2dldW19Y7OwVdze2d3bLx0cNk2casoaNBaxbofEMMEVayBHwdqJZkSGgrXC0fXUbz0xbXisHnCcsECSgeIRpwSt9NgdEsxuJ737XqnsVbwZ3GXi56QMOeq90le3H9NUMoVUEGM6vpdgkBGNnAo2KXZTwxJCR2TAOpYqIpkJstnBE/fUKn03irUthe5M/T2REWnMWIa2UxIcmkVvKv7ndVKMLoOMqyRFpuh8UZQKF2N3+r3b55pRFGNLCNXc3urSIdGEos2oaEPwF19eJs3zil+tVO+q5dpVHkcBjuEEzsCHC6jBDdShARQkPMMrvDnaeXHenY9564qTzxzBHzifP814kGo=</latexit>

mS

<latexit sha1_base64="vx/z9SO37d1o65IRwHHfZ1wV0PE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI9BLx4jMQ9IljA7mU2GzGOZmRXCkk/w4kERr36RN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyN/c7T1QbpuSjnSY0FHgkWcwItk5qikFzUK74VX8BtE6CnFQgR2NQ/uoPFUkFlZZwbEwv8BMbZlhbRjidlfqpoQkmEzyiPUclFtSE2eLUGbpwyhDFSruSFi3U3xMZFsZMReQ6BbZjs+rNxf+8XmrjmzBjMkktlWS5KE45sgrN/0ZDpimxfOoIJpq5WxEZY42JdemUXAjB6svrpH1VDWrV2kOtUr/N4yjCGZzDJQRwDXW4hwa0gMAInuEV3jzuvXjv3seyteDlM6fwB97nDzC8jb4=</latexit>

⊙

n ⇥ 1

<latexit sha1_base64="CCEqGwEzfGQVsDkBjHs6QbEGVkg=">AAACDnicbVDLTgIxFL2DL8QX6tJNIyFxRWYMiS6JblxiIo8IhHRKBxo6nUl7x0gI/+DCrX6GO+PWX/Ar/AULTAyCN2lycs69OafHj6Uw6LpfTmZtfWNzK7ud29nd2z/IHx7VTZRoxmsskpFu+tRwKRSvoUDJm7HmNPQlb/jD66neeODaiEjd4SjmnZD2lQgEo2ipe0XaKEJuiNfNF9ySOxuyCrwUFCCdajf/3e5FLAm5QiapMS3PjbEzphoFk3ySayeGx5QNaZ+3LFTU2nTGs8QTUrRMjwSRtk8hmbGLF2MaGjMKfbsZUhyYZW1K/qe1EgwuO2Oh4gS5YnOjIJEEIzL9PukJzRnKkQWUaWGzEjagmjK0JeWKizbx4zSb+bWxDXnLfayC+nnJK5fKt+VC5SrtKgsncApn4MEFVOAGqlADBgqe4QVenSfnzXl3PuarGSe9OYY/43z+AGEXnAA=</latexit>

mS [v] = 1

<latexit sha1_base64="irN8HCigVzayJLyQjvL6vp5Ng2w=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgl6EohePFe2HbJeSTbNtaJJdkmyhLP0VXjwo4tWf481/Y9ruQVsfDDzem2FmXphwpo3rfjuFtfWNza3idmlnd2//oHx41NJxqghtkpjHqhNiTTmTtGmY4bSTKIpFyGk7HN3O/PaYKs1i+WgmCQ0EHkgWMYKNlZ5E78EfB9ce6pUrbtWdA60SLycVyNHolb+6/ZikgkpDONba99zEBBlWhhFOp6VuqmmCyQgPqG+pxILqIJsfPEVnVumjKFa2pEFz9fdEhoXWExHaToHNUC97M/E/z09NdBVkTCapoZIsFkUpRyZGs+9RnylKDJ9Ygoli9lZEhlhhYmxGJRuCt/zyKmldVL1atXZfq9Rv8jiKcAKncA4eXEId7qABTSAg4Ble4c1Rzovz7nwsWgtOPnMMf+B8/gC7go+2</latexit>

mS [v] = 0

<latexit sha1_base64="w/5P7F8wU224ELNoNfxr0bEz9L0=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9mVgl6EohePFe0HbJeSTbNtaJJdk2yhLP0TXjwo4tW/481/Y9ruQVsfDDzem2FmXphwpo3rfjuFtfWNza3idmlnd2//oHx41NJxqghtkpjHqhNiTTmTtGmY4bSTKIpFyGk7HN3O/PaYKs1i+WgmCQ0EHkgWMYKNlTqi9+CPg2u3V664VXcOtEq8nFQgR6NX/ur2Y5IKKg3hWGvfcxMTZFgZRjidlrqppgkmIzygvqUSC6qDbH7vFJ1ZpY+iWNmSBs3V3xMZFlpPRGg7BTZDvezNxP88PzXRVZAxmaSGSrJYFKUcmRjNnkd9pigxfGIJJorZWxEZYoWJsRGVbAje8surpHVR9WrV2n2tUr/J4yjCCZzCOXhwCXW4gwY0gQCHZ3iFN+fJeXHenY9Fa8HJZ47hD5zPH2HRj4s=</latexit>

...

