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Abstract
Applications of machine learning techniques for
materials modeling typically involve functions
known to be equivariant or invariant to spe-
cific symmetries. While graph neural networks
(GNNs) have proven successful in such tasks, they
enforce symmetries via the model architecture,
which often reduces their expressivity, scalability
and comprehensibility. In this paper, we intro-
duce (1) a flexible framework relying on stochas-
tic frame-averaging (SFA) to make any model
E(3)-equivariant or invariant through data trans-
formations. (2) FAENet: a simple, fast and ex-
pressive GNN, optimized for SFA, that processes
geometric information without any symmetry-
preserving design constraints. We prove the va-
lidity of our method theoretically and empirically
demonstrate its superior accuracy and computa-
tional scalability in materials modeling on the
OC20 dataset (S2EF, IS2RE) as well as com-
mon molecular modeling tasks (QM9, QM7-X).
A package implementation is available at https:
//faenet.readthedocs.io.

1. Introduction
Machine Learning (ML) methods have the ability to model
complex physical and chemical interactions. It thus holds
great potential for accelerating material design, which is
essential to various applications such as low-carbon en-
ergy, sustainable agriculture or drug discovery. One particu-
larly promising use case of ML is modeling the properties
of complex materials systems at lower computational cost
compared to expensive quantum mechanical simulation tech-
niques like Density Functional Theory (DFT). The heavy
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reliance on DFT for materials property prediction continues
to impose a significant computational barrier to evaluating
large number of material candidates (Chen & Ong, 2022).
Graph Neural Networks (GNNs) based on geometric deep
learning principles have shown promise in their ability to
predict a wide range of molecular properties (Han et al.,
2022). A key factor of the success of GNNs is their ability
to leverage 3D geometric information via the representation
of a collection of atoms in 3D space (Atz et al., 2021), which
is updated based on spatial atomic interactions by passing
messages between them. Another important aspect is the
incorporation of geometric priors that exploit the symmetry
of the data, rendering model predictions invariant or equiv-
ariant1 to Euclidean transformations2, as well as key physics
principles such as the conservation of energy (Smidt, 2021).

Symmetries and physical constraints are typically enforced
directly into the model architecture, which greatly restricts
the flexibility of GNNs to process geometric information
(Gasteiger et al., 2021; Fuchs et al., 2020; Satorras et al.,
2021). As a result, these models either lack expressivity
or present significantly more complex and computationally
expensive architectures, as detailed in Section 2. While
state-of-the-art GNNs remain orders of magnitude faster
than DFT, their inference time still limits the use of ML for
downstream practically-relevant applications, which require
large-scale evaluations (Agrawal & Choudhary, 2016). In-
deed, whether we are trying to discover new drugs, new cat-
alysts or undiscovered material systems, we need to explore
exponentially vast search spaces of potential candidates
(Bohacek et al., 1996). The above ambitions to accelerate
automated material discoveries therefore require designing
expressive, robust and computationally scalable models.

To that end, we propose a novel view of 3D molecular
and solid-state materials modeling, where symmetries are
preserved via data projections instead of architectural con-
straints. Concretely, we make the following contributions:

• Symmetry-Preserving Data Augmentation via Stochas-

1In this work, unless specified otherwise, we consider invari-
ance to be a special case of equivariance and will include invariance
in claims regarding equivariance.

2Rotations, reflections, and translations, which in 3D space
define the group E(3).
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tic Frame-Averaging: We propose a flexible framework
to develop equivariant GNNs for materials modeling
without any architectural requirement. Building upon
Frame-Averaging (FA) (Puny et al., 2022), we propose
to project data points into a canonical representation,
allowing any model to be theoretically (Full FA) or
empirically (Stochastic FA) E(3)-equivariant without
losing expressiveness.

• FAENet: We introduce the Frame Averaging Equiv-
ariant Network (FAENet), a lightweight yet effective
GNN whose design is not constrained by symmetry-
preserving requirements. FAENet can therefore pro-
cess geometric information through atom relative posi-
tions with full flexibility while rigorously preserving
symmetries through the data, as leveraged by FA.

• FAENet Analysis: We verify the theoretical properties
of the proposed approach, investigate its expressive
power, and demonstrate its superior accuracy vs scala-
bility trade-off compared to prior methods on four well
known datasets in ML for materials science: OC20
IS2RE, S2EF (2M) for solid-state crystal structure
modeling, QM7-X and QM9 for molecular modeling.

2. Related Work
Recent works have expanded the application of ML tech-
niques to a broad set of materials modeling tasks ranging
from solid-state (Zitnick et al., 2020; Miret et al., 2022) to
molecular (Hoja et al., 2021; Ramakrishnan et al., 2014)
structures. Most existing GNN architectures have applied
physics-informed 3D symmetries directly in the model ar-
chitecture, making model predictions explicitly invariant or
equivariant to the desired transformations3.

Various GNNs are constructed to be E(3)-invariant by
extracting invariant geometric features from atomic posi-
tions (Unke & Meuwly, 2019; Klicpera et al., 2020b; Liu
et al., 2021; Shuaibi et al., 2021; Ying et al., 2021; Adams
et al., 2021). SchNet (Schütt et al., 2017), leverages atom
distances via a continuous convolution filter to learn a poten-
tial energy surface, making it fast but unable to distinguish
between certain types of molecules. ComENet (Wang et al.,
2022) and GemNet (Gasteiger et al., 2021) extract additional
information via bond angles and torsion angles(between
quadruplets of nodes), thereby enabling the architecture to
distinguish a larger set of atomic systems. Nevertheless,
these methods are computationally expensive, as they use
3-hop neighbourhoods to compute torsion information for

3A function f is invariant w.r.t. transformation t if, for any
input x, f(t(x)) = f(x). On the other hand, an equivariant
function is such that f(t(x)) = t(f(x)). Typical examples include
energy and forces, respectively

each update step at both training and inference time. Fur-
thermore, they are usually less expressive than equivariant
representations (Wang & Zhang, 2022; Joshi et al., 2022).

Equivariant methods (Thomas et al., 2018; Anderson et al.,
2019; Fuchs et al., 2020; Brandstetter et al., 2021; Batatia
et al., 2022; Frank et al., 2022) focus on enforcing equivari-
ance by using irreducible representations of the SO(3) group.
These works usually combine node features (learned based
on atom relative positions) with a continuous equivariant
filter (constructed based on spherical harmonics and learn-
able radial function) via a Clebsh-Gordan tensor product
to guarantee E(3)- or SE(3)-equivariant predictions. While
these methods are expressive and generalize well, they can
be hard to implement and very computationally expensive
for training and inference.

Additionally, Schütt et al. (2021); Batzner et al. (2022);
Satorras et al. (2021); Thölke & De Fabritiis (2022) mod-
eled equivariant interactions in Cartesian space using both
scalar and vector representations. These GNNs achieve
good performance and are relatively fast by avoiding ex-
pensive operations. However, the authors manually design
two separate sets of functions to deal with each type of rep-
resentation and often use complex operations to mix their
information, which renders the global architecture hard to
understand. Overall, such models lack formal guarantees.

Data augmentation (DA) is an alternative way of incorpo-
rating the desired data symmetries without constraining the
model architecture. It has been found extremely effective
in computer vision. In the graph domain, Hu et al. (2021)
augmented molecular datasets with rotated and reflected in-
put graphs. Despite showing promising results, the accuracy
vs. scalability gains are not significant enough to constitute
a true Pareto optimal improvement. Potential explanations
include the suboptimal utilisation of geometric information
given the absence of design constraints, which translates for
instance into an overly complex model architecture, as well
as soft and partial symmetry-preservation. In the 3D image
domain explored by Gerken et al. (2022), equivariant DA
also resulted in a mitigated performance-scalability trade-
off. Gerken et al. (2022) showed as well that DA methods
matched invariant networks in accuracy for invariant tasks
on 3D images, with much smaller computational cost. De-
spite promising results, this area remains underexplored for
3D materials property prediction tasks.

3. Symmetry-Preserving Data Augmentation
via Stochastic Frame Averaging

The first part of our modeling framework builds upon the
idea of frame averaging, where we map the input data to a
canonical plane using Principal Component Analysis (PCA).
This mapping offers a unique representation of all Euclidean
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transformations of the data and enables to rigorously pre-
serve symmetries without constraining the GNN design.
Frame-averaging also preserves the expressive power of
the backbone architecture, ultimately leading to expressive
architectures at lower inference cost.

