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ABSTRACT

This article proposes a consistent and general approach to train physics-augmented neural networks
with observable data to enrich and represent nonlinear history-dependent material behaviors in terms
of both state equations and evolution laws. In this learning strategy consistent with thermodynamics,
the constitutive model is expressed using two potentials (free energy and dissipation potential) which
are represented by input-convex neural networks, thus automatically satisfying the principles of
thermodynamics. The neural network is trained thanks to an unsupervised procedure that does not
rely on strain-stress pairs but needs only partial strain or displacement measurements inside the
structure, moreover with uncertain boundary conditions. This method is based on the minimization
of the modified Constitutive Relation Error functional, and it extends previous works on this error
measure for neural networks to the case of history-dependent behaviors, which requires to design a
specific minimization procedure. Given that neural networks for typical structural health monitoring
applications often need to be trained online, there is here a significant emphasis placed on automat-
ically and adaptively tuning crucial hyperparameters such as learning rate or weighting between
losses.

The method is evaluated on elastoplastic and elastoviscoplastic test cases with synthetic data collected
from optic fiber measurements or digital image correlation. It is shown that the method can properly
learn hidden behaviors, achieves high robustness to noise level, and low sensitivity to user-defined
hyperparameters

Keywords Constitutive modeling, Physics-augmented Neural Network, Unsupervised learning, Constitutive relation
error, Evolution laws, Data assimilation
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1 Introduction

Structural health monitoring is a significant concern in the field of engineering and has a wide-ranging impact on various
structures such as wind turbines, aircrafts, and space structures. In this context, it has become crucial to implement
techniques that can detect defects early on and track their growth, ensuring the integrity of structures equipped with
sensors throughout their lifespan. To effectively combine the advantages of numerical simulations and physical
measurements, there is a growing trend to develop novel processes that enable real-time, dynamic information exchange
between the physical system and its corresponding numerical simulator (referred to as a virtual twin). This approach,
known as Dynamic Data Driven Application Systems (DDDAS) [} 2], aims to achieve the following objectives:

* continuously predict the evolution of the relevant physical phenomena and adjust the system accordingly;

* dynamically update the computational model by assimilating in situ measurements in real-time, for effective
diagnosis and prognosis.

This trend benefits from the development over the past decades of new measurement tools such as optic fibers which
enable high spatial resolution [3], as well as the significant improvement of physics-based constitutive modeling which
represents a rich history of knowledge that is nowadays used in virtual twins [4]. The coupling between measured
data and physics-based constitutive modeling is generally performed by using the data to identify the parameters of
a constitutive model with given structure. Many methods have been developed for inverse problems in continuum
mechanics (see for example [5, 16} [7]) to find the parameters of a constitutive model that match best to the observations.
The modified Constitutive Relation Error (mCRE) [8] - also referred to as constitutive equation gap method (CEGM)
[9] - is an interesting framework for inverse problems as it gives a strong physical sense through the modeling error term
of the functional to minimize. The main idea of this framework is to deal with the reliability of information. Reliable
information (e.g. mechanical equilibrium) is enforced in the process whereas unreliable information (e.g. measurements
values or constitutive relation) is released. This hybrid approach, in the sense that it relies on both physics-based and
data-based information, is a good compromise between purely data-based approaches (with high variance and low bias)
which require high data quantity, and model-based approaches (with low variance and high bias) which require low data
quantity. It also provides for an estimate of the mechanical state, by means of the computation of admissible fields, still
in a hybrid manner. The mCRE is now a widely studied method that has been tested in many cases involving forced
vibrations dynamics [8, 10} [11} [12], transient dynamics [[13}14], sequential data-assimilation [[15}|16]], and nonlinear
material behavior [17}118L[19]. The bias-aware mCRE framework is also known to be robust to corrupted [20] or noisy
[21] measurements. The classical mCRE approach, like other parameter identification methods, is nevertheless based
on a postulated model form. This kind of approach has the advantage of being physically interpretable but has the
following drawbacks:

* dealing with constitutive modeling, the modeling process can be difficult in the case of complex behaviors;

* postulating a model form may imply having a large model bias, i.e. when the model form does not allow to
describe the observed complexity correctly (although it is taken into account in the mCRE framework thanks
to a modeling error term);

* once the model is fixed in an SHM context, enriching the constitutive model to take into account new
mechanisms that could occur is not an easy task.

An idea to merge the modeling task with the parameters identification one is to replace the constitutive model with
neural networks (which are known to be universal approximators [22]]), thus getting rid of the above mentioned
drawbacks. Indeed, the use of neural networks allows to not postulate any model form. Its use in constitutive modeling
is now a growing trend, with first developments introduced in [23]]. At this time, learning strain-stress relationships
relied solely on data, neglecting any physical insight into the network architecture or loss function. Coupling deep
learning and physical models has recently gained attention across scientific domains, as seen in [24, [25], helping to
mitigate typical neural networks concerns such as physical consistency, generalization, and training difficulties [25]].
These coupling techniques can be grouped into 3 families. First, one possibility introduced as "physics-informed"
in [26] incorporates physical knowledge into the loss function, combining measurement deviations and penalties for
non-physical outcomes. Second, the "physics-augmented" approach integrates physical constraints into the network
architecture [27, 28] 291130} 131} 32] through frameworks anchored in the convexity of the free energy using Input-Convex
Neural Networks (ICNN) from [33]]. The third strategy is transfer learning which consists of injecting prior knowledge
during the network initialization, thus increasing the data quantity and reducing the impact of random initialization.
The NN-mCRE strategy proposed in [34] and extended here naturally integrates all these recent trends: the constitutive
model is represented by an ICNN (initialized with a priori knowledge) that is trained in an unsupervised way by
minimizing the mCRE functional. Note that neural networks and mCRE have also been coupled in [35] in a different
context where the constitutive relation error concept is used to identify parameters of a linear elastic constitutive law.
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One difference (among many others) between [34] and [35] is that in [34] the constitutive relation form is not given
(it is replaced by a neural network) whereas in [35] a neural network outputs Young’s modulus and Poisson’s ratio
of the linear elastic law. In the NN-mCRE version of the work proposed in [34], the constitutive models considered
were nonlinear elastic, and the extension here aims at learning history-dependent dissipative models (elastoplastic and
elastoviscoplastic).

A wide variety of works addressed the questions of representing history-dependent constitutive models with neural
networks [136} 137,138,139, 140]. As is classically the case in Deep Learning, different types of neural networks are used
such as:

« feed-forward neural networks. With this type of network, the inputs of the neural network are generally the
strain increment and the postulated internal variables (see for examples [41}42]);

* recurrent neural networks which are suited to deal with time series. One strong interest of such recurrent
networks is the use of internal memories which can play the role of internal variables (see for examples
[43] 144 36| 451 39]);

* time convolutional neural networks that are also suited for time series: a comparison between time convolutional
neural networks and recurrent neural networks can be found in [46]].