<latexit sha1_base64="hcos2bqH5uv/vPkuNcZDISCoxKo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4CokU9Fj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUykMet63s7a+sbm1Xdop7+7tHxxWjo5bJsk0402WyER3Qmq4FIo3UaDknVRzGoeSt8Px7cxvP3FtRKIecZLyIKZDJSLBKFrpwXXdfqXqud4cZJX4BalCgUa/8tUbJCyLuUImqTFd30sxyKlGwSSflnuZ4SllYzrkXUsVjbkJ8vmpU3JulQGJEm1LIZmrvydyGhsziUPbGVMcmWVvJv7ndTOMroNcqDRDrthiUZRJggmZ/U0GQnOGcmIJZVrYWwkbUU0Z2nTKNgR/+eVV0rp0/Zpbu69V6zdFHCU4hTO4AB+uoA530IAmMBjCM7zCmyOdF+fd+Vi0rjnFzAn8gfP5A04qjSk=</latexit>

LS

<latexit sha1_base64="JyUCdaLoKQwfN3QRxFxal05CL3o=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhCswp0EtAzaWFhEYj4gOcLeZi5Zsrd37O4J4chPsLFQxNZfZOe/cZNcoYkPBh7vzTAzL0gE18Z1v5219Y3Nre3CTnF3b//gsHR03NJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Hbmt59QaR7LRzNJ0I/oUPKQM2qs1LjvN/qlsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzU6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDaz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2naINwVt+eZW0LitetVJ9qJZrN3kcBTiFM7gAD66gBndQhyYwGMIzvMKbI5wX5935WLSuOfnMCfyB8/kD/meNnQ==</latexit>

(S [v, G)

<latexit sha1_base64="QBYy0hJcCGhd6ey3B86mjeNPezo=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoMQQcKuBPQY9KDHiOYB2SXMTmaTIbO7wzwCIeQ3vHhQxKs/482/cZLsQRMLGoqqbrq7QsGZ0q777eTW1jc2t/LbhZ3dvf2D4uFRU6VGEtogKU9lO8SKcpbQhmaa07aQFMchp61weDvzWyMqFUuTJz0WNIhxP2ERI1hbyS8/+sQINLpAd+fdYsmtuHOgVeJlpAQZ6t3il99LiYlpognHSnU8V+hggqVmhNNpwTeKCkyGuE87liY4piqYzG+eojOr9FCUSluJRnP198QEx0qN49B2xlgP1LI3E//zOkZH18GEJcJompDFoshwpFM0CwD1mKRE87ElmEhmb0VkgCUm2sZUsCF4yy+vkuZlxatWqg/VUu0miyMPJ3AKZfDgCmpwD3VoAAEBz/AKb45xXpx352PRmnOymWP4A+fzBxUmkGo=</latexit>

argmaxv2G\S mS [v]

<latexit sha1_base64="Hq2FkOTYn0FfM19J2f5XONWKY7g=">AAACFXicbVA9SwNBEN3zM8avqKXNYhAsJNxJQEvRQsuIRoXccextJnFxd+/YnQuGI/4IG/+KjYUitoKd/8ZNTOHXg4HHezPMzEsyKSz6/oc3MTk1PTNbmivPLywuLVdWVs9tmhsOTZ7K1FwmzIIUGpooUMJlZoCpRMJFcn049C96YKxI9Rn2M4gU62rREZyhk+LKdohwgwUzXcVuBnHRC4WmR5SGFlAJnVt6OrilKj5t9SIaV6p+zR+B/iXBmFTJGI248h62U54r0Mgls7YV+BlGbhsKLmFQDnMLGePXrAstRzVTYKNi9NWAbjqlTTupcaWRjtTvEwVT1vZV4joVwyv72xuK/3mtHDt7USF0liNo/rWok0uKKR1GRNvCAEfZd4RxI9ytlF8xwzi6IMsuhOD3y3/J+U4tqNfqJ/Xq/sE4jhJZJxtkiwRkl+yTY9IgTcLJHXkgT+TZu/cevRfv9at1whvPrJEf8N4+AXuOnvw=</latexit>

Fig. 1. A visual depiction of the pipeline. The layers of GLIE are depicted by
a heatmap of an actual seed during inference time, showing how the values
vary through different nodes (columns).

and thresholds to determine the exact influenced set are not
straightforward.