3.1. Background

Frame averaging (FA) is a framework introduced by Puny
et al. (2022) by which a function (such as a neural network)
Φ : V → W between normed vector spaces can be trans-
formed into one that is equivariant (or invariant) with respect
to a class of symmetries G. Suppose that ρ1 and ρ2 are rep-
resentations of the group G over V and W , respectively.
That is, for each element g ∈ G, ρ1(g) and ρ2(g) are the
transformations that g induces in V and W .

A frame is defined as a function F(X) : V → 2G, where
the following properties are relevant:

• F is G-equivariant if ∀X ∈ V, g ∈ G, F(ρ1(g)X) =
gF(X), where gF(X) = {gh|h ∈ F(X)}.

• F is bounded over a domain K ⊂ V if ∃c > 0 such
that ∀g ∈ F(X), X ∈ K, ||ρ2(g)||op ≤ c, where
|| · ||op is the operator norm over W .

Puny et al. (2022) prove that if a frame isG-equivariant, then
any arbitrary map Φ can be made equivariant (or invariant)
by averaging predictions over that frame, noted 〈Φ〉F :

〈Φ〉F (X) =
1

|F(X)|
∑

g∈F(X)

ρ2(g)Φ(ρ1(g)−1X)). (1)

The authors also show that ifF is bounded, FA-based GNNs
ΦF are G-equivariant models which preserve the expressive
power of the backbone architecture, leading to maximally
expressive equivariant models for learning on graphs.

Note that these results extend those of the group averaging
operator (Chen et al., 2021; Yarotsky, 2022), which takes
the sum in Eq. (1) over all group elements. FA thus offers
an efficient way to achieve the same theoretical properties.

In this work, we address the generic problem of materi-
als property prediction where said properties are invari-
ant/equivariant to Euclidean motions. As such, we can use
FA to make our GNN Φ symmetry-preserving with respect
to the groupG = E(3). Note that we formalise this task as a
graph/node regression problem, where we predict properties
(e.g., forces y ∈ Rn×3 or energy y ∈ R) from initial atomic
configurations (X,Z), where X ∈ Rn×3 is the matrix of
3D atom positions and Z ∈ Nn their atomic numbers.

3.2. Frame Construction

The goal of frame construction is to find a frame uniquely
determined by the configuration of atoms, such that the

projected coordinates remain identical for arbitrary E(3)
transformations. Additionally, the frame should be robust
to slight distortions, such that similar objects are mapped
to similar frames and representations. In order to define
such a frame for our materials modeling case, we apply
Principal Component Analysis (PCA) and set the principal
components of the 3D atomic structure X as frame axes.

Concretely, we define F(X) using our PCA procedure as
follows: First, we compute the centroid t = 1

nX
>1 ∈ R3

and the covariance matrix Σ = (X − 1t>)>(X − 1t>)
of atom positions X . Then, we solve Σu = λu to find
the eigenvectors u of Σ. Under the assumption of distinct
eigenvalues λ1 > λ2 > λ3, we use the 3×3 orthogonal
matrices U = [±u1,±u2,±u3] to define the frame

F(X) = {(U, t)|U = [±u1,±u2,±u3]} ⊂ E(3). (2)

|F(X)| = 23 = 8 for 3D atomic systems. We apply the
symmetries g = (U, t) ∈ F(X) to the data by defining the
following group representations:

ρ1(g)X = XU> + 1t> (3)

ρ2(g)X =

{
XU> for equivariant predictions
X for invariant predictions

To compute model inferences, we use the frame F(X) de-
fined in Eq. (2) and group representations of Eq. (3) to
average predictions over the frame, as in Eq. (1).

To extend this framework to periodic crystal structures, we
also consider the case where the structure is not defined
by just X but the extended set D = (X,Z,C,O), where
C ∈ R3×3 refers to the unit cell Cartesian coordinates (with
directional vectors as columns) and O ∈ {−1, 0, 1}n×n×3
to the cell offsets between any pair of atoms given periodic
boundary conditions. With this new formulation, we keep
the same frame (F(D) = F(X)) but we additionally need
to apply symmetries on C, similarly to X , while O and Z
remain unchanged by any E(3) transformation. For a more
detailed justification, see Appendix A. This yields

ρ1(g)−1(D) =
(
(X − 1t>)U,Z, (C − 1t>)U,O

)
ρ2(g)(D) =

(
XU>, Z, CU>, O

)
, (4)

for the equivariant case, while ρ2(g) remains the identity
function for invariant predictions. We insert these functions
into Eq. (1) to derive final model predictions. Note that ρ−11

is computed directly since it is the quantity of interest. Since
U is an orthogonal matrix, we have U−1 = U>.

Proposition 3.1. The frame F defined in Eq. (2) along
with transformations ρ1, ρ2 defined in Eq. (4) is bounded
and G-equivariant. Hence, any arbitrary map Φ becomes
E(3)-invariant/equivariant using Eq. (1) while preserving
its expressive power.
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Proof. See Appendix A.

3.3. Stochastic Frame Averaging

The above frame averaging method, extended to crystals
periodic structures and denoted Full FA in the rest of the pa-
per, involves the average of GNN predictions 〈Φ〉(D) over
|F(X)| = 8 frames. Given our goal to enable scalable GNN
training/inference, we propose an efficient approximation
to Full FA called Stochastic Frame Averaging (SFA).

In SFA, we randomly sample a single symmetry g∗ =
(U∗, t) uniformly from F for each data point at every for-
ward pass. Final model predictions thus become:

Φinvar
F (D) = Φ

(
((X − 1t>)U∗, Z, (C − 1t>)U∗, O)

)
Φequiv
F (D) = Φinvar

F (D) · U>∗ , (5)

for the invariant Φinvar
F (D) and equivariant cases Φequiv

F (D).

While sampling only a single frame component does not
theoretically guarantee exact invariance or equivariance, we
empirically demonstrate in Appendix D that our stochastic
approximation is almost perfectly invariant and equivari-
ant with up to 8× faster compute time compared to Full
Frame Averaging. Our approach can be viewed as a variant
of data augmentation where we let the model learn sym-
metries by stochastically sampling among a few possible
projections as opposed to all possible rotations and reflec-
tions of the data. This leads to a better preservation of data
symmetries in addition to a higher performance with simi-
lar compute time when compared to conventional DA (see
Appendix D). We hence bridge the gap between data aug-
mentation approaches, which present unleveraged benefits
(e.g. no model design constraints), and hard-engineered
equivariant methods (with design constraints).

Additionally, this setup imbues our framework with valu-
able flexibility. SFA can (1) be incorporated into the training
pipeline of any GNN; (2) enforce data symmetries approxi-
mately or exactly by using all 8 frames; (3) consider SE(3)
(not equivariant to reflections) instead of E(3) by restricting
F(X) to orthonormal positive orientation matrices, gen-
erally with |F(X)| = 4 elements; (4) be adapted to any
dataset. For instance, the z-axis is fixed in OC20 (Chanussot
et al., 2021) (i.e. the catalyst is always below the adsor-
bate). Hence, we could consider only 2D rotation/reflection
around the z-axis, which yields a total of 2 frames for SE(3)
equivariance, where each has dimension 2× 2.

4. FAENet
In this section, we describe our proposed GNN architecture,
FAENet, detailed in Fig. 1, which is specifically designed
to take advantage of the frame averaging framework in-
troduced in Section 3.3. FAENet leverages 3D geometric

information directly through atom relative positions without
imposing any architectural constraints. FAENet inherits the
theoretical guarantees of FA and satisfies relevant data sym-
metries. Overall, this yields greater modeling flexibility and
the computational scalability needed to perform large-scale
material property evaluations.

Graph Creation: Using F(D) from Eq. (2), we first ap-
ply the transformation ρ1 defined in Eq. (4) to our input
data D in order to map it onto a canonical representation
C = {ρ1(g)−1(D)|g ∈ F(D)}with cardinality greater than
one. This data projection is computed as a pre-processing
step, and has a negligible impact on training time given
that PCA is calculated on a 3× 3 covariance matrix. Dur-
ing model training, following the SFA approach, we select
one canonical element at random and create the graph (i.e.
the adjacency matrix) using the cutoff distance c based on
projected positions:

Aij =

{
1 if dij < c

0 otherwise
(6)

where dij = ||(xi − xj) +Oij∗ · C||.
Embedding Block: Building upon the work of Duval et al.
(2022), we leverage additional domain information to ini-
tialize atom representations, denoted h

(0)
i ∈ Rh for atom i.

We define h
(0)
i as a concatenation of several lookup embed-

dings based on atomic number, group, and period, as well
as a fixed set of physical properties (see Appendix B.1) that
were found to be relevant in previous works (Takigawa et al.,
2016; Ward et al., 2017). We pass it to two-layer MLP.