Moreover, as detailed in the following, the constitutive model should satisfy the thermodynamic principles. Several
works have addressed the issue of enforcing thermodynamic constraints in the architecture or penalizing its violation in
the loss function during the training phase. The advantage of enforcing the constraints in the architecture is that they are
automatically satisfied in the inference phase, whereas it is not the case when constraints are put in the loss function
during training. In [47] a multilayer perceptron predicting the stress increment derived from a thermodynamic potential
is proposed. The mechanical dissipation is then computed and its positivity constraint is put in the loss function used for
training. The dissipation can also be computed in the inference phase to check whether the Clausius-Duhem inequality
is satisfied or not. In [48]] the stress is also derived from a thermodynamic potential but the increment of internal variable
is given by a recurrent neural network. The main advantage is that this approach does not require choosing the internal
variables as they are obtained from the internal memories of the recurrent cells. The second principle is also taken
into account in the loss function. In [30] thermodynamic potentials are predicted with the input-convex architecture
proposed in [33] (with internal variables as input), thus automatically satisfying Clausius-Duhem’s inequality. In this
method, the resolution of the evolution laws is not performed by the neural network but the nonlinear evolution laws are
solved with the Newton-Raphson algorithm. Another possibility to define a thermodynamically-consistent architecture
can be found in [49]], in which the metriplectic structure of dissipative Hamiltonian systems is implemented in the form
of the so-called General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC)[50].

The previously mentioned approaches focus on the architecture of the neural networks, whereas the focus of this
contribution is on the choice of the loss function and its specific minimization in an unsupervised way. This work is
motivated by the fact that in practice, acquiring dataset of strain-stress (or strain-potential) is not feasible, so these
methods are not suited for cases where one wants to learn a new constitutive model, or are limited to cases with simple
loading paths such as tension/compression. Furthermore, the amount of available data is rather scarce in practical
applications (full-field measurement hardly achievable).

The extension of NN-mCRE [34] to take into account history-dependent behaviors requires a specific minimization
algorithm presented in the following. The present paper aims to address a case where data are measurable, thus dealing
with a limited database. In this context, enough a priori knowledge is needed so the internal variables are chosen
a priori. The constitutive model is searched within the framework of the Generalized Standard Material [S1]. The
measurement noise level and the boundary conditions are assumed to be known, even though the mCRE framework is
suited to deal with uncertain boundary conditions. The method is evaluated on elastoplastic and elastoviscoplastic
2D test cases with synthetic measurements (either strain measurements obtained from optic fiber sensors or full-field
displacement obtained from digital image correlation).

The reminder of the paper is organized as follows; Section [2] defines the thermodynamic framework as well as the
problem tackled by the minimization of the mCRE. Section 3| addresses the questions raised by the use of neural
networks to describe the material behavior. The method is evaluated on different test cases in Section ]| by means of
several criteria such as the accuracy of the learned model, evolution of the loss function during the training, the noise
robustness, the localization of modeling error and the relevance of automatic hyperparameters tuning rules. Eventually,
conclusions and prospects are drawn in Section 3]



A. BENADY et al.

2 The modified Constitutive Relation Error concept for history-dependent dissipative
models

2.1 Thermodynamic framework

This section aims to briefly describe the thermodynamically consistent framework of the Generalized Standard Material
[51] used in this article. In such a formulation, the material behavior is described in terms of state equations and
evolution laws involving convex potentials and internal variables.

The state equations are derived from the Helmholtz free energy used as a thermodynamic potential »( , ,,X), where
the total linearized strain tensor is the sum of the elastic strain . and the plastic strain , ( = .+ ,),and Xisa
vector collecting internal variables X}, (k =1,..., K) introduced to represent other phenomena (such as hardening
for example). The use of a convex function 1) automatically satisfies the Clausius-Duhem inequality. A convex,

non-negative and zero at origin dissipation potential ¢ (" ,, X) may be postulated for the definition of evolution laws, to
guarantee the positivity of the mechanical dissipation D = ( : ', — Y : X), with  the Cauchy stress tensor and Y
the vector collecting thermodynamics forces Yy, = 9¢/0X.

The dual potentials that might be more convenient to express the constitutive model are defined with the Legendre-
Fenchel transform :

P*(s) = sup[s.e. —P(e.)] and *(s) = spp[s.ép —p(ép)] )
withe, = [ ., X], e, = [ p, —X] the global vectors of flux variables, and s = [ ,Y] the global vector of thermody-

namic forces.

For a rate-independent behavior, ¢* is not differentiable and the yield criterion function f( ) is introduced, as well as
the Karush—Kuhn-Tucker (KKT) conditions [52]. In this case :

e =10 = {10

Fooif f=0 @

The potential 9, ¢, 1™ and * are involved in the definition of the Constitutive Relation Error (CRE) recalled in Section

2.2 Problem definition

To define the problem notations, let us consider a body in an initial configuration Q C R%(d = 1,2, 3) with boundary
O and isothermal environment, observed for a period [0, 7] under the small strain assumptions. Dirichlet boundary
conditions are imposed on 9€2; C 02 by means of a time-dependent displacement field uy. Neumann boundary
conditions are prescribed on 9§, C OS2 by means of a time-dependent traction field f¢. A time-dependent body force
field f,;i may also be prescribed in €. Additionally, noisy strain measurements s (in the case of observations from
optic fibers) or displacement measurements u,;s (in the case of digital image correlation) are available.

The solution to the direct mechanical problem is the set of the variables (e, e, s) satisfying the three following groups
of equations for each time ¢ € [0, T:

 kinematic admissibility defines the space U, of displacement fields u satisfying the Dirichlet boundary

conditions:
Ujp0, = Ud 3)
* static admissibility defines the space S,q of stress fields satisfying the equilibrium:
/s:e(v):/f:j.v—&- fi.v v ell 4
Q Q Qs

with e = e, + e, and U the space of kinematic admissibility with homogeneous Dirichlet conditions.

¢ constitutive behavior:
- a set of state equations:

oY
Oe,

(&)
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- a set of evolution laws:

_ 9¢
57 9e,

The potentials ¥ and ¢ are parametrized with some parameters p.

(6)

The minimization of the mCRE aims to identify the parameters p of constitutive relations that fit the best to experimental
data. Here Dirichlet and Neumann boundary conditions are assumed to be known (even though the framework extends
to unreliable boundary conditions [53]]), whereas the observations s Or s are affected by measurement noise.

2.3 CRE concept

The CRE concept was introduced in the 70s in the context of finite element verification [54] (i.e. a posteriori error
estimation and mesh adaptation, see [S5] for details). The general idea of this error measure is to split the equations of
Section [2.2]following the reliability of information. The constitutive relation is considered as the unreliable equation
and given an admissible pair (0, *) € (Ugq X Sad), the CRE is defined as follows for elasticity problems:

() = [ (w@)+v'() =" (@)do ™

Q
With quadratic potential ¢ describing the Hooke law (¢( ) = 1 :K: and¢*( ) =1 :K™': ), the linear
elasticity constitutive relationis = K : (u) and the CRE is written

v}

Enp(n ) = [ (=K (@)K (=K @)= [ | =K (@)]fford ®
where ||e||g-1 is the energy norm on stress fields. From (), one can observe that the CRE is an indicator of how much
an admissible couple does not satisfy the constitutive relation.