B. CELF-GLIE: Cost Effective Lazy Forward with GLIE

Cost Effective Lazy Forward (CELF) [13] is an improved
version of the greedy algorithm for influence maximization
that exploits the property of submodularity to select seed nodes
efficiently. By maintaining a sorted list of nodes based on their
influence spread, CELF identifies the best node with the highest
marginal gain in each iteration, resulting in significantly faster
execution times compared to the greedy algorithm without
sacrificing its original effectiveness. In our case, we propose
an adaptation where we substitute the original CELF IE based
on MC IC with the output of GLIE. Since we do not prove the
submodularity of σ̂, we can not contend that the theoretical
guarantee is retained, so we use this as a heuristic. CELF-
GLIE has two main computational bottlenecks. First, it requires
computing the initial IE for every node in the first step. Second,
although it alleviates the need to test every node in every step,
it still requires IE for at least one node in each step. Second,
We will try to alleviate both.

C. PUN: Potentially Uninfluenced Neighbors

Computing the influence spread of every node in the first
step is computationally demanding. We thus seek a method
that can surpass this hinder and provide adequate performance.
We first utilize the activations mentioned above to define the
set of influenced nodes on the step that corresponds to that
layer. Let L̂S , L

′
S ∈ {0, 1}n be the binary vectors with 1s in

nodes predicted to be uninfluenced and nodes predicted to be
influenced respectively:

L̂S = 1

{
d1∑
i=0

Hi
1 ≤ 0

}
L′
S = 1

{
d1∑
i=0

Hi
1 > 0

}
. (12)

where T is the number of layers, and Hi
t ∈ Rn×1 is a column

from Ht. This vector contains a label for each node whose
sign indicates if it is predicted to be influenced. L′

S provides

a rough estimate, but it allows for a simpler influence spread
which we can optimize greedily:

σm(S) = |L′
S |. (13)

We can use L̂S and message passing to predict the amount
of a node’s neighborhood that remains uninfluenced, i.e., the
Potentially Uninfluenced Neighbors (PUN), weighted by the
respective probability of influence for a node u,

mS [u] =
∑

v∈N(u)

AuvL̂v = A⊤
u · L̂S ∈ Rn×1. (14)

For efficiency, we can compute mS = A⊤L̂ which can be
considered an approximation to all nodes’ marginal gain on
their immediate neighbors. We can thus optimize this using
argmax(mS), as shown in Fig. (1). In order to establish that
σm can be optimized greedily with a theoretical guarantee of
(1 − 1

e)OPT, in Theorem 2 we prove its monotonocity and
submodularity.

Theorem 2. The influence spread σm is submodular and
monotone.

Proof. The proof can be found in Appendix A.

PUN can be seen in the left part of Fig. 1. We start by setting
the first seed as the node with the highest degree, which can
be considered a safe assumption as in practice it is always
part of seed sets. We use GLIE(S,G) to retrieve L̂S , which
we use to find the next node based on argmaxv∈G\S mS [v]

and the new L̂S∪{v}. One disadvantage of PUN is that σm is
an underestimation of the predicted influence. Contrasted with
the upper bound, DMP, σm is not as accurate as σ̂, but allows
us to compute efficiently a submodular proxy for the marginal
gain. This underestimation means that a part of the network
considered uninfluenced in L̂S is measured as a potential gain
for their neighbors, hence the ranking based on mS can be
affected negatively. For this purpose, we will use adaptive
full-feedback selection (AFF), where after selecting a new
seed node, we remove it from the network along with nodes
predicted to be influenced. It has been proved in the seminal
work of [28] that an AFF greedy algorithm for a submodular
and monotonic function is guaranteed to have a competitive
performance with the optimal policy. In our case, we will use
an AFF update every k seeds, as it adds a small computational
overhead if we do it in every step. The benefit of PUN is twofold.
Firstly, as we remove the influenced node and truncate the seed
set, GLIE produces an increasingly more valid estimate because
it performs better when the graph and seed set are smaller.
Secondly, as the neighborhood size decreases, the effect of
missed influenced nodes is diminished in mS .

IV. EXPERIMENTAL EVALUATION

All the experiments are performed in a PC with an NVIDIA
GPU TITAN V (12GB RAM), 256GB RAM and an Intel(R)
Xeon(R) W-2145 CPU @ 3.70GHz. The source code can be
found in the supplementary files.