To capture the 3D topology of the atomic system, we also
learn an edge embedding eij between each pair of con-
nected atoms (i, j). Since our model architecture is free of
symmetry preserving constraints, we can process geometric
information in a very simple and efficient manner using a
2-layer MLP on atom relative positions ~rij . We concatenate
radial basis functions (RBF) of distance information dij
to ~rij as this quantity is very relevant and shown useful in
previous works:

eij = σ

(
MLP

(
~rij ||RBF(dij)

))
. (7)

Note that FAENet takes as input both atom relative positions
and atomic number, which suffices to uniquely identify any
3D material graph4. Moreover, by processing this informa-
tion using universal approximators (Hornik et al., 1989),
FAENet’s embedding block has maximal expressive power.

Message Passing: In each interaction block, we propagate
messages from neighbouring atoms j ∈ Ni to the center

4This stands in contrast to various models (Schütt et al., 2017;
Klicpera et al., 2020b; Liu et al., 2021) – which are provably unable
to distinguish between certain molecules (e.g. enantiomers, CH4).
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Figure 1. Overview of FAENet architecture making use of the Stochastic Frame Averaging framework. FAENet takes an input sample D
and makes an invariant Φinvar

F (e.g. energy) and/or equivariant prediction Φequiv
F (e.g. atomic forces) by passing sequentially through a

graph creation step, an embedding block, several interaction layers and an output block. ∗ denotes the continuous convolution operation
described in Eq. (8), || denotes concatenation, figures/letters the embedding dimension and σ(W ·) a 1-layer MLP with the swish activation
function. Note that while the graph creation step is performed only once, we still need to sample a different canonical representation from
C at each epoch. For Full FA, we apply FAENet on each element of C and average after the output block (not shown).

atom i using a simple continuous convolution of h(l)
j (the

atom embeddings at layer l) with 3D geometric information
eij . Specifically, we learn a more precise graph convolution
filter f

(l)
ij = σ(MLP(eij ||h(l)

i ||h
(l)
j )), with an activation

function σ, to weigh the propagated message using both
geometric information and atom endpoints:

h
(l+1)
i = h

(l)
i + MLP

∑
j∈Ni

h
(l)
j � f

(l)
ij

 . (8)

In addition to being efficient, our message passing scheme
is accessible and easy-to-understand compared to many ap-
proaches that enforce symmetries architecturally. Our GNN
simply weighs each message received from neighbouring
nodes using a convolution filter learned via an MLP of
unique 3D geometric information (i.e. relative atom posi-
tions, edge endpoints’ representations). This novel function-
ing grants FAENet with great discriminative capabilities, as
demonstrated empirically in Appendix B.2, where we con-

duct an analysis of GNNs’ expressive power as proposed by
(Joshi et al., 2022). In particular, we show that FAENet is
able to distinguish between the proposed complex molecular
graphs examples with perfect accuracy, better than any other
method. This highlights FAENet’s high expressivity and
showcases the advantage of leveraging geometric informa-
tion without any design restrictions. We also corroborate
that SFA preserves the expressive power of the backbone
architecture and does not hamper FAENet’s representation
capability. Please refer to Appendix B.2 to see the expres-
sivity analysis in full.

Architectural Details: We use GraphNorm (Cai et al.,
2021), an efficient batch normalisation method, after each
message passing layer to increase our network’s robust-
ness and mitigate vanishing/exploding gradient issues. For
similar purposes we add skip-connections in the message
passing layer, which also help manage the over-smoothing
problem (Chen et al., 2020). On top of that, we add jumping
connections between each interaction block and the output
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block, using concatenation, to further boost discriminative
power. Even though node representations get more refined
and global as the number of layers increases, using such
structural information helps the network generalize better
(Xu et al., 2018). Finally, we chose the swish activation func-
tion because of its smooth and non-monotonic behaviour.
A thorough ablation study of the model architecture is pro-
vided in Appendix B.3.

Output Block: We obtain the final atom predictions (yi or
~yi) by passing the derived atom representations to two dense
layers that map the embeddings to the correct dimension.
For graph-level predictions, we perform a weighted average
of atom-level predictions, where the weight is learned based
on final atom embeddings: ŷ =

∑
i=1,...,n α(h

(L)
i ) · yi,

where α(·) denote the learnable importance weights.

Note that this is the output Φ(D)invar. For equivariant pre-
dictions, like forces, we need to multiply the result by U>

as indicated in Eq. (5). Since we use an efficient approxi-
mation that samples uniformly at random one frame at each
epoch among all possible ones, we directly obtain ΦF .

For applications where we predict both energy and forces,
unlike most previous works (Schütt et al., 2017), we do
not compute atomic forces as the energy’s gradient with
respect to atom positions Fi = ∂E

∂xi
(i.e. its definition in

physics). The main reason for this is decreased scalability.
Kolluru et al. (2022) showed that this process incurs a large
computational overhead, increasing memory usage by a fac-
tor of 2-4 in addition to decreasing modeling performance
in some datasets. Instead, we use two independent output
heads: Φ1 for graph-level energy predictions and Φ2 for
atom-level force predictions. The ability to model energy-
conserving forces remains attractive in several applications
such as molecular dynamics, where they are important for
the stability of the simulation and improve the ability to
reach new local minima (Chmiela et al., 2017). As a result,
we decide to strengthen energy-conservation by fine-tuning
a new loss term: the L2 norm of atomic force predictions
and energy gradient with respect to atom positions:

LEC =
∑
i

||Φ2
F (D)−∇Φ1

F (D)||2. (9)

5. Experiments
5.1. Empirical Evaluation of Model Properties

In this section, we empirically verify the correctness of
our symmetry preserving framework, including its differ-
ent theoretical properties5. To do so, we consider a set
of symmetry preservation metrics (formally defined in Ap-
pendix D) and evaluate them on the IS2RE and S2EF taks of

5Code is available on Github

OC20 (see Section 5.2.1; Zitnick et al., 2020) for the follow-
ing FAENet variants (1) SFA, (2) Full FA, (3) conventional
data augmentation (DA) using randomly sampled rotations
and reflections of the graph, (4) No symmetry-preservation
method (No-FA), (5) No training nor FA/DA (No-Train),
(6) G = SE(3) instead of E(3). We also compare with the
invariant model SchNet and the data augmentation model
ForceNet. Based on the full results provided in Appendix D,
we draw the following conclusions:

• Full FA as defined in Section 3.3 yields invari-
ant/equivariant predictions, proving the correctness of
our framework and implementation.

• SFA outperforms DA and No-FA both in terms of MAE
(for comparable compute time) and of learned symme-
tries. In addition to providing a great approximation of
invariance/equivariance, it yields slightly better MAE
than Full FA while being much faster to run, proving
the overall relevance of our approach.

• Not using any kind of symmetry-preserving techniques
(No-FA) does not lead to invariant/equivariant predic-
tions even if it clearly learns implicitly to preserve sym-
metries to some extent (vs No-Train). Besides, No-FA
has a “significant” negative effect on performance com-
pared to SFA, suggesting that enforcing symmetries in
some way is desirable for OC20; although not critical
(possibly due to its 2D nature given fixed z-axis).

Overall, these results support the correctness of our ap-
proach and the benefits of using Stochastic FA as a symme-
try preserving data augmentation method.

5.2. Model Evaluation

In this section, we evaluate both the performance and scal-
ability of our proposed approach, FAENet with stochas-
tic frame averaging, on four common benchmark datasets:
OC20 IS2RE, S2EF, QM9 and QM7-X. Full experimental
settings are provided in the Appendix C.

Metrics: Our evaluation metrics focus on understanding
the importance of the performance-scalability trade-off of
different methods as motivated in Sec. 1. Unless speci-
fied otherwise, the main modeling performance metric for
each task is the mean absolute error (MAE). Scalability is
measured both by the training time for an epoch and the
throughput at inference time6, denoted Train and Infer.

Baseline Models: We compare our method with a wide
variety of GNNs for 3D materials prediction tasks: E(3)-
invariant models Schnet (Schütt et al., 2017), Dimenet++

6We define throughput as the average number of samples per
second that a model can process in its forward pass.

https://github.com/RolnickLab/ocp/tree/icml
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(Klicpera et al., 2020a), GemNet-T (Gasteiger et al., 2021),
SphereNet (Liu et al., 2021), ComeNet (Wang et al., 2022),
SpinConv (Shuaibi et al., 2021), GemNet-OC (Gasteiger
et al., 2022) and Graphformer (Ying et al., 2021); data
augmentation based ForceNet (Hu et al., 2021); equivariant
models So3krates (Frank et al., 2022), PaiNN (Schütt et al.,
2021) and EGNN (Satorras et al., 2021); as well as GNS
(Godwin et al., 2021) and SpookyNet (Unke et al., 2021).