Later, still in the context of a posteriori error estimation, the CRE concept was adapted for nonlinear history-dependent
problems [56|57]. In this context, the CRE reads for and admissible solution § = ("¢, ", ", X, Y):

T T t .
géRE(é) :/ /W(Aef,X,Y)det‘F/ / /nw(;paAaXaYAv)deSdt 9)
0 Q 0 0 Q
with
nw(Ae»Aaan):¢(A67X)+w*(AaY)fA :A67X~Y (10)
nw(;p,AaX,YAv):90<;p7_x)+‘)0*(Aa?)_A:;p“‘X-? (11

2.4 Extension of the CRE concept for parameter identification: the modified Constitutive Relation Error
(mCRE)

The CRE concept was adapted in the 90s to tackle inverse problems [8]]; parameters of the constitutive model were found
so that they minimize the CRE. In the first idea of the method, observations were directly included in the definition
of the admissible space, leading to weak robustness to measurement noise. To improve this robustness, the mCRE
[58. 117, [10] procedure does not impose the observations in the admissible space. Only reliable information is enforced
by construction whereas unreliable information is released. Recently the mCRE concept has been extended to the case
of history-dependent problems in [18|[19]. The present paper is based on the mCRE framework developed in [18}[19]
and is adapted to the case where the constitutive model is described by neural networks. This section recalls the basics
of the mCRE for history-dependent problems.

The inverse problem consists of finding the optimal parameters p,,; (involved in the thermodynamic potentials) such
that:

Popt = argmin | min 572nCRE(§ : P) (12)
P €Ay
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with
«a T
Ehons( p) = Eanp(is p)+ G [ M= (13)

where A; = (Uuq X Saq) (even though it is possible to consider loading as uncertain information, see [53]]), « is a
scaling factor, and II is a projector of u on the sensing quantities.

The minimization of the mCRE is performed with an iterative process in which, at each iteration :

« in Step 1, an optimal admissible solution 5" 1) is computed for the current parameters p(™ such that :

8D — argmin [£2 o pp(s; p(n))} "
seAq

* in Step 2, the parameters of the constitutive model are updated following a gradient descent step to get p("+1).

Sections [2.4.T|and [2.4.2] respectively detail the first and second steps of this iterative minimization.

2.4.1 First step: computing the optimal admissible solution for given parameters

The first step, which is the most expensive one regarding computation time, is performed with a strategy similar to the
one used in [[18}[19]. This strategy is inspired by the LATIN method [59]], which is non-incremental (i.e. global in time)
and is well-suited to the mathematical structure of the mCRE. The choice made here is to split the mCRE into two

positive parts £7( o, ,X,Y)and E2("), ,X,Y) defined by :
o T o o [T
Si(Ae7A,X7Y):/ /W(Ae,“,X7Y)det+§/ 1T — wops |2t (15)
o Ja 0
N A ~ T t N A ~
EZ(AIH A7X7Y) :/ / /ntp(Apv Aa 7Y)deSdt (16)
o Jo Ja

This separation into two positive parts enables minimizing each term alternatively. Equation (T3) is a compromise
between the residual on the state equations and the discrepancy with measurements. Its minimization is a linear (because
elasticity is assumed to be linear here) and global in space problem. The minimization of (I6)) is local in space and
corresponds to the integration of evolution laws, performed here with an Euler scheme. The general philosophy of Step
1 minimization is illustrated in Figure[I} Sy (resp. S,) is the space of variables searched in the global (resp. local) step
that minimizes the quantity & (resp &).

S, Ve

Local step: minimization of &,

SCarChing for XU7 YU7 €cu,€pu; Ou, Xv; YV7 €e v, € v, Oy

g(u), € frozen.
\()(v)rzn )

Global step: minimization of &y,

Sy
Searching for u, €¢ u,0u, V, £c v, Oy

Internal variables Xy, Yy, &pu, Xy, Yv, &, v frozen.

Figure 1: Illustration of the LATIN-inspired scheme for Step 1 minimization of the mCRE.

Global step (minimization of 85)

In this minimization step, é’i is minimized under the admissiblity constraint (u, ) € (Uyq X Saq). The kinematic
admissibility is enforced in the search space, in which the discretization of u is split into the imposed and free degrees
of freedom. The static admissibility of is imposed through a Lagrangian :

T
e XY N =80 XY= [ [[ oo [eias [ e a”
0 Q Q 02
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In the expression of 83}, the quantity 7,, defined in (I0) involves a dual Legendre-Fenchel transform, defined in (T,
which is not convenient in practice. Therefore, a displacement field v (defined up to a rigid body motion) is introduced
by duality such that:

oy
€ Sad7 = ) (18)
€ e,v
For a given , . is the strain providing for the supremum in the definition of the Legendre-Fenchel transform.

The variables associated with the displacement v (resp. u) are denoted sy = ( cv, pv, v, Xv, Yv) (I€sp. sy =
( e,us p,u llaXIUYu))'

Replacing the Legendre-Fenchel expression involved in (T0), (I7) leads to:

o XY N = [ [ X)X = v Cor o)~ VoK~ Xo)

o T T
+—/ ||Hu—uobs”2_/ {/ D) - f;i.)\—/ fg.,\] (19)
2 0 0 Q Q 0o

During the global step, internal variables Xy, Yy, pu;Xv, Yv, p,v are frozen to the value obtained at the last local
step. The stationarity of the Lagrangian is found with a Newton scheme (see [34]). In the case of linear elasticity (which
will be assumed in the following for the sake of simplicity), this Newton scheme converges in one iteration.

Local step (minimization of 83,)

In this step, the minimization of 55 corresponds to the integration of evolution laws at each Gauss point (local step).
This step can be parallelized. The integration of the evolution laws is performed with an Euler scheme with the total
strains (u) and (v) frozen. The initial conditions on internal variables are enforced for the first time step. As
mentioned in Section [2.1| dealing with the thermodynamic framework, in the rate-independent case the dissipation
potential is the indicator of a convex domain and is not differentiable, whereas in the rate-dependent case, this potential
is differentiable. This leads to different formulations in the integration of evolution laws. The local steps are detailed
for each case in Section ]

Stopping criterion for Step 1

The stopping criterion used for Step 1 (alternation of local and global steps) needs to be defined. This minimization is a
fixed point algorithm, so the stopping criterion is defined regarding the stagnation of the CRE between two successive
local and global steps. The tolerance is defined by the user and its influence will be discussed in the section dedicated to
the automatic tuning of the learning rate. The last step performed needs to be the global step so that the solution of the
minimization is statically admissible.