A. Influence Estimation

In order to train for the influence estimation task, we create
a set of labeled samples, each consisting of the seed set
S and the corresponding influence spread σ(S). We create
100 Barabasi-Albert [29] and Holme-Kim [30] undirected
graphs ranging from 100 to 200 nodes and 30 from 300 to
500 nodes. 60% are used for training, 20% for validation,
and 20% for testing. We have used these network models
because the degree distribution resembles the one of real world
networks. The influence probabilities are assigned based on the
weighted cascade model, i.e., a node u has an equal probability
1/deg(u) to be influenced by each of her N (u) nodes. This
model requires a directed graph, hence we turn all undirected
graphs into directed ones by appending reverse edges. Though
estimating influence probabilities is a problem on its own [31],
in the absence of extra data, the weighted cascade is considered
more realistic than pure random assignments [6]. To label the
samples, we run the CELF algorithm using 1, 000 Monte Carlo
(MC) ICs for influence estimation, for up to 5 seeds. Note
that, we expect running 10, 000 simulations would provide a
more qualitative supervision. However, on the one hand, the
training time would increase exponentially, and on the other,
due to the training graphs being relatively small, the difference
is minuscule. The optimum seed set for size 1 to 5 is stored,
along with 30 random negative samples for each seed set
size. This amounts to a total of 20, 150 training samples. Each
training sample for GLIE corresponds to a triple of a graph G,
a seed set S, and a ground truth influence spread σ(S) that
serves as a label to regress on. The random seed sets are used
to capture the average influence spread expected for a seed
set of about that size. This creates “average samples” which
would constitute the whole dataset in other problems. In IM
however, the difference in σ between an average seed set and
the optimal can be significant, hence training solely on the
random sets would render our model unable to predict larger
values that correspond to the optimum. That is why we added
the aforementioned samples of the optimum seed set computed
using CELF. We deem the combination of 30 random and 1
optimum a more balanced form of supervision, as you expect
the crucial majority of the seed sets to have an average σ.

Regarding model training, we have used a small-scale grid-
search using the validation set to find the optimum batch size
64, dropout 0.4, number of layers 2, hidden layer size 64, and
feature dimension 50. More importantly, we observed that it is
beneficial to decrease the hidden layer size (by a factor of 2) as
the depth increases, i.e., go from 32 to 16. This means that the
1-hop node representations are more useful compared to the 2-
hop ones and so on—validating the aforementioned conclusion
that the approximation to the influence estimation in Eq. (4),
diverges more as the message passing depth increases. The
training then proceeds for 100 epochs with an early stopping
of 50 and a learning rate of 0.01.

We evaluate the models in three different types of graphs.
The first is the test set of the dataset mentioned above. The
second is a set of 10 power-law large graphs (1, 000 – 2, 000

TABLE I
GRAPH DATASETS.

Graph # Nodes # Edges

Si
m Test/Train 100− 500 950− 4, 810

Large 1, 000− 2, 000 11, 066− 19, 076

Sm
al

l Crime (CR) 829 2, 946
HI-II-14 (HI) 4, 165 26, 172
GR Colab (GR) 5, 242 28, 980

L
ar

ge Enron (EN) 33, 697 361, 622
Facebook (FB) 63, 393 1, 633, 660
Youtube (YT) 1, 134, 891 5, 975, 246

nodes) to evaluate the capability of the model to generalize
in networks that are larger by one factor. The third is a set
of three real-world graphs, namely the Crime (CR), HI-II-14
(HI), and GR collaborations (GR). More information about the
datasets is given in Table I.

The real graphs are evaluated for varying seed set sizes,
from 2 to 10, to test our model’s capacity to extrapolate to
larger seed set sizes. Due to the size of the latter two graphs
(HI and GR), we take for each seed set size the top nodes
based on the degree as the optimum seed set along with a
30 random seed sets for the large simulated graphs and 3 for
the real graphs, to validate the accuracy of the model in non-
significant sets of nodes. We have compared the accuracy of
influence estimation with DMP [23]. We could not utilize the
influence estimation of UBLF [27] because its central condition
is violated by the weighted cascade model and the computed
influence is exaggerated to the point it surpasses the nodes
of the network. The average error throughout all datasets and
the average influence can be seen in Table II, along with the
average time.

We evaluate the retrieved seed set using the independent
cascade, and the results are shown in Table III. We should
underline here that this task would require more then 3 hours
for the Crime dataset and days for GR using the traditional
approach with 1, 000 MC IC. As we can see in Table III, GLIE-
CELF allows for a significant acceleration in computational
time, while the retrieved seeds are more effective. Moreover,
in CELF, the majority of time is consumed in the initial
computation of the influence spread, i.e., the overhead to
compute 100 instead of the 20 seeds shown in Table III,
amounts to 0.11, 0.22 and 0.19 seconds for the three datasets
respectively.