5.2.1. OC20

OC20 (Zitnick et al., 2020) is a large dataset for catalysis
discovery. It was constructed to train ML models to approx-
imate DFT for structure relaxation and energy prediction,
which is fundamental to determine a catalyst’s activity and
selectivity. OC20 contains 1,281,040 DFT relaxations of
randomly selected catalysts and adsorbates from a set of
plausible candidates, where the catalyst surface is defined
by a unit cell periodic in all directions. We focus on 2 tasks:

• Initial Structure to Relaxed Energy (IS2RE), that is
the direct prediction of the relaxed adsorption energy
from the initial atomic structure, i.e. a graph regression
task requiring E(3)-invariance. It comes with a pre-
defined train/val/test split, 450,000 training samples
and hidden test labels.

• Structure to Energy and Forces (S2EF), that is the
prediction of both the overall energy and atom forces,
from a set of 2M 3D material structures. According to
the dataset creators, the 2M split closely approximates
the much more expensive full S2EF dataset, making it
suitable for model evaluation (Chanussot et al., 2021).

We evaluated all models on the four ∼25K samples splits
of the validation set: In Domain (ID), Out of Domain Ad-
sorbates (OOD-ads), Out of Domain catalysts (OOD-cat),
and Out of Domain Adsorbates and catalysts (OOD-both).
We measure performance on each validation split by the
energy MAE (IS2RE, S2EF), atomic forces MAE (S2EF)
and the percentage of predicted Energies within a Threshold
(EwT) of the ground truth energy (IS2RE). Running times
are taken over the ID validation set on similar GPU types7.

Results IS2RE: Figure 2 and the corresponding full table of
results (Table 9) show that FAENet outperforms all existing
baseline approaches in terms of Energy MAE and EwT,
except for Graphormer (Ying et al., 2021). While we could
not obtain comparable running times for Graphormer, we
note that it uses an ensemble of 31 models and requires
372 GPU-days to train with A100 GPUs. Similarly, GNS,
the runner up of FAENet in terms of MAE, is a 50-layer
model which is extremely expensive to run. Lastly, FAENet

7If anything, the A6000 used by ComENet is benchmarked to
be faster than the RTX8000 we have used for these models.
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Figure 2. OC-20 Direct IS2RE performance / scalability trade-off.
FAENet achieves the best MAE across methods while being much
faster than the majority of baselines.

is 21 times faster than DimeNet++ and 6 times faster than
ComeNet at inference time (w.r.t. throughput). On the other
hand, while SchNet is still slightly faster than FAENet, we
improve the average validation MAE by 17%. In a word, as
illustrated in the Pareto plot in Figure 2, FAENet presents
an extremely attractive performance-scalability trade-off.

Results S2EF 2M: Given the substantial cost of training on
S2EF compared to IS2RE, results reported in Table 1 in-
clude fewer but still enough baselines to showcase the great
performance-scalability feature of FAENet. Indeed, FAENet
outperforms most baselines in terms of Energy MAE and
Force MAE, while presenting the shortest runtime by a size-
able margin (e.g. even faster than SchNet on this dataset
for optimal model architectures). Compared to ForceNet,
the only other data augmentation approach, FAENet im-
proves energy MAE by 38% while decreasing training time
for an epoch by a factor of 20. This illustrates the bene-
fits of our symmetry-preserving DA framework combined
with our efficient message passing GNN design. Similarly to
Graphormer in IS2RE, GemNet-OC achieves outstanding re-
sults on this dataset. Yet, GemNet-OC is significantly larger
and more computationally expensive, processing 34 times
less samples by GPU seconds than FAENet with respect
to inference throughput (Gasteiger et al., 2022). GemNet-
OC’s functioning is also more complex given the constraints
imposed on its functioning. Once again, FAENet offers an
extremely desirable performance-scalability compromise.

5.2.2. QM7-X

QM7-X (Hoja et al., 2021) is a dataset containing 7K
molecular graphs with up to seven non-hydrogen atoms
(C, N, O, S, Cl), drawn from the GDB13 chemical uni-
verse (Blum & Reymond, 2009). After sampling and op-
timizing the structural and constitutional (stereo)isomers
of each graph, the authors obtained 42K equilibrium struc-
tures. Each of them was then perturbed in order to obtain
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Table 1. Results on OC20 S2EF 2M, averaged accross all 4 val-
idation splits. Performance is measured in terms of energy and
forces MAEs. The best one is bolded, the second best is underlined.
Scalability is measured with training time for one epoch (Train, in
minutes) and inference throughput (Infer., samples per second at
inference time). Table 10 shows each val. split score.

Scalability Average MAE
Model Train ↓ Infer. ↑ Energy ↓ Forces ↑
SchNet 98min 509 1.4917 83.1
DimeNet++ 1,157min 52 0.8096 66.3
ForceNet 1,476min 36 0.7548 61.0
GemNet-OC – 18 0.2860 25.7
FAENet 75min 623 0.4642 57.5

99 additional non-equilibrium structures, leading to a total
of about 4.2M samples. Of the 47 available targets, we
focus on energy and forces as per previous work (Unke
et al., 2021; Frank et al., 2022) but also because they are
the main quantities of interest in real-world applications we
care about.

Results: We report FAENet’s results in Table 2 along-
side the performance of SchNet, PaiNN, So3krates and
SpookyNet. Since QM7-X is a very recent benchmark, only
SpookyNet (which also computes SchNet and PaiNN perfor-
mance) and So3krates have reported results on it for a com-
parable task. Unfortunately, the authors of the SpookyNet
did not provide their code implementations, making it im-
practical for us confirm the results. We were able to re-
produce the results for SchNet after authors of So3krates
shared their codes with us, which included an unreported
normalization method to train on shifted energy targets8.
Nonetheless, we observe that FAENet achieves close-to-
SOTA performance in spite of its simple architecture.

Table 2. QM7x results for FAENet and baseline methods based
on best-effort replication given limited code availability. FAENet
achieves competitive MAE. Best in bold, second best underlined.

Known molecules Unknown molecules
Model Energy Forces Energy Forces
SchNet 42.43 56.45 51.05 65.84
PaiNN 15.69 20.30 17.59 24.16
So3krates 15.22 18.44 21.75 23.16
SpookyNet 10.62 14.85 13.15 17.32
FAENet 11.42 17.54 15.17 21.23

5.2.3. QM9

QM9 (Ramakrishnan et al., 2014) is a widely used dataset
for molecular property prediction. It includes geometric, en-
ergetic, electronic, and thermodynamic properties for 134K

8https://github.com/thorben-frank/mlff

stable small organic molecules with up to 9 heavy C, O, N,
and F atoms. The dataset is split into 110K molecules for
training, 10K for validation, and remaining 14K for testing.

QM9 Evaluation: We compare FAENet to a variety of
methods that have publicly shared implementations and
results. We trained independently on each target property
a single FAENet model. Following (Liu et al., 2021), we
report each model’s MAE and training time for a single
epoch. We also report its mean error and associated standard
deviation across all molecular properties in QM9. To enable
comparisons across properties units and ranges, we compute
the average relative improvement9 with respect to SchNet.

Results: The full table of results can be found in the Ap-
pendix 8. We plot relative improvements against the time
we have measured models to take over a training epoch
in Fig. 3. In addition to achieving competitive modeling
performance, FAENet is the only model faster than SchNet.
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Figure 3. Performance/scalability trade-off on QM9. Large stan-
dard deviations and close means on the MAE average relative
improvement against SchNet show that in recent years, models
have saturated the complexity of QM9. There is however a wide
range of (measured) computational costs. FAENet is the fastest.

6. Conclusion
In this paper, we offer an alternative to traditional symmetry-
preserving GNN models for 3D materials property predic-
tion. Instead of constraining the GNN functioning, we
propose a flexible model-agnostic framework to enforce
symmetries through a carefully defined data augmentation
method built upon frame averaging. We then use this frame-
work to design FAENet: a simple, fast and expressive GNN
model, which directly and unrestrictedly processes atom
relative information. While our empirical analysis demon-
strates that Stochastic FA provides near-perfect symmetry
preservation at up to 8× faster inference time, the rest of

9For a model’s MAEmp on property p, we report r =
m0

p−mp

m0
p

where m0
p is the MAE of SchNet on p.

https://github.com/thorben-frank/mlff/blob/v0.1/mlff/examples/02_Multiple_Structure_Training.ipynb
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our experiments show that FAENet (with SFA) achieves
competitive modeling performance and superior scalability
on various materials modeling tasks.