Restart strategy

After an update of the model parameters, the new Step 1 is initialized with the solutions s,,, sy obtained at the previous
Step 1. This restart strategy significantly reduces the number of iterations required for convergence, thus reducing
computation time.

2.4.2 Second step: update of parameters
This step consists of the updating of parameters p with a gradient descent step :
agr%LCRE(é(n+1) ) P(”))

Jp

with §("+1) the solution obtained at the end of Step 1 of the n + 1 iteration of the mCRE minimization.

p"tt =p™ —1, (20)

To summarize this section and introduce the next one, Figure 2| illustrates the general methodology for further training
the physics-augmented neural network with the mCRE.

3 Training of thermodynamically-consistent neural networks with the mCRE framework

The previous section has recalled basics on the minimization of the modified Constitutive Relation Error in the case of a
nonlinear constitutive model involving evolution laws. This procedure is suited for parameter identification of a given
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Minimization of mCRE:
. . 2 AL
Popt = argmin [ min & -pp($; p)}

P §6Ad
- ] ™
While £2,,.,. < Estop
4 Y
Step 1: 5+ — argmin [5,2nCRE(S ; p("))]
sEAy
[ Elastic initialization for the first iteration or restart with the solution from last iteration
While stopping criterion is not reached :
Local step: Integration of evolution laws. Minimization of
. Ps ~ T t . X ~ . ESEDN
E2(£,,6,X,Y) = / / /(g&(ép, —X) + ¢*(6,Y) — 6 : &, + X.Y)dQdsdt
o Jo Ja
Global step: Global equilibrium
e2@.0%Y) = [ £, %) +07(0,%)— 016~ X Va0t + & [ o 2dt
Heno X V)= [ ] @i X+ v 0.¥) —0se X V)ait+ 5 [0 |
» Kinematic admissibility imposed by the searched space
¢ Static admissibility imposed by Lagrangian
A& J
Step 2: ) A1) (n)
(n+1) _ (n) —1 angRE'(S " ; p" )
p =P T 9
P

* Gradient computed with adjoint state method

- J

Figure 2: Description of the method developed.

constitutive model. In addition, it may be used for neural network training (i.e. finding parameters p containing weights
and biases (W, b)) when the constitutive model is described by a neural network.

Representing a constitutive model by a neural network enables to release the form of the constitutive relation: potentials
1 and ¢ are searched in the space of functions that satisfy physical requirements defined in Section[3.1] Yet several
questions and difficulties emerge when the constitutive model is described by a neural network. On the one hand, the
question of consistency in the inference phase with respect to physical requirements is addressed in Section[3.1} On
the other hand, the important number of parameters to find compared to the case of a given constitutive model form
makes the optimization task [60] more difficult. Specifically, Deep Learning is known to be sensitive to user-defined
hyperparameters such as learning rate, number of epochs, batch size, etc. In the present context of DDDAS, in which
the hybrid twin interacts with the physical structure without human intervention, it is not possible to imagine a strategy
based on human hyperparameter tuning. Thus, a strategy to automatically and adaptively select suitable hyperparameters
is proposed in Section [3.2]

3.1 Constitutive model described by a thermodynamically-consistent neural network

In Section 2.1] a thermodynamic framework has been defined for constitutive modeling. In the following, neural
networks which satisfy this framework are presented. As a reminder, the constitutive behavior is described by means
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of two potentials: the Helmholtz free energy ¢ and the dissipation pseudo-potential . To automatically satisfy
thermodynamic principles, it is sufficient to assume ) to be convex and ¢ to be convex, non-negative and zero at the
origin.

According to the reliability of the initial guess on the constitutive model, either the whole behavior can be described by
neural networks, or only some parts, as it is done in [30]] in a context of limited data. In the case where some parts are
well-known - such as elasticity - it is possible to enforce the form of the known part of the model. For example, function
© can be splitinto 1) = ¢ ( ¢) + ¥p( ), in which ¢y, = 3 . : K: . and ¢, is represented by a neural network. In
this example, the proposed mCRE framework can simultaneously identify parameters of 1. and the weights and biases
of the neural network describing v,,.

In both cases, it is possible to enforce positivity, convexity, and zero at origin constraints in the neural network. The
general idea is described in the following and details can be found in [30,31]. Positivity is enforced through the use of
positive activation functions. Concerning convexity, the input convex neural network (ICNN) architecture proposed
in [33] is employed. This architecture uses convex non-decreasing activation functions and positivity constraints on
intermediate weights. As the composition of a convex and convex non-decreasing function is convex and the sum of
convex functions is also convex, this architecture guarantees convexity. Finally, the output of the network is corrected
by subtracting its value in zero, so that the output is zero when the input is zero.

3.2 Hyperparameters automatic tuning strategy

In this section, the strategy for automatic tuning of the hyperparameters is presented. The relevance of these rules is
evaluated in Sectionfd] All the rules have been designed on a test case (with different target model and geometry which
are not presented here) and evaluated on the test cases presented in the paper. The following details a physics-guided
initialization, a Morozov-based automatic tuning of the weighting between losses, an empirical adaptive learning rate
rule, and a CRE-based stopping criterion used to avoid the predefined choice of the number of epochs. Figure[d]provides
an idea of the general strategy for updating hyperparameters during training.

Physics-guided initialization with a priori knowledge

Here, the initialization is a critical issue. Previous work with the mCRE for parameter identification has shown the
importance of initializing the parameter to identify relatively close to the true value [53]. Additionally, optimization
methods for Deep Learning are also known to be sensitive to initialization [60]. A common approach is to initialize the
neural networks randomly following different distributions such as the one used in [60] (known as "Xavier uniform"
and "Xavier normal"), in [61] (known as Kaiming initialization) or in [62]. These random initiations are sometimes
associated with a normalization of input data in order to avoid exploding and vanishing gradients. Some approaches
even train several neural networks with different initializations and choose the best after training [29]].

Yet, when dealing with constitutive modeling, and especially when the internal variables are chosen a priori, an initial
idea can be available such as is the case in this work. Therefore, before training within the mCRE framework, the
network is initialized following an initial guess. This initialization can be for example performed by means of a classical
supervised training.

Morozov-based criterion for automatic tuning of weighting between losses

The mCRE framework lies within the multiple loss optimization problem scope, in which a frequent concern is the
choice of the weighting between losses [63}164]. More specifically dealing with the mCRE, the tuning of the parameter
« is known to be an important question to solve when using the method [65} [66]. The mCRE functional provides an
interesting physical sense that can be used to tune «. The idea of the tuning is that the model should be updated until
the gap between prediction and observations reaches the value of the noise level. This requires the hypothesis of an a
priori known noise level. The CRE term thus informs on the quality of the model. Hence, the field u obtained at Step 1
should get as close as possible to the measure, but should not fit the noise. To quantify this criterion, « is re-written:

1

a=a nol)sU2

where n,p 1s the number of observations and o the standard deviation of the measurement noise. In order for u not
to fit the observations below the noise level, the order of magnitude of no}iUZ [|[TTu — ups||? should be 1, as stated in
the Morozov criterion [[67]]. In the version of this work dedicated to state laws [34], o was tuned at each epoch using
a dichotomy. The computation time needed for the tuning of o was high (because it needs to re-perform Step 1 for
each value of « tested) but still reasonable when dealing with state laws. On the contrary, when dealing with evolution
laws, the computation time prohibits the use of this strategy. The idea here is to select an initial value of o, perform the
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training until convergence of the normalized CRE, and then progressively update the value of a. As exploring the full
range of possible values of « is prohibited by the computation time, the value of « is thus progressively increased (resp.
decreased) if the model is updated above (resp. below) the noise level until one of the following conditions is met:

e the Morozov criterion is satisfied;

* or the normalized CRE is far from the user-defined target (the notion of far is defined in the paragraph dedicated
to the CRE-based interpretable stopping criterion).