B. Influence Maximization

Our main benchmark is a state-of-the-art IM method, IMM
[10], which capitalizes on reverse reachable sets [9] to estimate
influence. Specifically, it produces a series of such sketches
and uses them to approximate the influence spread without
simulations. This results in remarkable acceleration with a
theoretical guarantee. Note that, IMM is considered one of
the state-of-the-art algorithms and surpasses various heuristics
[32]. We set e = 0.5 as proposed by the authors. We also
compare with FINDER, which is analyzed in Section II, and
with the most well-known heuristic methods for the Independent

TABLE II
AVERAGE MAE DIVIDED BY THE AVERAGE INFLUENCE AND TIME (IN

SECONDS) THROUGHOUT ALL SEED SET SIZES AND SAMPLES, ALONG WITH
THE REAL AVERAGE INFLUENCE SPREAD.

Graph (seeds) DMP GLIE

MAE Time MAE Time

Test (1 – 5) 0.076 0.05 0.046 0.0042
Large (1 – 5) 0.086 0.44 0.102 0.0034
CR (1 – 10) 0.009 0.11 0.044 0.0029
HI (1 – 10) 0.041 2.84 0.056 0.0034
GR (1 – 10) 0.122 4.32 0.084 0.0042

TABLE III
IM FOR 20 SEEDS WITH CELF, USING THE PROPOSED (GLIE) SUBSTITUTE

FOR INFLUENCE ESTIMATION AND EVALUATING WITH 10, 000 MC
INDEPENDENT CASCADES (IC).

Graph
(seeds)

Seed
overlap

DMP-CELF GLIE-CELF

Infl Time Infl Time

CR (20) 14 221 83 229 1.0
HI (20) 13 1, 235 8, 362 1,281 5.49
GR (20) 12 295 16, 533 393 7.01

Cascade. PMIA [7] computes the influence spread based on
local approximations. DEGREEDISCOUNT [11] builds a seed
set using the node’s degree, which is recomputed based on the
current seed set and its influence. Finally, K-CORES [33] is the
a graph degeneracy metric that uncovers nodes that are part of
densely connected subgraphs.

The results for the influence spread of 200 seeds as computed
by simulations of MC ICs can be seen in Table IV, while the
time results are shown in Tables V and VI. The best result is in
bold and the second best is underlined. One can see that GLIE-
CELF exhibits overall superior influence quality compared to
the rest of the methods, but is quite slower. PUN requires
only one influence estimation in every step and no initial
computation. It exhibits 3 to 60 times acceleration compared
to IMM while its computational overhead moving from smaller
to larger graphs is sublinear to the number of nodes. In terms
of influence quality, PUN is first or second in the majority of
the datasets and this effect becomes more clear as the seed set
size increases. DEGDISC is faster than PUN in smaller graphs
but slower in larger and overall worse in seed set quality.
PMIA provides medium seed set quality but is computationally
inefficient. IMM is clearly not the fastest method, but it is very
accurate, especially for smaller seed set sizes. FINDER exhibits
the least accurate performance, which is understandable given
that it solves a relevant problem and not exactly IM for IC.
The computational time presented is the time required to solve
the node percolation, in which case it may retrieve a bigger
seed set than 100 nodes. Thus, we can hypothesize it is quite
faster for a limited seed set, but the quality of the retrieved
seeds is the least accurate among all methods. Overall, we
can contend that PUN provides the best accuracy-efficiency

20 50 100 200
0

50

100

150

200

In
flu

en
ce

sp
re

ad

CR

IMM PUN

20 50 100 200
0

50

100

150

200

In
flu

en
ce

sp
re

ad

GR

IMM PUN

20 50 100 200
0

50

100

150

200

250

In
flu

en
ce

sp
re

ad

HT

IMM PUN

20 50 100 200
0

200

400

600

800

1,000

In
flu

en
ce

sp
re

ad

EN

IMM PUN

20 50 100 200
0

500

1,000

1,500

2,000

2,500

In
flu

en
ce

sp
re

ad

FB

IMM PUN

20 50 100 200
0

0.2

0.4

0.6

0.8

1
·104

In
flu

en
ce

sp
re

ad

YT
IMM PUN

Fig. 2. PUN vs. IMM for IC with p = 0.01.

tradeoff from the examined methods.
DEEPIS, as analyzed in related work, resembles GLIE, in

that it computes influence estimation using a neural network.
We follow the authors’ methodology and train the model using
their code on the proposed Cora ML [19]. We use it as an
influence estimation oracle in CELF, similar to GLIE-CELF.
Unfortunately, it is infeasible to scale in the larger datasets due
to the need for explicit powers of the influence matrices that
required more than 24 GB of GPU RAM. For comparison, this
model required 501.61, 835.4, and 1, 602.5 seconds for the
CR, GR, and HI datasets, respectively. This further supports
the superiority of PUN.