Future work. While our approach provides clear advan-
tages, future work can improve upon current limitations by
studying the conditions when exact equivariance can be im-
posed with less than the maximum number of frames. This
could be particularly important in high-risk applications
where guarantees are required to ensure safety. Additionally,
both modeling performance and compute scalability require
further improvement to effectively enable large-scale com-
putational design of novel materials systems. Once achieved,
the combination of fast and robust property prediction GNN
with ML-based generative methods like diffusion models,
reinforcement learning or GFlowNets, shall enable to mean-
ingfully explore the vast search space in materials discovery.
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P. On the expressive power of geometric graph neural
networks. In The First Learning on Graphs Conference,
2022.

Klicpera, J., Giri, S., Margraf, J. T., and Günnemann, S. Fast
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A. Frame averaging
Proof. Let D = (X,Z,C,O) ∈ V be an arbitrary atomic system with X,Z,C,O as given in Sec. 3.2. As our definition
of the frame F in Eq. (2) does not depend on Z,C,O, we propose a simple adaptation of Proposition 1 from (Puny et al.,
2022) to prove that F is G-equivariant and bounded for the space of materials V .

To show that F is translation equivariant, we need to show that F(ρ1(g)D) = gF(D) for all translations g = (1D, s) ∈
T (3). On one hand, the group product of these transformations is given by gF(D) = (1, s)(U, t) = (U, t+ s). On the other
hand, we compute below the frame of a translated version of D, written D′ = ρ1(g)(D). Let t′, Σ′, U ′ denote respectively
its centroid, its covariance matrix and the related matrix of eigenvectors.

ρ1(g)(D) = (X + 1s>, Z, C + 1s>, O)

t′ =
1

n
(X + 1s>)>1 =

1

n
X>1 +

1

n
s1>1 = t + s

Σ′ =
(
(X + 1s>)− 1t′>)>(X + 1s>)− 1t′>)

)
= (X − 1t>)>(X − 1t>) = Σ

Hence, F(ρ1(g)(D)) = {(U, t + s)|U = [±u1,±u2,±u3]} = gF(D).

To show that F is rotation equvariant, we repeat the above with g = (R,0) ∈ SO(3). The group product of these
transformations is gF(D) = (RU,Rt). On the other hand, we compute the frame of a rotated version of D, denoted
D′ = ρ1(g)(D).

ρ1(g)(D) = (XRT , Z, CRT , O)

t′ =
1

n
(XR>)>1 =

1

n
RXT1 = Rt

Σ′ = (XRT − 1t′>)>(XRT − 1t′>)

= (XRT − 1

n
1(1>XR))>(XRT − 1

n
1(1>XR))>

= R(X − t)>(X − t)> = RΣR>

The eigendecomposition of Σ′ yields F(ρ1(g)(D)) = {(RU,Rt)|[±u1,±u2,±u3]} = gF(D). As a result, F is E(3)-
equivariant.

F is also bounded as for compact K ∈ Rn×d, the translations are compact and therefore uniformly bounded for X ∈ K.
Orthogonal matrices always satisfy ||R||2 = 1.

Next, an adaptation of Theorem 4 (Puny et al., 2022) proves that any arbitrary continuous equivariant function ψ : V →W
approximable by a neural network Φ over KF is approximable by 〈Φ〉F . We let c > 0 be a constant and consider an
arbitrary X ∈ K. Ψ : V →W is an arbitrary G-equivariant function.

||Ψ(D)− 〈Φ〉F (D)||W ≤
1

|F(D)|
∑

g∈F(D)

||ρ2(g)Ψ(ρ−11 (D))− ρ2(g)Φ(ρ1(g)−1(D))||W

≤ max
g∈F(D)

||ρ2(g)||op||Ψ(ρ−11 (D))− Φ(ρ−11 (D))||W

≤ c||Ψ− Φ||W

This completes the proof.

Justification for new definition of ρ1, ρ2. When E(3) transformations are applied to materials with periodic crystals
structures, one also needs to rotate the unit cell on which the structure is defined, in addition to the atom positions. Indeed,
in OC20, crystal materials are defined as semi-infinite repeating substructures, and one therefore needs to define a unit cell.
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The graph’s adjacency matrix is then constructed using periodic boundary conditions (pbc) as follows:

Aij =

{
1 if dij < c

0 otherwise

with dij = ||(xi − xj) +Oij∗ · C|| and cutoff radius c. (10)

So for two different rotations of the same atomic system D, say D1 and D2, frame averaging projects D1 and D2 to the
same canonical position X̂ . However, their respective unit cell will be different. Since GNN predictions depend both on unit
cell and atom positions, this will yield different predictions. In different terms, not applying the transformations ρ1, ρ2 on
the unit cell too would break rotation equivariance, which was verified empirically. We therefore extended their definition to
guarantee E(3)-equivariance for the space of materials with periodic crystal structures.

Check that predictions are E(3)-equivariant. Let D1 and D2 be two transformed versions of the same atomic system
D such that ρ1(g)D2 = D1 for an arbitrary g = (R, s) ∈ E(3). F(D1) is defined as in Section 3.2, with canonical
representation

C1 = {ρ1(g1)−1(D1)|g1 ∈ F(D1)}
ρ1(g1)−1(D1) =

(
(X − 1t>)U,Z, (C − 1t>)U,O

)
F(D2) is defined using similar computations to the proof above. We obtain centroid t′ = Rt + s, covariance matrix
Σ′ = RΣRT and eigenvectors U ′ = RU . This yields F(D2) = {(U ′, t′)|U ′ = [±u′1,±u′2,±u′3]} and corresponding
canonical representation

C2 = {ρ1(g2)−1(D2)|g2 ∈ F(D2)}
with ρ1(g2)−1(D2) =

(
(X ′ − 1t′>)U ′, Z, (C − 1t′>)U ′, O

)
=
(
(XR> + 1s− 1t>R> − 1s)RU,Z, (C − 1t>)RU,O

)
=
(
(X − 1t>)U,Z, (C − 1t>)U,O

)
= ρ1(g1)−1(D1)

Hence, C1 = C2. Using Equation (1), GNN predictions are E(3)-equivariant. In the invariant case, 〈Φ〉F (D1) = 〈Φ〉F (D2).

B. FAENet
B.1. Atom properties

In the embedding block, to construct atom-level embeddings, we use the following properties from the mendeleev Python
package (Mentel):

1. atomic radius

2. atomic volume

3. atomic density

4. dipole polarizability

5. electron affinity

6. electronegativity (allen)

7. Van-Der-Walls radius

8. metallic radius

9. covalent radius

10. ionization energy (first and second order).
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B.2. Expressivity discussion

In this section, we discuss the expressive power of FAENet. Without making any hard claims, we believe our model is
expressive, that is, able to distinguish between many different atomic systems up to global group actions. Note that FAENet
enforces symmetries via the data by building upon the idea of Frame Averaging, which preserves the expressive power of
the backbone architecture. This allows to construct a maximally expressive GNN without any architectural constraints.
Next, FAENet processes directly relative atom information in addition to atom characteristic number (and other atomic
properties), implying that it leverages enough information to uniquely identify each graph, which is not the case of several
GNNs (SchNet, DimeNet, etc.). In the embedding block, since we use two-layer MLPs, which are universal approximators
(Hornik et al., 1989), we have the ability to learn injective functions mapping atomic number and geometric information to
unique latent representations (provided that the dimensions of output space are large enough).

The expressive power of FANet is thus bound to the expressive power analysis of message passing itself, whose investigation
is still an active topic of research. Despite GNNs revolutionising graph representation learning, there is limited understanding
about their representation power and properties. Several works recently tried to fill in this gap, especially by comparing
GNNs’ expressive power to the (Geometric) Weisfeiler-Lehman isomorphism test (Joshi et al., 2022; Xu et al., 2018; Morris
et al., 2019). To achieve maximal expressive power, GNNs require an injective aggregation function, an injective update
function as well as injective readout function. This would allow to construct unique representations for each graph, enabling
to distinguish them. However, it is actually extremely challenging to satisfy these conditions. Also, theory does not correlate
(always) with performance for geometric GNNs.

Given the lack of theoretical guarantees about the expressive power of Geometric GNNs, Joshi et al. (2022) propose a
series of experiments to assess empirically their ability to distinguish between very similar molecules, up to global E(3)
transformations. In particular, the authors propose three experiments, where they train GNNs to map similar (but distinct)
graphs to different labels. In particular, they try to:

1. Distinguish k-chains, which tests a model’s ability to propagate geometric information non-locally as well as its ability
to overcome oversquashing with increased model depth; see Table 3.

2. Distinguish rotationally symmetric structures, which test a layer’s ability to identify neighbourhood orientation; see
Table 4.