After updating the value of «, the Step 1 is inialized with the solution § obtained before the update.

Adaptive tuning of the learning rate

Another critical parameter in the training of neural networks is the selection of the learning rate, denoted as /,- [68]. An
excessively small value for /,. can result in a slow training process, while an overly large value can introduce instability
during training, potentially preventing the network from reaching convergence. Evaluating the appropriate learning rate
should involve an analysis of the progress achieved during a single training step. In this context, a valuable indicator of
the training update speed can be obtained from the two-step minimization procedure. The idea behind the evaluation of
the progress made during training can be found in Figure[3] The number of iterations made in Step 1 for a given epoch
is directly linked to the value of the update made in Step 2 of previous epochs. Hence, starting from the second epoch,
the learning is updated so that the number of iterations made is close to an empirically defined target on the number of
iterations. This rule has been designed on a different test case from the one presented in this article and the influence of
this empirical rule will be shown in Section[d.2.5] This rule is strongly inspired by [34] even though the minimization
performed in Step 1 is different.

According to multiple experiments, a good compromise is located around 6 iterations in Step 1. It is thus possible to
automatically adapt the learning rate with the following empirical-based rule:

lr < Ir x update_coefficient (number_iterations_step_1) 2D

where update_coefficient (number_iterations_step_1) is a function depending on the num-
ber of iterations performed in previous Step 1. A point of attention is that the function
update_coefficient (number_iterations_step_1) should be changed if the tolerance of the stopping
criterion of Step 1 is modified (with a smaller tolerance the number of iteration is naturally higher). The main advantage
of this rule is that the convergence of the method is no more sensitive to the user learning rate choice, as shown in
Section[4.2.3] which enables to train the network online.

A point of attention is that near convergence, the learning rate should not be increased, as otherwise there is a risk of
getting far from the global minimum. To do so, near convergence the learning rate is only updated if the rule tends
to decrease the learning rate (the notion of near convergence is defined in the next paragraph). Additionally, a replay
strategy has been implemented if the learning rate is too large, thus implying a very large number of iterations in Step 1.
In this case, the model before updating is reloaded and a new gradient descent step is performed with a lower learning
rate.

CRE-based interpretable stopping criterion

Training neural networks requires the establishment of a termination condition. One commonly employed approach
involves initially specifying a predetermined number of epochs for training and subsequently adjusting this parameter
based on the performance of predictions [[69]. However, this approach is unsuitable in the context of Dynamic
Data-Driven Application Systems (DDDAS) since training must occur online.

Another frequently adopted rule involves defining a criterion to identify overfitting, with the objective of stopping
training when the loss computed on the validation dataset plateaus while the loss on the training dataset continues to
decrease. This criterion is not applicable in this scenario due to the unsupervised nature of the training.

The concept of mCRE offers a strong physical foundation that can be employed to establish a termination criterion. As
it will be illustrated in Section[4.3] the CRE can be interpreted as a modeling error. The CRE is homogeneous to an
energy and can thus be compared to the energy in the structure; the normalized CRE reads:

g2 _ f Q foT "y 22)
lized = T
normalized_CRE fg fOT D(sv)

A similar expression can be written for the part concerning the dissipation potential and involving ¢ and 7,,.

This criterion is also used to estimate how far from convergence the minimization process is, which is required in the «
and [,- updating rules.
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p
Step 1: 8"*Y = argmin |:57anRE(8 ; p("))}
sEA,

[ Restart with solution from last epoch J

While stopping criterion is not reached :

( Local step: Integration of evolution laws J A large (resp. small)
learning rate in Step 2

for a given epoch
I Global step: Global equilibrium I implies an important

(resp. small) number
of iterations in the

\_ Y, Step 1 loop for the
p next epoch.
Step 2:
(n+1) _ _(n) _ 8572nCRE(‘§(n+1) ) P(n))
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Figure 3: Influence of the learning rate on the optimization process.
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Update model parameters with learning Update model parameters with
rate divided by 100 (if the stopping learning rate divided by 100 (if the
criterion is not reached) stopping criterion is not reached)

Figure 4: General idea for hyperparameters updating.

4 Results and discussion

This section is dedicated to the results and discussion on three different test cases. The first one in Section 4. I]is a
toy example in 1D to illustrate the mCRE method in a case of parameter identification: only one parameter of a given
hardening law is identified. The second one in Section {f.2] aims at learning a nonlinear hardening law. Finally the
third one in Section[4.3]aims at learning a viscoplastic behavior. The evaluation of the performance is based on several
criteria such as the accuracy of the learned model (Sections [#-2.3]and [#.3.2)), the evolution of the loss function during
the training (Sections [#.2.3|and [4.3.2), the noise robustness (Section [4.2.4), the localization of modeling error (Section

11
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|.3.3), the relevance of automatic hyperparameters tuning rules (learning rate in Section [4.2.5] and the weighting
between losses in Section [4.3.4).

4.1 A simple 1D example to identify an isotropic hardening modulus

Before presenting the results of neural network training with the mCRE framework, this section aims to show parameter
identification of the hardening modulus in a simple 1D toy problem. This section is associated with an open-access code
E]and can be helpful for a better understanding of the mCRE concept, hyperparameters influence and tuning. Figure
illustrates the problem that is addressed. A one-dimensional beam, with Young modulus £, initial elasticity limit Ry,
linear hardening modulus h and length L = 1, is loaded in tension. For the sake of simplicity, this problem is limited to
one degree of freedom, in which the displacement is observed and affected by measurement noise. Here the constitutive
laws are assumed to be known and the only parameter to identify is the hardening modulus h. The potentials are the
following:

1 1
(e, p) = 5B + 5hp® (23)
. _ Joiff<0
with f = o — (R + Ryp).
Consequently,
o = Fe, (25)
t
R:hpwithp:/ 1| (26)
0
and, following the normality rule :
Of
en = A= 27
€p 80’ ( )

with A > 0if f = 0 and f = 0.

Studied beam

Only degree of

u s (ne freedom.
Ry Initial elasticity limit (known value) Observed

E  Young modulus (known value)

A Imposed force F
§| -

h  Hardening modulus (to identify) displacement

Figure 5: Simple 1D problem: beam with isotropic hardening.