Furthermore, we compare IMM and PUN on the same graphs
with uniform influence probabilities p = 0.01 in Figure 2, as a
substitute to the weighted cascade assignment. We observe that
PUN outperforms IMM. Finally, we performed an experiment
to compare PUN without the use of GPU for 100 seeds. The
results are reported in Table VII. It is visible that GPU provides
a substantial acceleration, but PUN remains the faster option
even without it.

V. CONCLUSION

We have proposed GLIE, a GNN-based model for influence
estimation. We showcase its accuracy in that task and further
utilize it to address the problem of IM. We developed two
methods based on the representations and the predictions of
GLIE. GLIE-CELF, an adaptation of a classical algorithm that
surpasses SOTA but with significant computational overhead,
and textscPun, a submodular function that acts as proxy for

TABLE IV
INFLUENCE SPREAD COMPUTED BY 10,000 MC ICS FOR 200 SEEDS.

Graph GLIE-CELF PUN K-CORE PMIA DEGDISC IMM DEEPIS-CELF FINDER

CR 661 657 647 656 644 650 501.61 642
GR 1, 617 1,626 701 1, 566 1415 835.40 1, 617 1, 286
HI 2, 685 2,688 2, 540 2, 685 2, 614 2, 668 1602.5 2, 625
EN 17, 601 17,614 13, 015 17, 534 16, 500 17, 497 - 17, 244
FB 10, 981 10, 626 6, 434 7, 688 10, 309 11,007 - 10, 801
YT 246, 439 244, 579 110, 409 242, 057 236, 726 247, 178 - 50, 435

TABLE V
COMPUTATIONAL TIME IN SECONDS (VS ALGORITHMS).

Graph GLIE-CELF PUN IMM FINDER

CR 2.00 0.25 0.19 0.41
GR 4.55 0.26 0.95 2.36
HI 2.19 0.27 1.29 1.01
EN 15.49 0.97 10.47 9.30
FB 287.7 3.1 171.25 56.80
YT 151.33 28.92 82.13 191.00

TABLE VI
COMPUTATIONAL TIME IN SECONDS (VS HEURISTICS).

Graph PUN DEGDISC K-CORE PMIA

CR 0.25 0.21 0.06 0.04
GR 0.26 0.80 0.13 1.5
HI 0.27 1.36 0.14 0.12
EN 0.97 26.74 2.06 2.17
FB 3.1 22.77 9.29 10.62
YT 28.92 4006.29 54.38 74.91

TABLE VII
PUN CPU VS. GPU TIME (SEC).

Graph PUN GPU PUN CPU IMM

CR 0.15 0.17 0.13
GR 0.17 0.27 0.57
HT 0.17 0.20 0.56
EN 0.52 2.44 4.78
FB 1.42 17.5 69.9
YT 13.2 97.5 55.4

the marginal gain and can be optimized adaptively, striking a
balance between efficiency and accuracy.

For a typical IM algorithm, it is not straightforward to
consider the topic of the information shared or the user’s
characteristics [34]. A significant practical advantage of a
neural network approach is the easy incorporation of such
complementary data by adding the corresponding embeddings
in the input, as has been done in similar settings [12]. We thus

deem an experiment with contextual information a natural next
step, given a proper dataset. Finally, we also plan to examine
the potential of training a reinforcement learning module, i.e.,
receiving real feedback from each step of the diffusion that
could update both the Q-NET and GLIE. This would allow
the model to adjust its decisions based on the partial feedback
received during the diffusion.

APPENDIX A
PROOF OF THEOREM 2

For the purposes of the proof, P ∈ {1}hd×1 and we define
the support function S(v) = {i ∈ [1, n], vi ̸= 0} as the set
of indices of non zero rows in a matrix such as Xi, of layer
i. Let R represent ReLU and btr, sttr the mean and standard
deviation computed by the batchnorm.
Proof. Monotonocity, ∀i < j, Si ⊂ Sj :

S(Xj) ⊃ S(Xi) ⇒ S(XjW) ⊇ S(XiW) (15)
S(AXjW) ⊇ S(AXiW) ⇒ S((R(AXjW)− btr)/sttr)

⊇ S((R(AXiW)− btr)/sttr) (16)
S(Hj) ⊇ ∫(H(Si)) ⇒ S(HjP) ⊇ S(HiP) (17)

|1>0 {HjP} | ≥ |1>0 {HiP} | ⇒ σm(Sj) ≥ σm(Si) (18)