3. Distinguish counterexamples from (Pozdnyakov & Ceriotti, 2022), which test a layer’s ability to create discriminating
fingerprints for local neighbourhoods; see Table 5.

In this paper, we reproduce their experiments to assess the expressivity of FAENet (GNN alone) and FAENet-SFA (when
combined with our stochastic frame averaging framework). In the coming subsections, we only refer to FAENet because
results are identical both for FAENet et FAENet-SFA, which empirically proves that SFA preserves the expressive power of
FAENet (for these use cases). Baseline results were reproduced using the provided codebase 10. We trained FAENet in the
exact similar fashion, using standard hyperparameters.

B.2.1. K-CHAINS

Experiment. Here, we study FAENet’s ability to incorporate and propagate geometric information beyond local neigh-
bourhoods. To do so, we consider k-chain geometric graphs, each consisting of k + 2 nodes where the k central nodes are
arranged in a line and the 2 endpoints differ in their orientation. Because of the latter, every pair of k-chain graphs is different,
up to E(3) transformations. In fact, they are (bk2 c+ 1)-hop distinguishable, and (bk2 c+ 1) Geometric Weisfeiler-Lehman
(GWL) iterations are theoretically sufficient to distinguish them (see (Joshi et al., 2022) for more details). Indeed, both
right-hand and left-hand parts of the chain are identical with respect to rotations, meaning that one can only distinguish
between these graphs by considering these neighbourhoods together. In Table 3, we train FAENet along with G-equivariant
and G-invariant GNNs (with an increasing number of layers) to distinguish k-chains.

Results. Thanks to its novel functioning, free of all design constraints, FAENet enables to distinguish between these two
k-chain graphs in a single message passing layer, while they are (bk2 c + 1) = 3-hop distinguishable according to Joshi
et al. (2022). FAENet therefore outperforms all baselines with 1 or 2 GNN layers, including GWL algorithm. FAENet-SFA

10https://github.com/chaitjo/geometric-gnn-dojo

https://github.com/chaitjo/geometric-gnn-dojo
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(k = 4-chains) Number of layers
GNN Layer 1 bk2 c = 2 bk2 c+ 1 = 3 bk2 c+ 2 bk2 c+ 3

In
v.

IGWL 50% 50% 50% 50% 50%
SchNet 50.0 ± 0.00 50.0 ± 0.00 50.0 ± 0.00 50.0 ± 0.00 50.0 ± 0.00
DimeNet 50.0 ± 0.00 50.0 ± 0.00 50.0 ± 0.00 50.0 ± 0.00 50.0 ± 0.00

E
qu

iv
.

GWL 50% 50% 100% 100% 100%
E-GNN 50.0 ± 0.00 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
GVP-GNN 50.0 ± 0.00 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
TFN 50.0 ± 0.00 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 80.0 ± 24.5
MACE 50.0 ± 0.00 50.0 ± 0.0 90.0 ± 20.0 90.0 ± 20.0 95.0 ± 15.0
FAENet 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
FAENet-SFA 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Table 3. k-chain geometric graphs. We train FAENet and FAENet-SFA with an increasing number of layers to distinguish k = 4-chains.
We report model accuracy for this binary graph classification task. An accuracy of 50 is equivalent to random predictions. We repeat the
experiment 10 times and average results. Anomolous results are marked in red and expected results in green . Best results are in bold.

demonstrates that Stochastic FA enables preserves the expressive power of FAENet while enforcing symmetries via the data,
as discussed deeply in the paper already. Aside from that, G-equivariant GNNs often require more iterations that prescribed
by GWL and do not always attain perfect accuracy, pointing to preliminary evidence of oversquashing when geometric
information is propagated across multiple layers using fixed dimensional feature spaces. IGWL and G-invariant GNNs are
unable to distinguish k-chains for any k ≥ 2 and G = O(3).

B.2.2. ROTATIONALLY SYMMETRIC STRUCTURES

In this experiment, we try to evaluate FAENet’s ability to discriminate the orientation of structures with rotational symmetry.
To do so, Joshi et al. (2022) propose to train geometric GNNs to assign two different rotations of some L-fold symmetric
structures (attached to an existing system) to different classes.

Results are displayed in Table 4. Although this experiment was designed to illustrate the utility of higher-order tensors in G-
equivariant GNNs, FAENet shows outstanding performance for a method using scalar vectors (L = 0) only. Methods using
cartesian vectors cannot even discriminate two-folds structures; and methods with spherical tensors of order L are unable to
identify the orientation of structures with rotation symmetry greater than L-fold, which suggests high computational cost.
Here again, FAENet appears as the most desirable method, combining simple functioning, scalability and expressivity.

B.2.3. EDGE CASES

For this experiment, we look at three specific type of graphs proposed by (Pozdnyakov & Ceriotti, 2022) to illustrate
the limitations of existing geometric GNNs. Each counterexample consists of a pair of local neighbourhoods that are
indistinguishable when comparing their set of k-body scalars11. The 3-body and 4-body counterexamples correspond
respectively to Fig.1(b) and Fig.2(e) in (Pozdnyakov & Ceriotti, 2022), while the 2-body counterexample corresponds to the
running example of (Joshi et al., 2022). The aim of the task is the same, meaning training a single layer GNN to create
discriminating fingerprints for local neighbourhoods.

Results are reported in Table 5. While Joshi et al. (2022) concluded that Geometric GNN layers with body order k cannot
distinguish the corresponding k-body counterexample, FAENet does enable to distinguish the 4-body counterexample while

11Body-order of scalarisation: number of nodes involved in computing local invariant scalars.
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Rotational symmetry
GNN Layer 2 fold 3 fold 5 fold 7 fold

Sc
al

ar FAENetL=0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
FAENet-SFAL=0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

C
ar

t. E-GNNL=1 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
GVP-GNNL=1 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

Sp
he

ri
ca

l TFN/MACEL=1 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
TFN/MACEL=2 100.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
TFN/MACEL=3 100.0 ± 0.0 100.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
TFN/MACEL=5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 50.0 ± 0.0
TFN/MACEL=7 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Table 4. Rotationally symmetric structures. We train single layer G-equivariant GNN models (with order L tensors) to distinguish two
distinct rotated versions of L-fold symmetric structures. We report model accuracy of this binary graph classification task, averaged over
10 runs. Anomolous results are marked in red and expected results in green . Best in bold.

Edge cases
GNN Layer 2-body 3-body 4-body

In
v. SchNet2-body 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

DimeNet3-body 100.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

O
(3

)-
E

qu
iv

. E-GNN2-body 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
GVP-GNN3-body 100.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
TFN2-body 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
MACE3-body 100.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
FAENet2-body 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
FAENet-SFA2-body 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Table 5. Counterexamples from (Pozdnyakov & Ceriotti, 2022). We train geometric GNNs at distinguishing edge cases structures, which
are (supposedly) indistinguishable using k-body scalarisation. We repeat the experiment 10 times and report the accuracy. FAENet
manages to distinguish them all while presenting 2-body order only.

being only a 2-body method12. This demonstrates its expressivity and the strength of the novel paradigm proposed (i.e.
unconstrained GNN functioning; symmetries enforced via the data without loosing expressive power).

B.3. Ablation Study on IS2RE

In this section, we perform a thorough ablation study of FAENet on the OC20 IS2RE dataset. Even if we motivate a simple
and efficient GNN architecture, we propose in this paper a new paradigm for incorporating geometric information into atom
representations (since we construct a model free of all symmetry-preserving constraints). We therefore compared various
relevant design choices with respect to the embedding block, the message passing scheme and the output block. The results
displayed in Table 6 empirically validate FAENet’s current architecture. In particular, we tried the following ideas and drew
the corresponding conclusions:

• Only ~rij involves using ~rij alone in the embedding block to derive each edge representation, instead of ~rij ||RBF (dij).

12Actually, since FAENet utilises non-linearities in its message passing, the concept of k-body order looses relevance. FAENet could be
considered as a many-body method, demonstrating the advantage of its frame based paradigm.
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Table 6. Ablation study of FAENet – we study the impact of various components on the model performance-scalability trade-off.
Scalability is measured via the throughput (the number of processed samples per seconds) while performance is measured by the Energy
MAE, averaged across all four validation splits.

Component Throughput MAE
(samples/s) (average)

FAENet (baseline) 2129 568
- Only ~rij 2390 603
- Only Spherical Harmonics 1441 626
- All 1560 585
- 2nd layer in MLP 1828 588
- Simple MP 2706 606
- Basic MP 3065 629
- Updownscale MP 1505 592
- Attention mecha 1929 712
- No complex MP 2265 586
- Simple Energy Head 2224 589
- No Jumping Connections 2038 582

Please refer to Equation (7).
→ Using a radial basis function (RBF) of distance information in addition to rij improves performance significantly.
Running time is a bit higher, obviously, but not enough to outweigh the performance gains.