The initial guess is h;,; = 5 X 10*MPa, whereas the target value is Ay = 10°MPa. Figure@ shows the difference
between true and predicted responses for the initial parameter guess. For a given training epoch, after the first step
(computing an admissible solution that minimizes &,,crg for given model parameters), the expression of stationarity
conditions of the Lagrangian defined in gives that:

* sy is a compromise between the solution of the forward problem and the observed data (hybrid state);

* sy is the solution of the forward problem.
Figure[7] shows these solutions at the end of Step 1 for the first epoch, for different values of «.. Indeed, the compromise
between the resolution of the forward problem and the observed data depends on the value of o.. The larger the «, the

closer the predicted displacement field to the true displacement field. In the example of Figure|/| two values of « are
presented. With o = 105, the predicted strain associated with solution s,, corresponds exactly to the true strain.

As mentioned in Section [3.2] the tuning of this parameter is important for at least two reasons:

"https://gitlab-research.centralesupelec.fr/antoine.benady/mcre_evolution_1d/-/tree/main?ref_
type=heads
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Figure 6: True and predicted responses with initial parameters.
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Figure 7: Solutions s,, and s,, for different values of « (top: o = 10%, bottom o = 10°)
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At the end of the training process, the compromise between the model and measurements should be such that
the discrepancy between the predicted solution s,, and the observations is of the order of the magnitude of the
noise level.

* As the gradient of the mCRE is directly linked to the difference between s,, and s, the value of « has a strong
influence on the optimization process. Yet, this influence is strongly linked to the role of the learning rate. As
tuning o with respect to the Morozov criterion is more computationally expensive than tuning the learning rate
following the empirical rule presented in Section [3.2] this value is only tuned at convergence.

Figure [8](top) shows the results of the training for various epochs. At the end of the training, the parameter h is properly
identified and the solution s, is close to the measurements. The constitutive relation, even though it is not directly
observed, is properly learned. The bottom of Figure[§]shows that the mCRE functional decreases smoothly. In this toy
example, the hyperparameters are manually tuned because the computational time is very low (less than 30 seconds for

the whole training).

x10? o as a function of e x10! R as a function of p
1.4 e 6 »
1.2 p ” o 5
1.0 2
41 ¢
0.8 = 1
3
0.6 ¢
24 s
0.4 b e~ True solution e~ True solution
‘/I Solution sy, epoch 0 11 Vi Solution sy, epoch 0
0.2 / Solution sy, epoch 10 Y Solution sy, epoch 10
0.01¢ ° Solution sy, epoch 100 0 ‘/ ° Solution sy, epoch 100
0.0 05 1.0 15 0.0 05 1.0
%1073 x1073
x 103 Evolution of h during training Evolution of mCRE during training
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o541 77" Rirue 1 O,(, 1
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Figure 8: Results of training for the identification of h for the 1D test case.

4.2 Rate-independent test case: learning of a nonlinear isotropic hardening law

4.2.1 Reference problem

In the previous section, the model form was known and only one parameter was identified. In the use cases targeted in
this paper, only an initial guess on the model form is known. The initial guess is represented by a neural network that is
trained in the mCRE framework. To represent the initial guess, it is possible to perform a first supervised training with
the Adam optimizer for example ([[70]) before the mCRE training.
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In this section, a nonlinear isotropic hardening law is recovered. For the sake of simplicity, a part of the model is
assumed to be known as represented in Table[I] with the values of the parameters in Table ] This is a modeling choice
dictated by the reliability of material knowledge: other strategies can be imagined such as identifying some model
parameters simultaneously or even representing every part with neural networks. The mCRE strategy easily adapts
to these cases. It is worth noticing that in the addressed problem, the yield criterion is assumed to be known, which
means that the dissipation potential is known (it is recalled that in the rate-independent case, the pseudo-potential is
the indicator function of the convex elastic domain as defined in (2)). In the rate-independent case, representing the
dissipation potential by a neural network is not convenient: it is more adapted to use the neural networks to represent
the yield criterion.

Figure [0 shows the geometry, boundary conditions, and sensor positions of the problem under study. The studied case is
a 2D beam loaded in tension with variable loading forces. The generated measurements come from two optic fibers
oriented along the two main axes and positioned in the middle of the beam.

Model used to generate data Model to train

Elastic part of the free energy:

, 1 .
Ye(€e) = g(k(tr )7 + 2uE.: €) Assumed to be known with the correct parameters

Plastic part of the free energy:

Represented by a neural network initialized with:
Un(en) = Ap+ F(e 7~ 1)

1
Vp(8p) = §hP2

Limit of the elasticity domain:

f=0¢— (R+ Ry) Assumed to be known with the correct parameters

Table 1: Summary of the nonlinear hardening law test case, with A\ = a +Vﬁl{_2u) =g (1‘3_”) and ., the Von-Mises
equivalent stress.

Parameters Value
FE 200 GPa
v 0.25
A 45 MPa
B 3000
h 50 GPa
Ry 100 MPa

Table 2: Values of parameters used in the nonlinear hardening law test case.

4.2.2 mCRE minimization for the rate-independent test case.

This section aims to detail the mCRE minimization in the specific case treated. Step 1 minimization of the mCRE is
composed of a local step (integration of evolution laws) and a global step (computation of admissible fields).

Local step

In the local step, the variables (u) and (v) and the variables py, pv, Ru, Rv, eus ev, pus p,v are searched. The
integration is performed with an Euler implicit scheme. In the following, the indices u and v are dropped and the
integration is written in a generic form. For each element and for each time step, the integration consists in finding
(both for u and v solution):

15



Optical fiber: strain
measurements

\

o

Figure 9: Geometry of the problem under study.

After time discretization, (28)) becomes:
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(28)

(29)

where ! denotes the quantity - at the time step ¢. The system (33) is solved with a Newton-Raphson method in
which the Jacobian matrix is computed through automatic differentiation. At the end of the local step, the variables

DPu, Pv, By, By, e,u;s e,y pu, p,v are

Global step

updated.

During the global step, the variables Xy, Yy, pu,Xv, Yv, p,v are frozen to the value obtained at the local step. An
admissible solution is computed through the minimization of the Lagrangian defined in (I9), with X, = r,,, Yy =

Ru7Xv = rvaYv = RV

Step 2

As the dissipation potential is assumed to be known here, only the parameters involved in the plastic part of the free
energy py, are updated through gradient descent:

n+l _ _n

ag?nCRE(SUv 5viP)

pwp - p"/)P o apw
P
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with
_
Su ap'ﬁp

d((/‘leRE(Su,Sv;p) :/T/ ( o
dpy, o Jo \Opy,

At the beginning of the training, the initial guess on the model form is wrong (see Table[I)), which is referred to as
model bias. If the form of the model were not released (i.e. not described by a neural network), it would not be possible
to properly fit observations. In Figure[I0] the material behavior is shown for the true model and initial guess. On the
right, the shape of the hardening part of 17 as a function of 1 is not properly represented. The initial guess is linear
whereas the true response has an exponential shape.