(15) First subset is by definition. Second is because Xj is a
convex hull that contains Xi [35]. We multiply both sides by a
real matrix W ∈ Rd×hd which can equally dilate both convex
hulls in terms of direction and norm. This transformation cannot
change the sign of the difference between the elements of Xi

and Xj and hence cannot interfere with the support of Xj

over Xi. This becomes more obvious for X ∈ {0, 1}n×1 and
W ∈ R1×1. Note that both can result in zero matrices so we
use subset or equal. (16) A is a non-negative matrix and ReLU
is a nonnegative monotonically increasing function. Subtract
by the same number and divide by the same positive number
in the right inequality. (17) Definition in Eq. (9); P is positive.
(18) By definition of the support and of L′

S .

For the proof of submodularity we have to define Xiu =
XSi∪u, u ∈ V and note by the definition of the input that
|Xju−Xj | = |Xiu−Xi| for the l1 norm (sum of all elements):

Proof. Submodularity ∀i < j, Si ⊂ Sj :

|Xju − Xj | = |Xiu − Xi| ⇒ |A(Xju − Xj)| = |A(Xiu − Xi)| (19)

|AXjuW − AXjW | = |AXiuW − AXiW | (20)

R(|AXjuW − AXjW |) − 2btr = R(|AXiuW − AXiW | − 2btr) (21)

|R(AXjuW) − R(AXjW) − 2btr| =
|R(AXiuW) − R(AXiW) − 2btr| (22)

S(R(AXjuW) − R(AXjW) − 2btr) =

S(R(AXiuW) − R(AXiW) − 2btr) (23)

S(R(AXjuW − btr)) − S(R(AXjW) − btr) ⊆
S(R(AXiuW − btr)) − S(R(AXiW) − btr) (24)

S(Hju) − S(Hj) ⊆ S(Hiu) − S(Hi) (25)

σ
m
(S

j ∪ {u}) − σ
m
(S

j
) ≤ σ

m
(S

i ∪ {u}) − σ
m
(S

i
) (26)

(20) Distributive property and W similar to multiply by A.
(24) The norm of the difference is distributed equally, but the
right hand difference has as least the same or more positive
elements because the norm of A, which is stochastic, is bounded
by V hence Xu can give up to the same gain to AXj and
AXi, the same number btr is subtracted, and more elements
are activated by Xj then Xi as shown in (18). (25) We skipped
dividing by sttr for brevity.(26) Similar steps as (17) - (18).

Regarding the approximation of the marginal gain we first
show that the node corresponding to the maximum mS gives
the maximum L′

ju: A′
uL̂j ≥ A′

v L̂i ⇒ L′
ju ≥ L′

iv .

A′
uL̂j =

∑
v∈N(u)

A′
uvL̂j [v] =

∑
v∈N(u)

AuvL
′
j [u] =

∑
v∈N(u)

AuvXju.

This means that mS gives the node u that improves the biggest
number of rows in AXju that are not already considered
influenced. Since we know from Eq. (18) that AXiu ≥
AXiv ⇒ |L′

iu| ≥ |L′
iv|, the claim concludes. Hence, choosing

the best node using the marginal gain approximation is as good
as the real influence spread. Now we prove the submodularity
of the proposed marginal gain.
Proof. Submodularity for the approximation of the marginal
gain, ∀i < j, Si ⊂ Sj , starting from (18):

|1>0 {HjP} | ≥ |1>0 {HiP} |
|1≤0 {HjP} | ≤ |1≤0 {HiP} | (27)

A′
uL̂j ≤ A′

uL̂i → mSj
[u] ≤ mSi

[u] (28)

(|L′
j |+mSj

[u])− |L′
j | ≤ (|L′

i|+mSi
[u])− |L′

i| (29)

σm(Sj ∪ {u})− σm(Sj) ≤ σm(Si ∪ {u})− σm(Si) (30)

(27) Complementarity between elements that are ≤ 0 and > 0.
(28) Definition in Eq. (12) and multiply with non-negative row
u from matrix A′, Definition in Eq. (14). (30) By definition
of σm in Eq. (13) and the marginal gain of u.

REFERENCES

[1] N. Mathew, S. L. Smith, and S. L. Waslander, “Planning paths for package
delivery in heterogeneous multirobot teams,” IEEE T-ASE, vol. 12, no. 4,
pp. 1298–1308, 2015.

[2] N. Touati-Moungla and V. Jost, “Combinatorial optimization for electric
vehicles management,” Journal of Energy and Power Engineering, vol. 6,
no. 5, pp. 738–743, 2012.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[4] C. K. Joshi, T. Laurent, and X. Bresson, “On learning paradigms for the
travelling salesman problem,” CoRR, 2019.