• Only Spherical harmonics: we replace
(
~rij ||RBF(dij)

)
by spherical harmonics (of order up to 3) on

~rij
||~rij ||

in

Equation (7). Spherical harmonics form a basis for irreducible representations in SO(3) and were shown to be very
informative quantities by previous works (Frank et al., 2022; Thomas et al., 2018; Batatia et al., 2022).
→We show that using directly a 2-layer MLP of relative information is more attractive than (higher-order) spherical
harmonics.

• All. We concatenate spherical harmonics to directional information and distance information (~rij , dij and SH).
→We show that adding spherical harmonics in addition to directional information does not provide additional benefits
for this task.

• 2-layer-MLP: we replace the two-layer-MLP of the Embedding block by a one-layer-MLP, see Equation (7).
→ No clear conclusion here. Reducing MLP to 1-layer hurts performance but improves slightly compute time. We
favoured performance here.

• Basic MP: we do not transform the edge embedding inside the interaction block. f (l)ij = eij
→ This message passing form is much more scalable (obviously) but significantly less efficient. This proves the
relevance of refining the filters using edge information and atom information at each layer.

• Simple MP: we do not compute the filter using node features hi and hj . In mathematical form, we use f
(l)
ij =

σ(MLP(eij)) instead of f (l)ij = σ(MLP(eij ||h(l)
i ||h

(l)
j )).

→ This Message Passing form is shown to be more scalable but not as efficient. Using an edge’s endpoints helps learn
more relevant filters.

• Updownscale MP: we additionally transform node embeddings inside each interaction block, before the continuous
convolution.
→ This does not show increased performance, validating current design.

• Attention mecha: we weight each message by an attention coefficient, learned using neighbour’s feature vector,
node’s feature vector and edge embedding. This is expressed as h(l+1)

i = h
(l)
i +

∑
j∈Ni

αijWh
(l)
j with αij =

Att(hi, hj , ~rij) = hTi [eij � hj ]/
√
F ).

→ It does not yield good results in practice. Current filter construction is more efficient.
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• No complex MP: we use two-layers MLP instead of one-layer MLP in each Interaction block of the model (see Fig. 1).
→ This was not found beneficial, both in terms of performance and running time.

• Simple Energy Head: involves replacing the current weighted average of atom’s final representation to compute
graph-level prediction (in the Output Block) by the standard global pooling approach.
→ The weighted average is found (slightly) beneficial.

• No jumping connections: We remove the jumping connections from each Interaction Block to the Output block.
→ Jumping connections are found (slightly) beneficial.

C. Extended Results
C.1. Experimental setup – Software and Hardware

We would like to acknowledge and thank authors of the following Python libraries that we have used to realise this work, in
particular Pytorch v.1.13 (Paszke et al., 2019), PyTorch Geometric v2.2.0 (Fey & Lenssen, 2019) NumPy v1.23.5 (Harris
et al., 2020) and authors of the OCP Github repository which we used as a starting point.

Experiments were run on 1 NVIDIA RTX8000 GPUs. We would like to also thank our lab’s IT staff for putting together and
maintaining our computing infrastructure as well as for supporting researchers.

C.2. Hyper Parameters

We detail FAENet’s list of hyperparameters for all four datasets IS2RE, S2EF, QM7-X and QM9 in Table 7.

Table 7. Model and optimization hyper parameters for FAENet used in experiments reported.
OC20-IS2RE OC20-S2EF QM7X QM9

Activation function swish swish swish swish
Cutoff distance 6 6 5 6
Force head hidden channels - 256 256 -
Hidden channels 384 256 500 400
Max number of neighbors 40 30 40 30
Number of filters 480 480 400 480
Number of gaussians 104 136 50 100
Interaction blocks 5 7 5 5
Period & Group channels 64 64 32 32
Tag channels 64 32 - -
Optimizer AdamW AdamW AdamW AdamW
Scheduler Cosine Annealing Cosine Annealing Reduce On Plateau Reduce On Plateau
Warmup steps 6,000 30,000 3,000 3,000
Learning Rate 0.002 0.00025 0.0002 0.001
Batch size 256 192 100 64
Energy loss coeff. - 1 1 -
Force loss coeff. - 100 100 -
Energy grad. loss coeff. - 5 15 -
Steps 22K 85K 1.4M 1.5M

C.3. QM9 Dataset

We provide the detailed list of per-model property MAE performance in Table 8. The results reported in are comptued as
followed. For each property p we compute the relative improvement with respect to SchNet as:

RModel
p =

MAESchNet
p −MAEModel

p

MAESchNet
p

. (11)
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Property Unit SchNet PhysNet MGCN DimeNet DimeNet++ SE(3)-T SphereNet ComENet FAENet

µ D 0.033 0.0529 0.0560 0.0286 0.0297 0.051 0.0245 0.0245 0.0289
α a0

3 0.235 0.0615 0.0300 0.0469 0.0435 0.142 0.0449 0.0452 0.0527
εHOMO meV 41 32.9 42.1 27.8 24.6 35.0 22.8 23.1 24.5
εLUMO meV 34 24.7 57.4 19.7 19.5 33.0 18.9 19.8 20.0
∆ε meV 63 42.5 64.2 34.8 32.6 53.0 31.1 32.4 40.2〈
R2
〉

a0
2 0.073 0.765 0.110 0.331 0.331 - 0.268 0.259 0.498

ZPVE meV 1.7 1.39 1.12 1.29 1.21 - 1.12 1.20 1.26
U0 meV 14 8.15 12.9 8.02 6.32 - 6.26 6.59 6.79
U meV 19 8.34 14.4 7.89 6.28 - 6.36 6.82 6.80
H meV 14 8.42 14.6 8.11 6.53 - 6.33 6.86 6.74
0G meV 14 9.4 16.2 8.98 7.56 - 7.78 7.98 7.91
cv

cal
mol K 0.033 0.028 0.038 0.025 0.023 0.052 0.022 0.024 0.023

Rp=1..11 mean - 0.247 -0.021 0.366 0.419 - 0.445 0.423 0.395
std - 0.331 0.421 0.208 0.226 - 0.205 0.205 0.212

Time s 98 - - 582 330 - 345 224 87

Table 8. Comparisons between FAENet and baseline models on QM9 dataset in terms of (1) MAE, (2) relative improvement Rp=1..11

with respect to SchNet, and (3) Time, which we measured for 1 epoch of training using the same hardware and software.

We then compute and report in Fig. 3 the mean and standard deviation of the series RModel
p=0..11. Note that we treat property〈

R2
〉

as an outlier and exclude it from the aforementioned statistics because SchNet is oddly the best by a very large margin
and we have not been able to reproduce such good results. In addition, in spite of our effort to re-run baselines ourselves, we
could not re-implement PhysNet (Unke & Meuwly, 2019), MGCN (Wang et al., 2020) nor SE(3)-Transformers (Fuchs et al.,
2020) in our pipeline.

C.4. OC20 full table of results

We report the full results for OC20 IS2RE in Table 9 and for S2EF 2M in Table 10.

Table 9. Exhaustive table of results on OC20 IS2RE “All” dataset, for all 4 validation splits (ID, OOD Ads, OOD Cat, OOD Both). We
measure performance in terms of energy MAE and the percentage of Energy within Threshold (EwT) of the ground truth energy. We
average results across the four val splits (Average). The best performance is shown in bold and the second best is shown with underlines.
Scalability is measured with training time for one epoch (train, in minutes) and inference throughput (infer, number of samples processed
in a second).