)

4.2.3 General results

As previously mentioned, representing a constitutive model by a neural network enables relaxing the model form.
Indeed, Figure[TT]shows the response at the end of the training: the hardening law has evolved from a linear law to a
nonlinear law and the response is properly represented. The relation R as a function of p is learned even though none of
these quantities is observed in practice.

Figure[I2]shows the evolution of the mCRE (with the CRE and distance to observation term) during the training. At the
end of the training, the normalized data loss is approximately 1, which means that the Morozov criterion is satisfied.
Concerning the normalized CRE, it is below the user-defined target value. As these two criteria are met and following
the procedure defined in Figure[d} the training stops. The gap between the learnt relation and the true one (see Figure
11)) is explained by the Morozov criterion: the updated model should not fit data below the noise level (1% here, where
the noise is on the total strain observations coming for the optic fiber measurements).

After epoch 500, the normalized CRE has an oscillating behavior, which is explained by the updating of the weighting
between losses a.. The evolution of the parameter « is represented in Figure [I3]

%102 011 as a function of €1 % 10! R as a function of p
1.4 e |
12 e 20
|
1.0 §
|
1.5 g
0.8 ¢
' 4
0.6 1.0
0.4
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02{ y
True solution ¢ o— True solution
0.0 Prediction with initial guess 0.04- ) S Prediction with initial guess
0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4
%1073 %1074

Figure 10: Model bias at the beginning of the training.

4.2.4 Robustness to noise level

Previous works about mCRE have shown the high robustness of the method to noise level (see [21}20] in a case dealing
with parameter identification and [34] with neural networks). This section aims to briefly analyze the noise robustness of
this test case. In Figure@ the evolution of the loss function, divided into the CRE and the distance to observations, is
represented for different noise levels from 0.01% to 20%. The first observation to notice is the value of the normalized
data loss at the end of training. This value is close to one, which means that the Morozov criterion is satisfied: the gap
between the predicted strain and the measured strain is the same order of magnitude as the noise level. Secondly, the
normalized CRE is decreasing during training, until the stopping criterion is met. These two observations show that
the training is reaching the expected behavior: the modeling error is decreased to the expected value and the model is
updated up to noise level.

When the noise is 20%, the right of Figure [14]shows that the mCRE is increasing while the normalized CRE and the
normalized data loss are decreasing. This is explained by the increasing value of « that follows an evolution similar to
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Figure 11: Learned hardening law at the end of the training.
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Figure 12: Left: evolution of the normalized CRE during the training. Middle: evolution of the normalized data loss
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Figure 13: Evolution of « during the training.
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the one in Figure[I3] For the highest noise level, the training requires fewer epochs than the lower noise level. The first
reason is that the value of « at the beginning of the training is adequate (normalized data loss is close to one) and as the
model should not be updated below the noise level, the correction from the initial guess is lower than for lower noise
levels as it is further shown.

Now that the behavior of the training has been checked, it is interesting to observe the curve of the learned hardening
law and the response 17 as a function of ;. Figure shows this for two different noise levels (0, 01% and 20%). For
the low noise level (even though it is a quite high noise level compared to other methods such as [29]) the hardening
law is properly learned. On the other hand, for the noise level of 20%, only a slight correction has been made. Indeed,
on the left of Figure[T3] the gap between the predicted strain and the true strain (without noise on the curve) is around
20%: it would make no sense to update below the noise level.

Normalized CRE Normalized data loss mCRE
— 001% | :
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10~ — 1.00% |
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Figure 14: Impact of noise level on convergence. Left: evolution of the normalized CRE during the training. Middle:
evolution of the normalized data loss during the training. Right: evolution of the mCRE during the training. For the 3
curves, the values are computed after Step 1 and before updating the weights and biases of neural networks.
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Figure 15: Learned hardening law at the end of training for different noise levels.

4.2.5 Relevance of the automatic learning rate tuning

This section aims to briefly illustrate the efficiency of the adaptive tuning of the learning rate presented in Section
In Figure[I6] the evolution of the mCRE during training is represented for three different values of the initial
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learning rate chosen by the user (with a difference of 5 orders of magnitude between the highest and the lowest). One
strong advantage of this rule is that the level of mCRE reached at convergence is the same for the 3 initial values. This
means that the training is not sensitive to the user learning choice, which is rarely the case in gradient-descent-based
optimization in Deep Learning [69]. This is explained by the adaptive rule which automatically chooses close values of

the learning rate after several epochs, independently of the initial choice. A sensitivity remains regarding the training
time, which is not a major concern here.

mCRE Evolution of the learning rate
|
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,,,,l, ,,,,,,,,,,,,,
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Figure 16: Influence of the initial learning rate on the optimization process.

4.3 Rate-dependent test case: learning of a dissipation pseudo-potential

In this section, the method is tested with a viscoplastic behavior. As in the previous section, a part of the constitutive
model is assumed to be known and another part is released through the use of a neural network. Here, the free energy is
assumed to be fully known (linear elasticity and linear hardening law), as well as the boundary of the elasticity domain.
The parameters involved in the free energy and elasticity domain are also assumed to be known (even though they could
be updated in the same way as the neural network parameters). In contrast, the form of the dissipation pseudo-potential
is released with a neural network. This neural network is initialized to represent a classical power law [52]], whereas

the model used to generate the data is a hyperbolic cosine law [71]], as summarized in Table[3] Figure[I8|shows the
discrepancy between the initial and the true models.

The case under study is the 2D notched beam shown in Figure The beam is subjected to tension with varying
loading forces, while the full-field displacement is measured.

Figure 17: Geometry of the problem under study.
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Model used to generate data Model to train

Elastic part of the free energy:

) 1 .
Ye(Ee) = 5 (A(tr €)% + 2ue.: €) Assumed to be known with the correct parameters

Plastic part of the free energy:

Up(Ep) = %hp2 Assumed to be known with the correct parameters
Limit of the elasticity domain:
f=0c— (R+ Ro) Assumed to be known with the correct parameters

Dissipation potential

Represented by a neural network initialized with:

o' (f) = AB(cos(SL7%) 1)
A () = e (<f>+>“’a+1

PVEN VK,

Table 3: Summary of the rate-dependent test case.

Parameters Value

F 200 GPa

v 0.3

A 18 MPa

B 0.3s7!

h 1.5 GPa
Ry 160 MPa
K, 50 MPa.s!/Na
N, 10

Table 4: Values of parameters used in the rate-dependent test case.

4.3.1 mCRE minimization for the rate-dependent test case

This section aims to detail the mCRE minimization in the case of rate-dependent behavior. Step 1 minimization of the
mCRE is composed of a local step (integration of evolution laws) and a global step (computation of admissible fields).