[5] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” in ICLR, 2019.

[6] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in KDD, 2003.

[7] C. Wang, W. Chen, and Y. Wang, “Scalable influence maximization
for independent cascade model in large-scale social networks,” DMKD,
vol. 25, no. 3, pp. 545–576, 2012.

[8] Y. Tian and R. Lambiotte, “Unifying information propagation models
on networks and influence maximization,” Physical Review E, vol. 106,
no. 3, p. 034316, 2022.

[9] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social
influence in nearly optimal time,” in SODA, 2014, pp. 946–957.

[10] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-linear
time: A martingale approach,” in SIGMOD, 2015.

[11] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in
social networks,” in SIGKDD, 2009.

[12] S. Tian, S. Mo, L. Wang, and Z. Peng, “Deep reinforcement learning-
based approach to tackle topic-aware influence maximization,” Data
Science and Engineering, vol. 5, no. 1, pp. 1–11, 2020.

[13] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance, “Cost-effective outbreak detection in networks,” in KDD,
2007.

[14] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in NeurIPS,
2015.

[15] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” in ICLR, 2017.

[16] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” CoRR, 2017.

[17] C. Fan, L. Zeng, Y. Sun, and Y.-Y. Liu, “Finding key players in
complex networks through deep reinforcement learning,” Nature Machine
Intelligence, pp. 1–8, 2020.

[18] S. Manchanda, A. Mittal, A. Dhawan, S. Medya, S. Ranu, and A. Singh,
“Gcomb: Learning budget-constrained combinatorial algorithms over
billion-sized graphs,” in NeurIPS, 2020.

[19] W. Xia, Y. Li, J. Wu, and S. Li, “Deepis: Susceptibility estimation on
social networks,” in WSDM, 2021.

[20] A. Alieva, A. Aceves, J. Song, S. Mayo, Y. Yue, and Y. Chen, “Learning
to make decisions via submodular regularization,” in ICLR, 2020.

[21] G. Panagopoulos, F. D. Malliaros, and M. Vazirgiannis, “Diffugreedy:
An influence maximization algorithm based on diffusion cascades,” in
Complex Networks, 2018, pp. 392–404.

[22] G. Panagopoulos, F. D. Malliaros, and M. Vazirgianis, “Influence
maximization using influence and susceptibility embeddings,” in ICWSM,
2020, pp. 511–521.

[23] A. Y. Lokhov and D. Saad, “Scalable influence estimation without
sampling,” CoRR, 2019.

[24] B. Cautis, S. Maniu, and N. Tziortziotis, “Adaptive influence maximiza-
tion,” in KDD, 2019.

[25] N. Karalias and A. Loukas, “Erdos goes neural: an unsupervised learning
framework for combinatorial optimization on graphs,” in NeurIPS, 2020.

[26] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” CoRR, 2018.

[27] C. Zhou, P. Zhang, W. Zang, and L. Guo, “On the upper bounds of
spread for greedy algorithms in social network influence maximization,”
IEEE TKDE, vol. 27, no. 10, pp. 2770–2783, 2015.

[28] D. Golovin and A. Krause, “Adaptive submodularity: Theory and
applications in active learning and stochastic optimization,” JAIR, vol. 42,
pp. 427–486, 2011.

[29] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,”
science, vol. 286, no. 5439, pp. 509–512, 1999.

[30] P. Holme and B. J. Kim, “Growing scale-free networks with tunable
clustering,” Physical review E, vol. 65, no. 2, p. 026107, 2002.

[31] G. Panagopoulos, F. Malliaros, and M. Vazirgiannis, “Multi-task learning
for influence estimation and maximization,” IEEE TKDE, 2020.

[32] K. Jung, W. Heo, and W. Chen, “Irie: Scalable and robust influence
maximization in social networks,” in ICDM, 2012.

[33] F. D. Malliaros, C. Giatsidis, A. N. Papadopoulos, and M. Vazirgiannis,
“The core decomposition of networks: Theory, algorithms and applica-
tions,” The VLDB Journal, vol. 29, no. 1, pp. 61–92, 2020.

[34] W. Chen, T. Lin, and C. Yang, “Real-time topic-aware influence
maximization using preprocessing,” Computational social networks,
vol. 3, no. 1, pp. 1–19, 2016.

[35] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

	Introduction
	Related Work
	Methodology
	Glie: Graph Learning-based Influence Estimation
	Celf-Glie: Cost Effective Lazy Forward with Glie
	Pun: Potentially Uninfluenced Neighbors

	Experimental Evaluation
	Influence Estimation
	Influence Maximization

	Conclusion
	Appendix A: Proof of Theorem 2
	References