Time Energy MAE [eV] ↓ EwT ↑
Model Train ↓ Infer. ↑ ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average

SchNet 9min 3597 0.6372 0.7342 0.6611 0.7035 0.6840 2.96% 2.22% 3.03% 2.38% 2.65%
DimeNet++ 170min 115 0.5716 0.7224 0.5612 0.6615 0.6283 4.26% 2.06% 4.10% 3.21% 3.40%
SphereNet 290min 83 0.5632 0.6682 0.5590 0.6190 0.6023 4.56% 2.70% 4.59% 2.70% 3.64%
EGNN - - 0.5497 0.6851 0.5519 0.6102 0.5992 4.99% 2.50% 4.71% 2.88% 3.77%
PaiNN - - 0.5781 0.7037 0.5701 0.6139 0.6164 4.31% 2.60% 4.35% 2.74% 3.50%
Forcenet 120min 157 0.6582 0.7017 0.6323 0.6285 0.6551 3.14% 2.47% 2.58% 2.83% 3.13%
SpinConv - - 0.5583 0.7230 0.5687 0.6738 0.6309 4.08% 2.26% 3.82% 2.33% 3.12%
GemNet-T 200min 104 0.5561 0.7342 0.5659 0.6964 0.6382 4.51% 2.24% 4.37% 2.38% 3.38%
ComENet 20min 416 0.5558 0.6602 0.5491 0.5901 0.5888 4.17% 2.71% 4.53% 2.83% 3.56%
GNS - - 0.5400 0.6500 0.5500 0.5900 0.5825 - - - - -
Graphormer - - 0.4000 0.5700 0.4200 0.5000 0.4725 8.97% 3.45% 8.18% 3.79 % 6.09 %
FAENet 12min 2469 0.5446 0.6115 0.5707 0.5449 0.5679 4.46% 2.95% 4.67% 3.01% 3.78%
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Table 10. Exhaustive table of results on OC20 S2EF “2M” dataset, for all 4 validation splits (ID, OOD Ads, OOD Cat, OOD Both). This
table expands on Table 1. We measure performance in terms of energy MAE and forces MAE. We average results across the four val splits
(Average). The best performance is shown in bold and the second best is shown with underlines. Scalability is measured with training
time for one epoch (train, in minutes) and inference throughput (infer, number of samples processed in a second).

.
Time Energy MAE [eV] ↓ Force MAE [meV] ↓

Model Train ↓ Infer.↑ ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average

SchNet 98min 509 1.4075 1.5228 1.4383 1.5982 1.4917 76.3 86.4 79.7 90.1 83.1
DimeNet++ 1157min 52 0.7438 0.8425 0.7788 0.8734 0.8096 57.3 68.6 66.0 73.5 66.3
ForceNet 1476min 36 0.6757 0.7667 0.6650 0.8987 0.7548 55.3 61.6 72.7 54.8 61.0
GemNet-OC – 18 - - - - 0.2860 – – – – 25.7
FAENet 75min 623 0.3960 0.4548 0.4295 0.5766 0.4643 51.1 58.9 50.7 69.4 57.5

D. Empirical Evaluation of Model Properties
In this section, we verify the correctness of our symmetry preserving framework, including all different theoretical properties.

D.1. Methods and Metrics

For this experiment, we look at different methods: (1) FAENet combined with full frame averaging (Full-FA); (2) FAENet
with Stochastic Frame Averaging (SFA); (3) FAENet with Stochastic Frame Averaging for the SE(3) group instead of E(3),
i.e. less frames to sample from; (4) FAENet with data augmentation (DA); (5) FAENet alone (No-FA); (6) untrained FAENet
(No-Train); (7) ForceNet alone (8) SchNet alone. For each method, we study some targeted equivariant and invariant
properties via the following metrics:

• Pos. To check the correctness of our implementation of frame averaging, we let Pos be a binary variable which takes
the value 1 if, for arbitrary datapoints D1, D2 such that D2 = ρ

(−1)
1 (g)(D1) for any g ∈ E(3), C1 = C2, i.e. they lead

to the same representation in the projected space; and 0 otherwise. By definition, it shall be the case for Full FA and not
for the others. For methods which don’t use FA, we set pos = 0 if D1 and D2 are mapped to the same representation.

• Rot-I and Refl-I. We measure the rotation invariance Rot-I and reflection invariance Refl-I property of FAENet by
computing the difference in GNN prediction between every samples D1 (of the ID val split) and D2 defined as a SO(3)
transformation of D1, as above. We also compute the percentage variation in prediction with respect to energy (when
rotated), with %-diff : 100× Rot-I

ytrue
.

• F-Rot-E and F-Refl-E. In a similar fashion, we evaluate force predictions’s rotation and reflection equivariance to E(3)
transformations, denoted respectively F-Rot-E and F-Refl-E.

D.2. Results

For the IS2RE and S2EF datasets, we display the obtained results in Table 11 and in Table 12. From them, we draw the
following conclusions:

• Full FA yields near-perfect invariant/equivariant model predictions, proving the correctness of our implementation.
Note that metrics are not exactly 0 for Full FA (and Schnet) due to software precision limitations.

• Stochastic Frame Averaging (SFA) produces a great approximation to equivariant/invariant predictions: Rot-I, F-Rot-
E, Refl-I and F-Refl-E get close to 0 (the scale is in meV, not eV), %-diff is below 2%. Invariant metrics on IS2RE
are divided by a factor of ≈ 8 for SFA compared to No-FA or ForceNet, showing that our approach learns efficiently
to enforce symmetries. In different terms, energy predictions are much closer for two rotated (or reflected) versions
of the same graph when using SFA compared to DA or No-FA. Besides, SFA is our best performing model. When
comparing to Full FA (or even other equivariant/invariant models Table 9), SFA demonstrates that perfectly enforcing
symmetries does not necessarily lead to better performance. Presenting a setting that makes it easy for the model to
learn to accomplish the required task seems essential too.



FAENet

• SE(3)-SFA approximation yields slightly better metrics because FAENet has to learn data symmetries from less frames
(cf SFA), which is easier. By construction, it is less invariant/equivariant to reflections. However, this does not seem to
impact performance for this application.

• Data augmentation (DA) achieves worse symmetry metrics and MAE score on both datasets, with similar run time
(the PCA computation is negligible for FA). Equivariance seems harder to learn than invariance for DA, compared to
SFA. For instance, on S2EF, rotation equivariance for DA decreases by 60% compared to SE(3)-SFA while performance
drops by 9%. We can expect even bigger differences on other datasets since the z-axis is fixed in OC20: the adsorbate
is always on top of the catalyst. This means that we only look at 2D rotations/reflections, making it easier to learn
symmetries via data augmentation. SFA could be (even) more useful on “pure” 3D cases. This being said, DA gives
very satisfying results on this dataset, confirming that enforcing symmetries implicitly via the data is an attractive (and
under-exploited) approach in materials modeling.

• No-FA, i.e. not using any kind of symmetry preservation techniques, does not lead to invariant/equivariant predictions
(e.g. invariance metrics are roughly 8 times higher than for SFA) although these metrics improve significantly
compared to No-Train on S2EF. This means that FAENet learn symmetry to some extent, even when not directly
encouraged to do so. No-FA showcases a “significant” decrease in performance (569 to 595, 464 to 522), proving that
enforcing symmetries to some extent still seem desirable. Again, equivariance seems harder than invariance to learn for
non-symmetry preserving methods. Again, we have 2D symmetries and expect this gap to be higher on QM9/QM7-X.

• Repeating these experiments on ForceNet for IS2RE confirms the trend observed for FAENet: SFA is more efficient
than DA, both in terms of performance and in terms of enforcing equivariance/invariance. It also reveals that the design
of FAENet is superior, probably because it leverages more efficiently geometric information.

Table 11. Test of FAENet’s theoretical properties on IS2RE depending on the different symmetry-preservation techniques used. We
report several metrics (see D.1) measuring perfect symmetry-preservation (Pos), rotation invariance (Rot-I), reflection invariance (Refl-I),
percentage variation in prediction when rotated (%-diff) and energy average validation MAE. Everything (but Pos) is given in meV. Note
that we ideally want to minimise these metrics.

Model/Metrics Pos Rot-I %-diff Refl-I MAE

Full FA 0 0.07 0.26 0.05 578
SFA 1 6.57 2.12 6.54 569
SE(3)-SFA 1 6.35 1.87 8.90 567
DA 1 7.41 2.97 8.22 582
No-Train 1 21.8 6.03 24.9 595
No-FA 1 51.1 18.3 55.3 595
SchNet 0 0.00 0.00 0.00 684
ForceNet 1 61.6 14.8 63.0 655
Forcenet-DA 1 18.9 7.47 20.8 683
Forcenet-SFA 1 7.11 2.59 7.14 638

Table 12. Test FAENet’s theoretical properties on S2EF depending on the different symmetry-preservation methods used. We report
several metrics (see D.1) measuring implementation correctness (Pos), energy rotation invariance (Rot-I), energy reflection invariance
(Refl-I), force reflection equivariance (F-Refl-E), force rotation equivariance (F-Rot-E) and energy MAE. Everything is in meV.

Model/Metrics Pos Rot-I Refl-I F-Rot-E F-Refl-E MAE

Full FA 0 0.05 0.03 0.07 0.05 489
Stocha. FA 1 6.94 6.96 4.79 4.78 464
SE(3)-SFA 1 6.23 8.86 3.78 5.25 478
DA 1 8.88 9.12 6.12 6.46 504
No-FA 1 26.81 27.61 10.27 10.12 522
No-train 1 86.03 87.09 32.31 31.92 –
SchNet 0 0.00 0.00 0.00 0.00 918