Local step

As in the rate-independent case, in the local step, the variables (u) and (v) and the variables
Dus Pvs Bus Ry, eus evs pu, p,v are searched. The integration is performed with an Euler implicit scheme. In the
following, the indices u and v are dropped and the integration is written in a generic form. For each element and for
each time step, the integration consists in finding (both for u and v solution):

Ay (p) (32)

_ O
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After time discretization, (32) becomes:

A - (- -2
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where « denotes the quantity - at the time step ¢, and dt the time increment. The system (33)) is solved with a Newton-
Raphson method in which the Jacobian matrix is computed through automatic differentiation. At the end of the local
step, the variables py, pyv, Bu, v, eus ev> pu> p,v are updated.

Global step

During the global step, the variables Xy, Yy, pu,;Xv, Yv, pv are frozen to the value obtained at the local step. An
admissible solution is computed through the minimization of the Lagrangian defined in (19), with X, = r,,, Y, =
Ruvxv = rvav = Rv

Step 2

As the free energy is assumed to be known here, only the parameters involved in the dissipation potential p,~ are
updated through gradient descent:

oE? (Sus Sv;P)
n+1 n mCRE\°u) 2V,
T =po.— 34
Py Py Opg- (34
with
8521012)5 (5u, 5v;P) _ /T /t / ( 0p* B o™ ) (35)
Op- 0 Jo Ja \OPy+lsy  OPy lsu

4.3.2 General results

This section presents the general results of the method on the viscoplastic test case. Figure [18|shows the results of the
finite element simulation for the true model and neural network before and after training. The behavior is properly
reconstructed after training and the model bias on the dissipation potential is properly corrected.

Figure[I9]illustrates the evolution of the different terms of the mCRE during the training. At the end of the training, the
stopping criterion is properly met as the normalized CRE is below the target (1e~%) and the normalized data loss is
close to 1, thus satisfying the Morozov criterion. The oscillating behavior of the normalized CRE is explained by the
automatic update of the weighting between losses «. Indeed, every time the normalized CRE is below the target and the
Morozov criterion is not met, the value of « is increased (see Figure . When « is increased, the normalized CRE
increases and the normalized data loss decreases.

The previously obtained conclusions in the rate-independent test case regarding the robustness to noise level (Section
@.2.4) and the relevance of the learning rate tuning (Section[4.2.3)) still stand in the rate-dependent test case (even though
they are not presented again). The following sections evaluate the mCRE framework on the ability to properly localize
the model bias on the structure in Section[4.3.3]and the relevance of the tuning of the weighting between losses « in

Section[4.3.4

4.3.3 Localization of the model bias in the structure

An interesting aspect of the mCRE framework is the localization of model bias. In the present example, Figure
shows that the plastic behavior is not properly modeled before the training of the neural network. This can also be seen
in Figure[20|in which the cumulative plastic strain is shown in the structure for the last time step of the simulation, both
for the true model and the neural network before training. On the right of Figure[20] the normalized CRE shows that the
modeling error is localized in the part of the structure in which there is plasticity. This observation is explained by the
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Figure 18: Finite element simulation for the true model and neural network before and after training (with 0.1% noise
level).
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Figure 19: Left: evolution of the normalized CRE during the training. Middle: evolution of the normalized data loss
during the training. Right: evolution of the mCRE during the training.

fact that this is the plastic part of the behavior that is not properly modeled. It is worth noticing that the computation of

this error only requires information that is available in the inference phase (no use of the true potential nor true internal
variable value).

4.3.4 Relevance of the automatic tuning of the weighting between losses

This section aims to briefly illustrate the relevance of the automatic tuning of the weighting between losses presented
in Section[3.2] In Figure 2] the evolution of the mCRE during training is represented for four different values of the
initial weighting between losses chosen by the user (with a difference of 4 orders of magnitude between the highest and
the lowest). Figure[d can be helpful to understand the evolution of « during training: the value of « is increased every
time the normalized CRE is below the target and the Morozov criterion is not met. Figure[21]shows that the level of
mCRE reached at convergence is the same for the 4 initial values, which means that the converged value is not sensitive
to the user’s choice of the initial value. Yet, a strong sensitivity remains regarding the computation time. Indeed a

proper initial value can help achieve quicker convergence (o = 10000) in Figure 21] This issue might be overcome by
adding an initial automatic tuning at the beginning of training, such as is done in [34].
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Figure 20: a: Cumulative plastic strain obtained with the true model. b: Cumulative plastic strain obtained with the
neural network before training. c: Difference between the cumulative plastic strain obtained with the true model and the
cumulative plastic strain obtained with the neural network before training. d: Normalized CRE at the beginning of
the training. e: Cumulative plastic strain obtained with the neural network after training. f: Difference between the
cumulative plastic strain obtained with the true model and the cumulative plastic strain obtained with the neural network
after training. g: Normalized CRE at the beginning of the training.

5 Conclusion

This paper presented an innovative method for training physics-augmented neural networks to represent evolutionary
laws. The approach involves the use of partial strain or displacement measurements for unsupervised training in
which the modified Constitutive Relation Error is minimized. An important feature of the method is the classification
of information with respect to its reliability. All reliable information is guaranteed by construction. The respect of
thermodynamic principles is achieved by formulating the constitutive model in the generalized standard material
framework with convex potentials represented by input-convex neural networks. The admissibility properties are
enforced in the minimization process. In this bias-aware approach, the constitutive model is considered as unreliable
information and is released by the use of a neural network. The noisy measurements are also released in the minimization.
Moreover, the mCRE minimization provides an interpretable framework as the associated function provides a rich
physical sense, the CRE being interpreted as a modeling error in the structure.
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Figure 21: Left: evolution of the weighting between losses during the training. Middle: evolution of the normalized
data loss during the training. Right: evolution of the mCRE during the training.

The performance of the methods was accessed on three test cases: a simple 1D problem where only one parameter
of the constitutive model was updated, an elastoplastic behavior where a nonlinear hardening law was learned, and
a viscoplastic behavior where a cosine hyperbolic dissipation potential was learned. The method showed interesting
performance in terms of accuracy of the learned model, robustness to noise, localization of modeling error, and
sensitivity of the law to user-defined hyperparameters. Since this research is part of a larger project [2] aiming at
correcting the model bias of a hybrid twin involved in a DDDAS architecture, special attention was given to the
automatic tuning of the hyperparameters (weighting between losses, learning rate, initialization). In summary, the
proposed approach represents a promising tool for predicting the response of materials and structures to external loads.
This could pave the way for new avenues of research in the field of computational mechanics.

However, this work requires additional studies before being applied to real structures. First, the computational cost
seems prohibitive (a few hours for a 2D beam). This problem could be overcome by coupling this work with previous
ones on the mCRE suitable for real-time control using reduced order modeling [16,|72]] and Kalman filter [73]]. Another
reason is the required choice of postulated internal variables. Even if the model form of the relationships involving
internal variables is properly corrected, a model bias remains in the choice of internal variables. A research direction to
alleviate this problem could be the use of recurrent neural networks (RNN), in which the internal memories can play the
role of internal variables [39]], although the coupling with the mCRE error could be challenging.
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